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Abstract. Discrete-time Markov chains are an important tool in prob-
abilistic analysis of computer systems. For example they are used to
describe the behavior of computer programs with probabilistic choice
or the time-dependent distribution of input values. Current formaliza-
tions of Markov chains are restricted to a finite state space. We extend
this to a countable state space, construct the stochastic process of a
Markov chain given a matrix of transition probabilities, and prove the
equivalence with the axiomatic definition as stochastic process. Based on
this we introduce irreducible, recurrent, and aperiodic classes, generating
functions and stationary distributions to analyze Markov chains.
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1 Introduction

Modeling systems as discrete-time Markov chains is a popular technique to an-
alyze probabilistic behavior of network protocols, algorithms, communication
systems or biological systems. In computer science they are used to analyze
probabilistic programs [4], or to analyze queuing and reliability problems [14].

A Markov chain describes the behavior of a probabilistic process. Similar
to a state machine, the Markov chain has a set of states, transitions between
these states and a starting state. The transitions are labelled with probabilities.
The decision which state to choose next depends only on the current state, it
is independent of previously visited states, and also independent of the time. In
this paper we only handle Markov chains with discrete time (i.e. time values are
natural numbers) and a discrete state space (i.e. the set of states is countable).

Fig. 1 shows the transition graphs of two Markov chains. The vertices are
the states and the edges describe the non-zero transition probabilities. For (a)
the starting state is A, here the process chooses in half of all cases B otherwise
C1. It stays in B with probability 1/2, otherwise it chooses C1. In C1 and in C2
it chooses with probability 1/3 any Ci. It stays in C3 with probability 1/2 and
chooses C2 or C3 with probability 1/4.
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Fig. 1 (b) shows a so called birth-death process with an infinite state space.
With probability 1/3 it goes one state upwards, and with probability 2/3 it goes
one state downwards (in the case of 0 it stays in 0 with probability 2/3).
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(b) An infinite birth-death process

Fig. 1. Two Markov chains

These Markov chains already yields some questions:

Q1 When we start (b) does it always come back to 0?
Q2 Is it possible that (a) never reaches C3 or that (b) never reaches a state n?
Q3 When we start (b) in 0, what is the average time until it reaches 0 again?
Q4 When (a) runs for a long time, is C3 more likely to occur than C1 or C2?

To answer these questions we need to formalize probability and Markov chain
theory. For readers new to this topic a introductory text book is [15], which we
use for the analysis part of our formalization.

Our formalization [9] is split into three parts:

Measure and probability This is required as the set of all traces of a Markov
chain is uncountable. This part provides us with construction mechanisms
for measure spaces, like infinite products of probability spaces, and with the
Lebesgue integral.

Defining Markov chains We provide two approaches: One assumes a state
space, a matrix of transition probabilities, and a starting state. From this
we constructs the probability space of traces. The other approach assumes
the existence of a probability space and a time-indexed family of random
variables describing the behavior of the Markov chain at a certain time. We
show the equivalence between both approaches.

Analyzing Markov Chains Finally we use the trace space to give formal
meaning to the questions Q1 to Q5. We formalize concepts like irreducible
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classes, hitting times, and stationary distributions. We prove theorems to
reduce quantitative questions to the analysis of the transition graph, and to
the solution of a linear equation system.

2 Related Work

For the construction of Markov chains we Isabelle/HOL’s measure and proba-
bility theory presented in [5]. This work constructs finite-state Markov chains
to verify probabilistic model checking, and for reachability analysis of Markov
chains defines in HOL. In this paper we extend this work to countable (possibly
infinite) state spaces and further analysis concepts such as (positive) recurrence,
the period of a state and stationary distributions. Popescu, Hölzl and Nipkow [13]
use the work presented in this paper to model programs with probabilistic choice
and parallel composition as infinite-state Markov chains.

One of the first formalizations of measure and probability theory in a HOL
theorem prover was Hurd’s probabilistic monad [7]. He formalized the founda-
tions of measure theory and used it to construct a probability space on N⇒ B.
He verifies programs using a random number generator as functions reading bits
from traces in this probability space.

Liu et al. [12] classify finite-state Markov chains. They axiomatically define
Markov chains as stochastic processes. They show for aperiodic Markov chains
that the limit of the marginal probability is a stationary distribution.

A simpler approach, which does not require measure theory, is to employ
expectation transformers on countable distributions. Hurd, McIver and Mor-
gan [8] use this approach, they even allow demonic (non-deterministic) choice.
This work was recently ported to Isabelle/HOL by Cock [2]. Audebaud and
Paulin-Mohring [1] develop a shallow embedding of probabilistic programs in
Coq by formalizing a monad of discrete distributions.

A fully automatic approach to analyzing Markov chains is using probabilistic
model checkers, like PRISM [11] or MRMC [10]. While model checkers work fully
automatically they can only analyze problems on finite-state Markov chains, and
their analysis is usually limited to reachability probabilities and average cost
computation. Also, as they work non-symbolically, they suffer from state-space
explosion.

3 Preliminaries

The term syntax used in this paper follows Isabelle/HOL, i.e. function applica-
tion is juxtaposition as in f t and t :: τ means that term t has type τ . Types
are built from the base types B (booleans), N (natural numbers), R (reals),
R = R ∪ {−∞,∞} (extended reals), type variables (α, β, etc), via the function
type constructor α⇒ β, and via the set type constructor α set. We use =⇒ for
logical implication; it binds – in contrast to Isabelle/HOL notation – stronger
than universal quantification, i.e. ∀x. P x =⇒ Q x equals ∀x. (P x =⇒ Q x).
We use two operations on traces ω :: N⇒ α: ω ◦n ω′ to concatenate two traces:
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if i < n then (ω ◦n ω′) i = ω i, otherwise (ω ◦n ω′) (i + n) = ω′ i, and s · ω
to prepend an element: (s · ω) 0 = s, and (s · ω) (n + 1) = ω n. χA is the
indicator function χA x = 1 if x ∈ A otherwise χA x = 0. We abbreviate
A → B = {f | ∀a ∈ A. f ∈ B}. f z z→1−−−−−→ x states that the function f z

converges to x as z approaches 1 from the left. X n
n→∞−−−−→ x states that the

sequence X n converges to x. We write LEAST n. P n for the smallest natural
number n fulfilling P n.

We use Isabelle’s locale-mechanism [3] to define mathematical structures.
The locale-command defines a new predicate L by giving a list of constants
c1, c2, . . . , cn and a list of assumptions P1, P2, . . . , Pk:

locale L =
fixes c1 :: α and c2 :: β and · · · and cn :: γ
assumes P1 and P2 and · · · and Pk

This defines the predicate L c1 . . . cn = P1 ∧ P2 · · ·Pk. In Isabelle/HOL, this
gives us a context where we have direct access to the assumptions P1, P2, . . . , Pk
and to other theorems proved in this context.

4 Measure and Probability Theory

Before we start with Markov chains itself, we give a short overview of the required
probability theory. We need a theory to (1) operate on measures (probabilities),
(2) define integrals (expectations) on such measures, and (3) mechanisms to
construct measures.

A measure consists of a measure space Ω, measurable sets A and a measure
function µ. The measurable sets A form a σ-algebra consisting of subsets of
Ω which are closed under countable union and complement. Measure functions
are zero on the empty set µ ∅ = 0, non-negative 0 ≤ µ A for measurable sets
A ∈ A, and countably additive µ (

⋃
i Fi) =

∑
i µ Fi, for a disjoint sequence

F of measurable sets. We are mostly interested in probability measures where
µ Ω = 1. In abstract math, we write Pr(P ) = µ {ω ∈ Ω. P ω}, i.e. the bound
variable ω is not mentioned.

In Isabelle/HOL, measures are their own type αmeasure, with the projections

space :: αmeasure⇒ α set for the measure space Ω,
sets :: αmeasure⇒ α set set for the measurable sets A, and
measure :: αmeasure⇒ α set⇒ R for the measure function µ.

If P is a probability space we write prob-space P ⇐⇒ measure P (space P ) = 1.
We write Pr(ω in M. P ω) = measureR M {ω ∈ spaceM. P ω}, where measureR
is the restriction of measure to R. We also define the conditional probability
Pr(ω in M. P ω | Q ω) = Pr(ω in M. P ω ∧ Q ω)/Pr(ω in M. Q ω). If
Pr(ω in M. Q ω) = 0 then Pr(ω in M. P ω | Q ω) = 0.

For a function f ∈ measurable M N all sets {ω ∈ space M. f ω ∈ A} are
measurable in M for all A ∈ sets N . We write P ∈ measurable M B, when
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{ω ∈ space M. P ω} is measurable, and f ∈ measurable M borel, when {ω ∈
space M. f ω < a} is measurable for all a :: R or a :: R. In probability theory
measurable functions are also called random variables.

For the Lebesgue integral we have two functions:
∫ +
x
f x dM :: R for non-

negative functions f :: α ⇒ R which might be infinite, and
∫
x
f x dM :: R for

real-valued functions f :: α⇒ R which is only defined if the integral is real. We
have the usual rules: linearity

∫ +
x
c · f x + d · g x dM = c · (

∫ +
x
f x dM) + d ·

(
∫ +
x
g x dM) and monotone convergence

∫ +
x
fn x dM

n→∞−−−−→
∫ +
x

supn fn x dM .
Similar to measures the integrals need measurable functions, the previous rules
only hold for functions f, g ∈ measurable M borel, and for an increasing se-
quence of Borel-measurable functions fn. In probability theory the integral on a
probability space M is also called expectation.

4.1 Constructing Measure Spaces

Constructing measure spaces can be unwieldy, for this reason we provide a cou-
ple of construction mechanisms for measure spaces. In this section we assume
measurability of the involved sets and functions. See [5] for a detailed description.

The counting measure count S for a countable set S assigns each set A ⊆ S
its cardinality as measure. The integral is equal to the sum of the integrand
over S. This integral equation only works when the support of f is finite. In
Isabelle/HOL there is no sum operation over arbitrary countable sets, instead
we take advantage of the integral over count S.

count :: α set⇒ αmeasure
measure (count S) A = if finite A then card A else ∞∫ +

x

f x dcount S =
∑

x∈S|f x 6=0

f x if {x ∈ S | f x 6= 0} is finite

A function X ∈ measurable M N induces a measure on N , the so called push-
forward measure or distribution of X.

distr :: α set⇒ β set⇒ (α⇒ β)⇒ βmeasure
measure (distrM N X) A = measureM {ω ∈ spaceM | X ω ∈ A}∫ +

x

g x ddistrM N X =
∫ +

x

g (X x) dM

We can use non-negative, Borel-measurable functions f as densities, i.e. associate
to each element of the measure space a density (or weight). We use the Lebesgue
integral to compute the weighted measure of a set.

density :: α set⇒ (α⇒ R)⇒ αmeasure

measure (densityM f) A =
∫ +

x

f x · χA x dM∫ +

x

g x ddensityM f =
∫ +

x

g x · f x dM
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We use the density measure in combination with the counting space to construct
the point measure of p on the space S.

point :: α set⇒ (α⇒ R)⇒ αmeasure
point S p = density (count S) p
measure (point S p) A =

∑
x∈A p x if A is finite

In probability theory one often needs infinitely many independent random
variables. We construct them using the product of infinitly many probability
measures. While the index set I is allowed to be uncountable, the set J in the
following equation needs to be finite.

Π: : ι set⇒ (ι⇒ αmeasure)⇒ (ι⇒ α)measure
Pr (ω in (Πi∈IM i) . ∀i ∈ J. ω i ∈ A i) =

∏
i∈J Pr(x in M i. x ∈ A i)

The construction of this measure space is complicated, it requires Caratheodory’s
extension theorem. It will be very helpful in the next section.

5 The Markov Chain Trace Space

To answer the questions Q1 to Q4 our informal description given in the in-
troduction is not enough. For a formal approach we need a probability space
assigning probabilities to sets of traces in the Markov chain.

5.1 Axiomatic Definition as Stochastic Processes

One way to represent Markov chains is as a stochastic process X ∈ N→ Ω → S,
i.e. a family of functions (Xt)t∈N where Xt is measurable on a probability space
M . The space M represents the probabilistic behavior of our entire “world” and
with X we observe the behavior of our Markov chain.

We introduce the locale Discrete-Time-Markov-Chain. It assumes a stochastic
process X and a probability space M which has the properties of a Markov
chain, i.e. it is memoryless and time-homogeneous.

locale Discrete-Time-Markov-Chain =
fixes M :: αmeasure and S :: β set and X :: N⇒ α⇒ β +
assumes prob-spaceM and countable S
assumes ∀t. X t ∈ measurableM (count S)
assumes ∀t x y. — The stochastic process X is memoryless:

Pr(ω in M. ∀t′ ≤ t. X t′ ω = y t′) 6= 0 =⇒
Pr(ω in M. X (t+ 1) ω = x | ∀t′ ≤ t. X t′ ω = y t′) =
Pr(ω in M. X (t+ 1) ω = x | X t ω = y t)

assumes ∀t t′ x y. — The stochastic process X is time-homogeneous:
Pr(ω in M. X t ω = y) 6= 0 ∧ Pr(ω in M. X t′ ω = y) 6= 0 =⇒
Pr(ω in M. X (t+ 1) ω = x | X t ω = y) =
Pr(ω in M. X (t′ + 1) ω = x | X t′ ω = y)
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The assumptions that the conditions of the conditional probabilities are non-
zero are required. Otherwise the Markov chain in Fig. 1 (a) would not fulfill
our locale: as Pr(Xt = A) = 0 for all 0 < t, an unrestricted time-homogeneous
property would imply 1

2 = Pr(X1 = B | X0 = A) = Pr(X2 = B | X1 = A) = 0.
It is not necessary to restrict x and y to be elements of S, as the probability to
reach elements outside S is zero.

5.2 Constructive Definition with Transition Probabilities

Often a Markov chain is not given as a stochastic process, but as a state space
S, the initial distribution ι x = Pr(X0 = x), and the transition matrix τ x y =
Pr(Xt+1 = x | Xt = y) (this equation holds only for Pr(Xt = y) > 0). With
the mechanisms from Section 4.1 we now construct a probability space and a
stochastic process having a specific transition matrix and initial distribution.

We assume a countable state space S :: α set and a matrix of transition
probabilities. The matrix is not formalized as a function α ⇒ α ⇒ R, but as a
so called Markov kernel K :: α ⇒ αmeasure. This exploits the fact, that each
row in τ is a probability distribution. We assume no initial distribution, however
when measuring traces we provide a starting state.

locale Discrete-Markov-Kernel =
fixes S :: α set and K :: α⇒ αmeasure
assumes countable S and S 6= ∅
assumes ∀x. sets (K x) = P(S) ∧ prob-space (K x)

For the rest of this section we assume a discrete Markov kernel with state space S
and kernel K. The transition probability τ x y to go from state x to y is written
as measure (K x) {y}.

Our goal is now to define a probability measure Px on the space of all traces
N → S, where x is the starting state. The trace space Px should assign the
probability τ x ω0 · τ ω0 ω1 · · · τ ωn−1 ωn to the set of all traces starting with
ω0, ω1, . . . , ωn.

How can we proof the existence of such a measure? Our first option is to use
the method by Hurd [7] and define the algebra of finite unions of cylinders, i.e.
sets of traces starting with the same prefix. We proved Caratheodory’s extension
theorem, but to operate on finite unions of cylinders it is very cumbersome.

An alternative is to cast the probability measure Px out of the infinite product
measure with N as index set and a probability space on S → S as factors. The
nested product Πi∈N(Πy∈SK y) :: (N ⇒ α ⇒ α)measure is indexed by time n
and then by the current state y. We simply map an element from this product
space into a trace in Px, by starting with x and then following the states selected
at each time point. For this we define the function trace:

trace :: α⇒ (N⇒ α⇒ α)⇒ (N⇒ α)
trace x π 0 = π 0 (if x ∈ S then x else SOME x. x ∈ S)
trace x π (n+ 1) = π (n+ 1) (trace x π n)
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By induction we have trace x ∈ measurable (Πi∈NΠy∈SK y) SΠ . Here SΠ is the
σ-algebra of infinite sequences of S: SΠ = Πi∈Ncount S.

Definition 1 (Trace space). As the function trace x is measurable, we use
trace x to define the measure Px:

P :: α⇒ (N⇒ α)measure
Px = distr (Πi∈NΠy∈SK y) SΠ (trace x)

With this the measurable sets of Px are the measurable sets of SΠ , i.e. the
smallest σ-algebra where {ω ∈ N → S | ω i ∈ A} is measurable for all A ⊆ S
and all i ∈ N. This trace space also contains traces ω with τ (ω i) (ω (i+1)) = 0.
In textbooks this is often avoided, but it simplifies proving measurability.

From the construction of Px we derive equations to split expectations and
probabilities of traces at an arbitrary time point n. These equations are similar
to the Chapman-Kolmogorov equations, but more general:

Lemma 2 (Splitting rules). We assume that x is in S and that f and P are
measurable, then∫ +

ω

f ω dPx =
∫ +

ω

(∫ +

ω′
f (ω ◦n ω′) dP(x·ω) n

)
dPx and

Pr(ω in Px. P ω) =
∫ +

ω

Pr
(
ω′ in P(x·ω) n. P (ω ◦n ω′)

)
dPx.

From this we can deduce a generic form of Chapman-Kolmogorov:

Lemma 3 (Chapman-Kolmogorov). We assume that x is in S and that P
and Q1 are measurable. Lets assume that P can be split into the predicates Q1
and Q2: ω, ω′ ∈ space SΠ =⇒ P (ω ◦n ω′)⇐⇒ Q1 ω ∧Q2 (((x ·ω) n) ·ω′), then

Pr(ω in Px. P ω) =∫
y

Pr
(
ω in Px. Q1 ω ∧ (x · ω) n = y

)
· Pr

(
ω in Py. Q2 (t · ω)

)
dcount S.

5.3 Equivalence

We show that both definitions of a Markov chain are equivalent. With the split-
ting rules we show the memoryless and the time-homogeneous property.

Theorem 4 (The trace space Px is a Markov chain).
If Discrete-Markov-Kernel S K, then the trace space Px fulfills the Markov

chain properties: Discrete-Time-Markov-Chain Px S (λn ω. ω n) for x ∈ S.

If we have a stochastic process X fulfilling the Markov chain properties, it is
more complicated. The stochastic process may have an arbitrary initial distribu-
tion Pr(X0 = s), whereas Discrete-Markov-Kernel assumes a single starting state.
We construct a Markov kernel by embedding the state space S in the option
type and use None as new starting state.
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Definition 5 (Markov kernel from the stochastic process X). We define
S′ :: β option set to be an extension of S :: β set.

S′ :: β option set
S′ = {None} ∪ {Some x | x ∈ S}

K ′ :: β option⇒ β optionmeasure
measure (K ′ None) A = Pr(ω in M. Some (X 0 ω) ∈ A)
measure (K ′ (Some x)) A = Pr(ω in M. Some (X (t+ 1) ω) ∈ A|X t ω = x)

The last equation requires that Pr(ω in M. X t ω = x) 6= 0. Together with the
time-homogeneous property K ′ is well-defined.

With this definition we prove Discrete-Markov-Kernel S′ K ′. The resulting trace
space PNone is equal to the distribution of X lifted to S′Π :

Theorem 6 (The Markov kernel K ′ has the distribution of X).

PNone = distrM S′Π (λω n. Some (X n ω))

Theorem 4 and 6 show that for each Markov chain defined as a stochastic
process exists a Markov kernel, and vice versa.

6 Analyzing Markov Chains

With Px (for probabilities) and with the Lebesgue integral (for expectation) we
formally restate the questions from the introduction:

Q1 When we start (b) does it always come back to 0?
Pr(ω in P0. ∃t. ω t = 0) = 1 ?

Q2 Is it possible that (a) never reaches C3 or that (b) never reaches a state n?
Pr(ω in PA. ∀t. ω t 6= C3) 6= 0 or Pr(ω in P0. ∀t. ω t 6= n) 6= 0 .

Q3 When we start (b) in 0, what is the average time until it reaches 0 again?∫ +

ω

inf {t | ω t = 0}dP0 = ?

Q4 When (a) runs for a long time, is C3 more likely to occur than C1 or C2?
limt→∞ Pr(ω in P0. ω t = 0) > limt→∞ Pr(ω in P0. ω t = n)

Note that Q1 is similar to Q2: Q1 is the negation of Q2, but in Q1 the starting
state and the stopping state are equal.

Fortunately, Markov chain theory allows us to reduce these questions to an
analysis of the graph of non-zero transitions, and to the solution of a linear equa-
tion system. In this section we formalize the required Markov chain theory. All
following definitions and lemmas are in the locale Discrete-Markov-Kernel S K.
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6.1 Accessibility
The non-zero transitions of a Markov chain define a directed graph. Properties
of this directed graph are called qualitative properties of the Markov chain. For
a state x, we define the set of enabled, accessible and communicating states and
show their relation with probabilities on the trace space.
Definition 7 (Enabled states). We define E x as the set of all states reach-
able in one step with a non-zero transition probability:

E :: α⇒ α set
y ∈ E x⇐⇒ y ∈ S ∧measure (K x) {y} 6= 0

Not every trace has everywhere enabled states, but almost every trace has:
Theorem 8. Almost every trace is everywhere enabled

x ∈ S =⇒ Pr(ω in Px. ∀i. ω i ∈ E ((x · ω) i)) = 1

Definition 9 (Accessible states). The states accessible from x are inductivly
defined as reflexive and transitive closure of E:

accessible :: (α× α) set
x ∈ S =⇒ (x, x) ∈ accessible
(x, y) ∈ accessible ∧ z ∈ E y =⇒ (x, z) ∈ accessible

A state x is accessible from a state y iff Pr(y is reached) > 0:
Theorem 10. Accessibility as probability on traces

(x, y) ∈ accessible⇐⇒
(
x ∈ S ∧ y ∈ S ∧ ∃n. Pr(ω in Px. ω n = y) 6= 0

)
Definition 11 (Communicating states). The communicating relation is the
symmetric variant of the accessibility relation:

communicating :: (α× α) set
(x, y) ∈ communicating⇐⇒ (x, y) ∈ accessible ∧ (y, x) ∈ accessible
The relation communicating is an equivalence relation as it is symmetric,

reflexive, and transitive. Its equivalence classes are called irreducible. We write
the set of irreducible classes as S

/
communicating. In Fig. 1 (a) the irreducible

classes are {A}, {B}, and {C1, C2, C3}. Fig. 1 (b) has only one irreducible class:
{0, 1, 2, . . .}. It is a so-called irreducible Markov chain.

An equivalence class is essential iff no state outside of the class is accessible
by a state inside the class. If the Markov chain reaches a state in an essential
class, it will stay in this class forever. Essential classes are equivalent to strongly
connected components in graph theory.
Definition 12 (Essential class). An essential class C is an irreducible class
where all accessible states from C are again in C:

essential :: α set⇒ B
essential C ⇐⇒ C ∈ S

/
communicating ∧

∀(x, y) ∈ accessible. x ∈ C =⇒ y ∈ C
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6.2 Recurrence
Many interesting properties on Markov chains are related to recurrence, i.e. the
probability to reach a state when started in this state.

Definition 13 (Recurrent states). A state x is recurrent iff it is guaranteed
that when we start in x, that we come back in x.

recurrent x⇐⇒ Pr(ω in Px. ∃n. ω n = x) = 1

Q1 can be written as recurrent 0. For Q3 we are interested in the average time
to return to 0. For this we define the hitting time of x on the trace ω (this is
also called first passage time):
Definition 14 (Hitting time). The hitting time t x ω is the first occurence of
x plus 1 if x is in ω. If x never occurs the hitting time is ∞.

t :: α⇒ (N⇒ α)⇒ R
t x ω = if ∃n. ω n = x then (LEAST n. ω n = x) + 1 else ∞

(Note that the hitting time is never 0)

Definition 15 (Average hitting time).

M :: α⇒ R

M x =
∫ +

ω

t x ω dPx

With this Q3 can also be written as M x. When x is non-recurrent, M x is
always infinite. But even for a recurrent state it may be infinite. If M x is real,
the state is called positive recurrent:
Definition 16 (Positive recurrent states).

pos-recurrent :: α⇒ B
pos-recurrent x⇐⇒ recurrent x ∧M x <∞

If a recurrent state is not positive recurrent it is called a null recurrent state.

6.3 Quantities and Generating Functions
In the previous section we gave the definition of recurrence. Now we provide tools
to relate (positive) recurrent states with other quantities, like the probability to
hit a state infinitely often or the average number of reaching a state.
Definition 17 (Unbound quantities).

G :: α⇒ α⇒ R and H,U :: α→ α→ R

G x y =
∫ +

ω

measure (count N) {i | (x · ω) i = y} dPx
H x y = Pr(ω in Px. infinite {i | ω i = y})
U x y = Pr(ω in Px. ∃n. ω n = y)

Obviously, recurrent x⇐⇒ U x x = 1.
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In the definition of G, measure (count N) A is used as cardinality of the set A
which is ∞ if A is infinite. The usual cardinality in Isabelle/HOL is on natural
numbers, hence it is 0 if A is infinite. With the exception of H the unbound
quantities are expressible as infinite sums over time-bounded probabilities:

Definition 18 (Time-bounded reachability probabilities).

p, u :: α⇒ α⇒ N⇒ R
p x y n = Pr(ω in Px. (x · ω) n = y)
u x y n = Pr(ω in Px. (∀i < n. ω i 6= y) ∧ ω n = y)

Lemma 19 (Unbound quantities as series of time-bounded probabili-
ties).

G x y =
∑
n p x y n M x =

∑
n u x x n · (n+ 1) U x y =

∑
n u x y n

The expectation G x y can be infinite. To avoid case distinctions for proofs
about G, and to take advantage of mathematical analysis, Markov chain theory
introduces generating function. For a probability or expectation P =

∑
n fn, its

power series is called a generating function Pg z =
∑
n fn · zn. Here z is a real

number between 0 and 1. If z approaches 1 from the left, we have Pg z
z→1−−−−−→ P .

Definition 20 (Generating functions for G, M , U , and F ).

Gg,Mg, Ug :: α⇒ α⇒ R⇒ R
Gg x y z =

∑
n p x y n · zn Mg x z =

∑
n u x x n · (n+ 1) · zn

Ug x y z =
∑
n u x y n · zn+1

These functions are real valued. As long as |z| < 1, the sums are well-defined.

Lemma 21 (Unbound quantities as limits of generating functions). The
generating functions tend to their probabilistic equivalence, if z approaches 1 from
the left:

Gg x y z
z→1−−−−−→ G x y Mg x z

z→1−−−−−→M x Ug x y z
z→1−−−−−→ U x y

(Both rules for M x require that x is recurrent.)

For example, we can show that the average number of visits to x is inversely
proportional to the probability to not reach x:

G x x = 1/(1− U x x) .

But this equation is not true when U x x = 1. With generating functions we
have a nice tool to relate them even in this case.

Theorem 22 (Relating recurrent and G). Assume x ∈ S, then:

Gg x x z = 1
1− Ug x x z

for |z| < 1

12



As Gg x x z
z→1−−−−−→ G x x we also know:

1
1− Ug x x z

z→1−−−−−→ G x x

So, recurrent x (i.e. U x x = 1) is equal to G x x =∞.
As G x x =∞⇐⇒ G y y if (x, y) ∈ communicating, we have:
Corollary 23 (recurrent is invariant on irreducible classes).

(x, y) ∈ communicating =⇒ recurrent x⇐⇒ recurrent y
Recurrence is not only invariant on irreducible classes, we also now that

recurrence of a class implies that it is an essential class. For this we relate
recurrence with H and U :
Lemma 24 (Relation between recurrent and H and U).
Assume x, y ∈ S, then:

H x x = if recurrent x then 1 else 0
H x y = U x y ·H y y

Assume recurrent x and (x, y) ∈ accessible, then
U y x = 1, recurrent y, and (x, y) ∈ communicating

For recurrent states accessible equals communicating hence they form an essen-
tial class:
Theorem 25 (Recurrent classes are essential).

recurrent x =⇒ essential {y | (x, y) ∈ accessible}
With Theorem 25 and the pigeon hole principle follows also that finite essential
classes are recurrent:
Corollary 26 (Finite essential classes are recurrent).

finite C ∧ C ∈ S
/
communicating =⇒ essential C ⇐⇒ (∀x ∈ C. recurrent x)

Lemma 24 also helps us to answerQ2 (which is 1−U A C3 6= 0 or 1−U 0 n 6=
0), if we can show that C3 or n are recurrent.

Similar to recurrence, positive recurrence is invariant on irreducible classes.
To prove this, we show that the derivative of the generating function Ug is Mg

and then applying l’Hôpital’s rule to relate M and U :
Lemma 27 (Relation between M and U).

DERIV (Ug x x) z :> Mg x z for |z| < 1 and
1− z

1− Ug x x z
z→1−−−−−→ 1

M x
.

Hence positive recurrence is invariant on irreducible classes: either all states are
positive recurrent or all states are null recurrent.
Corollary 28 (Positive recurrent is invariant on irreducible classes).

(x, y) ∈ communicating =⇒ pos-recurrent x⇐⇒ pos-recurrent y

13



6.4 Stationary Distribution
A stationary distribution µ is a measure invariant under multiplication with τ :
∀y ∈ S. µ y = (

∑
x∈S µ x · τ x y). In Isabelle/HOL, we use the integral as sum,

and instead of the quantifier we use equality on measures1:
Definition 29 (Stationary distribution).

stationary-distribution :: αmeasure⇒ B
stationary-distribution N ⇐⇒

N = point S
(
λy.

∫ +

x

measure (K x) {y} dN
)

It is often very easy to show that a Markov chain has a stationary distribution
N : we only need to show that N is a solution to this equation system.
Example 30 (Stationary distributions of Fig. 1). For the essential class {C1, C2, C3}
in Fig. 1 (a), we have the stationary distribution N with measure N {C1} =
measure N {C2} = 3/10 and measure N {C3} = 4/10. Fig. 1 (b) is an essential
Markov chain its stationary distribution N is measure N {n} = 1/2n+1.

Theorem 31 (Stationary distribution implies positive recurrence).

stationary-distribution N ∧ prob-space N ∧
essential C ∧measure N (S − C) = 0 ∧ x ∈ C =⇒
pos-recurrent x ∧ M x = 1/measure N {x}

This lemma answers Q3, with the stationary distribution we compute M x.
Another property of the stationary distribution is, that it is the limit of the

marginal distribution p x y t when t goes to infinity. This limit does not always
exist: a Markov chain where the graph is a cycle, and the transition probabilities
are all 1 has no such limit. We introduce aperiodic classes to avoid these cases.

Definition 32 (Aperiodic classes).

aperiodic :: α set⇒ B
aperiodic C ⇐⇒ C ∈ S

/
communicating ∧

(∀x ∈ C. Gcd {i | 0 < i ∧ 0 < p x x i} = 1)

Lemma 33 (Aperiodic class implies non-zero p).

aperiodic C =⇒ ∀x ∈ C. ∃t. ∀t′ ≥ t. 0 < p x x t′

The stationary distribution is the limit of the marginal distributions.
Theorem 34 (Stationary distribution is asymptotic distribution).

stationary-distribution N ∧ prob-space N ∧measure N (S − C) = 0 ∧
aperiodic C ∧ essential C ∧ y ∈ C =⇒∫
x

∣∣∣p x y t−measure N {y}
∣∣∣ dcount C t→∞−−−→ 0,

x ∈ C =⇒ p x y t
t→∞−−−→ measure N {y}

1 N = point S f ⇐⇒ (∀x ∈ S. measure N {x} = f x) ∧ sets N = P(S)

14



With this theorem we answer our final question Q4. The Fig. 1 (b) is aperiodic
and has a stationary probability distribution, hence we only need to compare
the values of the stationary distribution.

7 Discussion

Using measure theory to formalize Markov chains is not strictly necessary. Woess
mentions in the introduction of [15] that it is also possible to consider the Markov
chain on a time interval up to time t. Then the set of traces is countable and
quantities can be expressed as (countable) sums. When an infinite time is in-
volved one could take the limit over these quantities when the time t goes to
infinity. However, applying measure theory provides a more generic framework:
we can handle all cases as the involved functions and predicates are measurable.
To handle measurability we even implemented a simple measurability prover.

In three other aspects measure theory was very helpful for us:

– In comparison to earlier formalizations of Markov chains we are not restricted
to a finite state space. However, countable state spaces are more complicated
when we sum over all states. Here we found it helpful to use the counting
measure count S defined in Section 4.1, which allows us to use the Lebesgue
integral as sum operator over an infinite set.

– The Lebesgue integral was also very helpful for the splitting rules (Lemma 2).
As common way to reduce probabilities on Markov chains is the Chapman-
Kolmogorov theorem: p x y (n+m) =

∑
z∈S p x z n · p z y m. The splitting

rules and our generic Chapman-Kolmogorov are much more flexible. Of
course it is necessary to show measurability of f or P , but for this we use
our simple measurability prover.

– It was important to us to show the equivalence between the stochastic-
process and the transition-matrix interpretation of Markov chains. This was
made possible with the measure space constructions in Section 4.1.

The last point strengthens that our formalization works on all Markov chains,
and that we did not forget an assumption. For example, the formalization by
Liu et al. [12] does not fulfill this guarantee. In their formalization of the time-
homogeneous property they miss the assumption that the states are reachable at
all. Hence the Markov chains they handle are restricted to Markov chains where
the probability to reach a state is always non-zero, i.e. Pr(X t = x) 6= 0.

The recent developments in analysis for Isabelle/HOL [6] helped us with the
limit approaching from left and with translating limits from R to R. This was
important when working with generating functions.

One restriction of our formalization is that the Px assumes a starting state.
We showed that it is possible to use an initial distribution by embedding the state
space into the option type. However, a more direct approach would simplify this
and we plan to change the definition of the trace space from Px to PI where I
is the initial distribution on S.
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8 Summary and Future Work

In this paper we formalized Markov chain theory. Compared to earlier formal-
izations we provide the following contributions:

– The Markov chain can be either a stochastic process or a transition matrix.
– The state space is allowed to be countably infinite.
– By using generating functions, we formalized the relations between different

quantities and (positive) recurrence.
– Our formalization allows to verify positive recurrent states and the limit of

the marginal distribution by using the stationary distribution.

Based on the work presented in this paper we want to formalize Markov de-
cision processes. Such a formalization involves Markov chains with countably
infinite state spaces, as the state encodes the history for the involved non-
deterministic decisions.
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