
Using LLVM for Optimized Lightweight Binary Re-Writing at Runtime

Alexis Engelke, Josef Weidendorfer
Department of Informatics

Technical University of Munich
Munich, Germany

EMail: engelke@in.tum.de, weidendo@in.tum.de

Abstract—Providing new parallel programming models/ab-
stractions as a set of library functions has the huge advantage
that it allows for an relatively easy incremental porting path for
legacy HPC applications, in contrast to the huge effort needed
when novel concepts are only provided in new programming
languages or language extensions. However, performance issues
are to be expected with fine granular usage of library functions.
In previous work, we argued that binary rewriting can bridge
the gap by tightly coupling application and library functions at
runtime. We showed that runtime specialization at the binary
level, starting from a compiled, generic stencil code can help
in approaching performance of manually written, statically
compiled version.

In this paper, we analyze the benefits of post-processing the
re-written binary code using standard compiler optimizations
as provided by LLVM. To this end, we present our approach
for efficiently converting x86-64 binary code to LLVM-IR.
Using the mentioned generic code for arbitrary 2d stencils, we
present performance numbers with and without LLVM post-
processing. We find that we can now achieve the performance
of variants specialized by hand.

Keywords-High Performance Computing; Dynamic Code
Generation; Dynamic Optimization; Binary Transformation

I. INTRODUCTION

In High Performance Computing (HPC), the usage of
programming languages which get compiled to native code
such as Fortran or C++ is common, as well as the usage of
low level libraries which are relatively thin abstractions over
hardware. An example for the latter is MPI [1]. The reason
for favoring compiled languages and low level libraries is the
need for predictable and stable runtime behavior, which is
essential in being able for parallel application codes to scale
well even when using thousands of processors. On the one
hand, this low level of programming allows for sophisticated
optimizations tuned for specific hardware features. But on
the other hand, productivity is heavily limited compared to
software development in other IT domains. For example,
HPC programmers do not take advantage of memory safety
as provided by managed environments (Java, .NET).

Due to the low productivity, strategies are desperately
needed which allow both for higher abstraction and yet keep
the ability for tuning of details. Promising concepts such
as PGAS (partitioned global address space) were proposed.
However, they often come with new programming languages
or language extensions [2]–[4]. Compiler support is very

helpful in reducing any overhead of provided abstractions.
But with new languages, porting of existing application
code is required, being a high burden for adoption with
old code bases. Therefore, to provide abstractions such as
PGAS for legacy codes, APIs implemented as libraries are
proposed [5], [6]. Libraries have the benefit that they easily
can be composed and can stay small and focused. However,
libraries come with the caveat that fine granular usage of
library functions in inner kernels will severely limit compiler
optimizations such as vectorization and thus, may heavily
reduce performance.

To this end, in previous work [7], we proposed a technique
for lightweight code generation by re-combining existing
binary code. We presented our open-source prototype DBrew
(Dynamic Binary REWriting)1. The main features are (1)
tight coupling of separately compiled functions (e.g. from
application code and/or different libraries) by aggressive
inlining and (2) specialization of generic code with infor-
mation known at runtime. For example, variable function
parameters can be configured to have known values, enabling
constant propagation, dead-code elimination (due to runtime
knowledge), and full loop unrolling. Specialization is useful
for minimizing the runtime overhead of abstractions: how
to best handle different runtime properties (input data, exact
target architecture with e.g. varying cache sizes, specific
features of I/O devices) can be covered in generic code.
This gets specialized into a concrete implementation when
executed by the proposed rewriting technique2. Rewriting at
the binary level has several advantages. We can inline code
from existing libraries (even commercial) without the need
for source code, which makes the technique easy to deploy in
different HPC environments. Furthermore, for the supported
code transformations, staying at the binary level of a given
ISA is fine: either instructions can be copied over into the
newly generated code, partly replacing operands with known
constants, or they simply disappear if all input parameters
are known. We showed that the performance of the resulting
code almost matched the performance of the variant with the
specialization done statically by hand.

In this paper, we study the performance implications of

1Available at https://github.com/lrr-tum/dbrew
2C++ templates allow for variants, but may have code explosion issues.



DBrew

LLVM

Source
Code

Compiler Exe-
cutable

RuntimeCompile Time

Loaded
Binary
Code

Decoding Specialization Code
Generation

New
Binary
Code

JIT
CompilerOptimizerLLVM

IR

Transformation
X86 → LLVM-IR

Figure 1: Overview on the process of binary re-writing in combination with LLVM. The decoded and optionally specialized
binary code is transformed to LLVM-IR before standard compiler optimizations of LLVM can be applied.

our binary re-combination/specialization technique in more
detail. We want to understand if there are inherent overheads
within the resulting code which makes it impossible to
approach statically compiled, manually specialized code.
To this end, we forward code from DBrew into standard
optimization passes of an established compiler backend, as
shown in Fig. 1. For this, we use the C-API and JIT (Just-
In-Time) compilation features of LLVM [8]. We use the
same example as in our previous work (a generic 2d Jacobi
code). We compare the performance of various variants
and the effort required. While having the option to use
LLVM optimization passes is nice in the scope of DBrew,
we also did this experiment for two other reasons. On the
one hand, we now have an infrastructure to understand
for given use cases, which of the optimization passes are
essential and which can be neglected. This will guide us to
further improve the backend of DBrew with simple forms
of essential optimization passes without the heavy LLVM
resource overhead (both in space and time). On the other
hand, we wanted to understand the importance of meta
information for standard compiler optimization passes, as
this is not readily available in the binary code from DBrew.

The paper is structured as follows: first, we shortly revisit
the DBrew prototype in the next section. Then we describe
in detail the required steps for converting x86-64 binary code
into LLVM-IR. In Sec. IV, we describe specific aspects for
the conversion in the context of specialization. Afterwards,
results are presented for the 2d Jacobi case. Here, we also
show excerpts of x86 code as produced by DBrew as well
as the code when post-processed by LLVM. We discuss our
findings, and after mentioning related work, we conclude the
paper with ideas for future extensions.

II. DBREW: DYNAMIC BINARY RE-WRITING

DBrew is our prototype for the proposed lightweight
code generation technique consisting of re-writing and re-

int func(int a, int b) { ... }
typedef int (*func_t)(int,int);
func_t newfunc;

int main() {
// call original function
int x = func(1,2);
// new rewriter config for func
dbrew_rewriter* r = dbrew_new(func);
... // configure rewriter
newfunc = (func_t) dbrew_rewrite(r);
// call rewritten version
int x2 = (*newfunc)(1,2);

}

Figure 2: Basic usage of DBrew.

combining pieces of compiled binary code. It currently
works with the x86-64 ISA and Linux. The basic approach
is to generate drop-in replacements of existing functions.
A request for re-writing returns a function pointer with
exactly the same function signature as the original code. We
expect that re-writing may fail: each of the internal steps
“decoding”, “emulation” (if all input to an instruction is
known), and “encoding” may not be covered for a given
instruction in the instruction stream. This will trigger an
internal error. DBrew has a default error handler which
simply will return the original function to ensure correctness.
However, the user can provide a custom error handler,
which for example may iteratively enlarge the buffer space
available for the generated code and restart the re-writing.
Fig. 2 shows basic DBrew usage.

There exist different configuration options to influence
the behavior of rewriting the binary code of a compiled
function. On the one hand, the amount of resources available
to rewriting can be limited (e.g. for decoding, duplicated



// set config and rewrite func
r = dbrew_new(func);
dbrew_setpar(r,1,42);
dbrew_setmem(r,start,end);
newfunc = (func_t) dbrew_rewrite(r);
// par 1: uses 42 instead of 1
int x2 = (*newfunc)(1,2);

Figure 3: Declaring known values for specialization.

variant generation, depth of allowed inlining, or space for
generated code). On the other hand, for specialization, one
can configure that some values which get used in a function
should be fixed to a given constant. To specify which values
should be assumed to have a fixed value, DBrew allows
to specify memory ranges. The values stored within such
regions are assumed to be fixed. Apart from that, DBrew
configuration relates to function parameters. The user can
specify fixed values for parameters of the function to be
rewritten, or fixed values which are referenced through
function parameters (by specifying that a parameter is a
pointer to fixed values). Fig. 3 shows the specification of a
specialization configuration. In this example, parameter 1 is
fixed to value 42, and all values in a given memory range are
assumed to be fixed. The latter replaces memory references
by immediates in the generated instruction stream.

All configuration options of a DBrew rewriter object
rely on the C ABI (Application Binary Interface) of the
target ISA and operating system. An ABI specifies in detail
how function parameters are passed (in registers or on the
stack) and how register content is preserved over function
invocations (i.e. whether the caller or callee has to save
registers on the stack). Only with all compilers adhering to
an ABI, object files generated by different compilers actually
can be linked together. Thus, regarding DBrew, we assume
that any function to be rewritten (or for whose inlining
a parameter fixation is specified) also will adhere to the
platform ABI. Only this allows DBrew to map parameter
numbers given in the configuration to the actual register or
stack space used3.

For this paper, we additionally allow to configure the code
generation backend. This backend does the new LLVM-IR
transformation, triggers LLVM optimization passes, and uses
the JIT code generator.

III. CONVERTING X86 TO LLVM-IR

The transformation of x86-64 assembly to LLVM-IR
is designed to work on the function level. To perform
the transformation with minimal overhead of the resulting
code, we make some assumptions, mostly inferred from the

3For x86-64, a parameter slot typically uses 64 bit. However, the ABI
allows parameters to extend to multiple 64 bit slots. Thus, the mapping
from parameter number to the index of the 64 bit slot (either register or
stack space) is not always 1:1.

assembly emitted by current C compilers (GCC or Clang).
For example, we assume the Linux ABI (System V) and for
floating point support, we only cover SSE instructions for
now.

A. Functions

As functions are a central construct in the LLVM-IR, the
signature of the function and the calling convention has to be
known. This information is required to construct a mapping
of the function parameter in the LLVM-IR to the register
or stack address where the function expects the argument.
Likewise, when the function returns, the register containing
the return value has to be determined.

B. Basic Blocks

A function in LLVM-IR must be split up into basic
blocks, where each basic block is a sequence of LLVM-IR
instructions which do not modify the control flow and ends
with a branch to other basic blocks in the same function
or a return instruction. The original x86 function code also
can be split in basic blocks of machine instructions, where
each basic block ends with an instruction which changes
the control flow. Such kind of instructions include a jump,
a conditional jump, a call or a return instruction.

An x86 call instruction is translated to a call in-
struction in the LLVM-IR. This has the assumption that
the target of the call is actually a real function. However,
standard compilers should only emit a call if this is the case.
While this approach requires the called function to be at
least declared with an appropriate signature in the LLVM-
IR as the calling convention has to be applied, this approach
leaves the decision on inlining to the LLVM optimizer.
For consistency, an x86 ret instruction is transformed to
a return instruction in the LLVM-IR. This assumes that
the function does behave well and uses the return for a
proper function return, which however should be the case
for compiler generated code.

In case of a jump, a basic block can have at most
two exits: one branch exit, which is taken on a jump or
conditional jump whenever the condition is fulfilled. The
other exit is the fall-through exit, which is the basic block
which immediately follows the basic block. Jumps are in
general transformed to branch instructions in the LLVM-IR.
Indirect jumps are currently not supported as the jump target
might be unknown at the time of the transformation.

When decoding a function, we can ensure that each
instruction in the original function is part of exactly one
basic block. When a jump points to an instruction which is
not the first instruction of a basic block, the corresponding
basic block is split up. The de-duplication of instructions
allows for better optimization as the existing LLVM passes
might not be able to identify parts of basic blocks as
identical, resulting in larger and potentially less efficient
code.



C. Registers

The x86-64 architecture has 16 general purpose registers
with a length of 64-bits each, an instruction pointer and,
depending on the available extensions, up to 32 vector
registers with the AVX-512 extensions. Currently, only the
SSE vector registers can be used, though.

Instructions may access a register in different facets, as
depicted in Figure 4. For example, an instruction can access
a whole 64-bit general purpose register, but also the lowest
16-bit of the same register. Furthermore, a general purpose
register can also be used as integer or pointer. The addsd
instruction requires the lowest 64-bits of a vector register
as a single 64-bit floating-point value, whereas the addps
requires the lowest 128-bits of the register as vector of 32-
bit floating-point values. In contrast, the paddq instruction
requires the same lowest 128-bits of the register as a vector
of 64-bit integers. Therefore, when an instruction accesses
the contents of a register, it also has to specify the required
facet of the register. A register is modeled in LLVM-IR
by an integer of the appropriate length, i.e. an i64 for
each general purpose registers as well as the instruction
pointer and an i128 for each SSE vector register. This
bitwise representation is a logical consequence of the way
the registers are stored in hardware. Each register is a
reference to the corresponding value (SSA variable [8]) in
the LLVM-IR, or undef if the register has not been used.
The mapping of the register to the corresponding value is
stored for each basic block separately. It turned out that the
LLVM optimizer is not able to eliminate the casts between
the accessed facets and the integer representation, leading
to a high overhead for more complex codes. Therefore, we
additionally cache the values of the facets as produced by
the instructions. To ensure that all registers have the same
value as in the original program, each basic block has a
set of Φ-nodes at the beginning, where the values of the
registers in all facets of the predecessors are merged.4 We
note that each basic block has as significant amount of Φ-
nodes, which are mostly unused. These unused nodes will
be removed by the optimizer.

This schema of representing registers has various advan-
tages: it is straight-forward and it allows to access the differ-
ent facets of the registers with a minimal amount of casts. As
a side-effect, this also allows to store both a pointer and an
integer facet of the same register. This is important as pointer
arithmetic and integer arithmetic are handled differently in
the LLVM-IR but similar at machine code level. The LLVM
documentation recommends to construct memory addresses
using getelementptr (GEP) instructions instead of add
instructions where possible to improve the pointer alias
analysis [9]. Instructions which can be used for pointer and
integer arithmetic, e.g. add or lea, can set both facets
using the appropriate LLVM arithmetic, allowing for more

4Refer to [8] for a definition of Φ-nodes in the LLVM-IR

rax

64-bit int

eax

32-bit int

ax

16-bit int

ah

8-bit int

(a) Single Element facets (dark gray) of General Purpose registers
can be accessed via a trunc instruction. For the high-byte
registers (e.g. ah), an additional shift operation is required. For a
write-back of 32-bit facets, the upper half of the register is zeroed
(white), while for 8-bit or 16-bit facets the untouched part (light
gray) has to be preserved via bit masking.

xmm0

Scalar 32-bit float

xmm0

Scalar 64-bit float

(b) Single Element facets (dark gray) of the SSE vector registers
are extracted with an extractelement instruction from an
appropriate vector type. On a write-back, the untouched part is
in general preserved. However, some instruction (e.g. movq) may
also zero the untouched part.

8×16-bit int 2×32-bit float

(c) Vector facets are constructed using a cast and, if necessary,
extracted using a shufflevector instruction. When a vector
covering the full register is written back, a simple cast is sufficient,
otherwise up to two shufflevector instructions are necessary.
Note that only the SSE registers have vector facets.

Figure 4: Registers can be accessed either as a single element
or as a vector. The actual instruction defines the facet in
which the register is accessed and may also specify whether
untouched parts of the registers are preserved or zeroed.

optimizations as a consequence of better analysis.
1) Loading a Register: Single element facets from gen-

eral purpose (Figure 4a) registers are extracted via a trunc
instruction. The 8-bit “high” registers (ah, etc.) require a
logical shift first. Single element facets from the SSE regis-
ters (Figure 4b) are handled using an extractelement
instruction on a casted vector as the SSE registers are by
design vector registers. This has the advantage that the
LLVM optimizer is able to figure out the source of the value
within the vector for further optimizations. If a trunc were
applied, the cast from a vector to an integer which gets trun-
cated would not be optimized. When accessing vector facets
from the SSE registers (Figure 4c), the appropriate elements
are extracted using a shufflevector instruction. This
instruction is handled well by the optimizer and in many
cases eliminated throughout the optimization process.

2) Storing to a Register: When a value is written in a
general purpose register, the length of the register determines
whether the higher part of the register gets zeroed due to
the implementation in the processors. When a 64-bit value
is stored, all parts are overwritten. A 32-bit value causes
the upper half to be zeroed, this is modeled with a zext
instruction. For 8-bit and 16-bit registers the upper part has



sub rax, 1

%rax.1 = sub i64 %rax.0, 1

mov eax, [rbp - 0xc]

%ptr1 = inttoptr i64 %rbp to i32*
%ptr2 = getelementptr i32, i32* %ptr1, i64 -3
%eax = load i32, i32* %ptr2, align 4
%rax = zext i32 %eax to i64

addsd xmm0, xmm1

%v.0 = bitcast i128 %xmm0 to <2 x double>
%el.0 = extractelement <2 x double> %v.0, i32 0
%v.1 = bitcast i128 %xmm1 to <2 x double>
%el.1 = extractelement <2 x double> %v.1, i32 0
%add = fadd double %el.0, %el.1
%v.2 = bitcast i128 %xmm0 to <2 x double>
%ins = insertelement <2 x double> %v.2, double %add, i64 0
%xmm0.1 = bitcast <2 x double> %ins to i128

Figure 5: Examples of transforming individual x86-64 in-
structions to LLVM-IR. Some instructions translate straight-
forward, others require eight or more LLVM-IR instructions.
Introduced overhead often is removed at a later stage.

to be preserved via bit masking. For some 8-bit registers
(e.g. ah) an additional shift is required.

When a value is stored in a vector register, we can
distinguish two cases: First, most SSE instructions preserve
the untouched part of the register. When inserting into a
vector, we can model the store with two shufflevector
instructions: the first instruction enlarges the vector to insert
to the vector length of the register to make it suitable
for the second instruction. The other shufflevector
instruction merges the two vectors together, with respect to
the original size of the first vector. If the value to insert
is a single value, we can simply use an insertelement
instruction, because there is only one value to insert. Second,
a few SSE instructions (e.g. movq) set the upper, untouched
part to zero. This can be modeled by a shufflevector
instruction or an insertelement instruction with a
zeroinitializer. This is advantageous over a simple
zero-extension as the LLVM optimizer has problems han-
dling mixed integer and vector operations on the same value.

D. Flags

The six status flags of the flags register which are fre-
quently used by applications are modeled as an i1 each,
similar to the way registers were stored. This is a contrary
approach to the modeling in hardware, where multiple flags
are stored in one rflags register. As string operations are
currently not supported, the direction flag is not modeled
yet, but can be added later. As we do not intend to support
handling of system software, the system flags are ignored.
The zero flag, the sign flag and the carry flag can be

mov rax, rdi
cmp rdi, rsi
cmovlt rax, rsi
ret

(a) Original Code

%cmp = sub i64 %rdi, %rsi
%sf = icmp slt i64 %cmp, 0
%of.tmp.1 = xor i64 %cmp, %rdi
%of.tmp.2 = xor i64 %rsi, %rdi
%of.tmp.3 = and i64 %of.tmp.1, %of.tmp.2
%of = icmp slt i64 %of.tmp.3, 0
%lt = xor i1 %sf, %of
%rax = select i1 %lt, i64 %rsi, i64 %rdi
ret i64 %rax

(b) Optimized LLVM-IR generated without Flag Cache

%lt = icmp slt i64 %rdi, %rsi
%rax = select i1 %lt, i64 %rsi, i64 %rdi
ret i64 %rax

(c) Optimized LLVM-IR generated with Flag Cache

Figure 6: Effect of a Flag Cache preserving the semantics
of a cmp instruction on a code computing the maximum of
two registers. Without a flag cache, the bitwise operations
on the flags are not replaced with an equivalent comparison,
leading to missed optimizations and less efficient code.

computed using basic integer comparisons. The overflow
flag can be either computed via bitwise operations or via the
LLVM intrinsics for overflow handling. The latter, however,
is discouraged as the optimizer does not analyze intrinsics
well [9]. The parity flag employs the llvm.ctpop.i8
intrinsic to count the set bits in the lowest byte of the
result. For this flag an intrinsic is involved, but as the parity
flag is rarely used this will likely get removed during the
optimization. The auxiliary carry flag is computed using
bitwise operations, but is also rarely used.

In the x86 architecture, signed integer comparisons like
less-than or greater-or-equal are performed using binary
operations on the flags. However, it turned out that LLVM
is not able to reduce them to the correct logical comparison,
resulting in less efficient code and missed optimizations.
Therefore, a flag cache which stores the operands of the
latest cmp instruction has been implemented. If a signed
comparison is made after such an instruction and the flag
cache is valid, the appropriate comparison predicate is used.
The effect of the flag cache turned out to be significant, as
shown in Figure 6. Obviously, if the flags are modified by
other instructions, the flag cache is invalidated.

E. Memory Operands

A memory address in the x86 architecture is a summation
of up to three different components: a base register, a scaled
index register where the value is multiplied with 1, 2, 4, or



8, and a constant offset. For the register operands of an
address generation, the pointer facet is used when available.
Otherwise, an inttoptr instruction has to be used at the
cost of less optimizable code. We note that this should
occur rarely with compiler generated code. The operands are
connected using one or more GEP instructions. Constant ad-
dresses are reduced to a global base pointer instead of using
inttoptr to improve pointer analysis, as recommended
in the LLVM documentation [9]. The base pointer is set
to the first constant address found. The x86-64 architecture
supports segment overrides for the gs or fs segments,
which are used for thread-local storage and system data
structures. These are handled by constructing the pointer in
the LLVM address spaces 256 and 257, respectively, which
correspond to both segments by definition.

All loads and stores are marked as non-volatile in the
LLVM-IR, implying that reordering or elimination of these
instructions may occur. Support for volatile memory opera-
tions may be added in future, but requires a more complex
API as it is not possible to extract information from the
assembly code.

F. Stack

One limitation of the abstraction provided by LLVM
consists in the lack of direct access to the stack. As a
consequence, a virtual stack has to be allocated via an
alloca instruction in the entry basic block. However, as
the virtual stack cannot grow dynamically, the size of the
used part of the stack may not exceed a user-specified limit.
The required contents of the stack, e.g. function parameters
which are not passed in registers, have to be copied into the
virtual stack as LLVM abstracts from the calling convention.
When the stack pointer is changed using the push or pop
instructions, a GEP instruction is employed.

IV. SPECIFICS FOR BINARY SPECIALIZATION

The goal of the transformation of x86 binary code to
LLVM-IR is to replace the DBrew code generator with a
more advanced optimization and code generation backend.
Thus, after the binary code specialized by DBrew is trans-
formed to LLVM-IR, the standard optimization pipeline with
level 3, similar to the -O3 compiler option, is applied. The
optimizations are also necessary to remove the overhead
introduced by the transformation. Optionally, floating-point
optimizations can be enabled similar to the -ffast-math
compiler flag. The optimized LLVM-IR is compiled to new
binary code using the JIT compiler of LLVM.

However, for some functions, the specialization via pa-
rameter fixation may take place at the level of LLVM-IR
directly. To achieve this, the original, unmodified function
is transformed to LLVM-IR first. Then, a new function
which calls the original function with the fixed parameter
is created. By marking the original function as always-
inline, the function will be inlined as part of the LLVM

#define SZ 649 // matrix side length

// flat version
struct FP { double f; int dx, dy; };
struct FS { int ps; struct FP p[]; };

struct FS s4 = {4, {{-1,0,.25},
{1,0,.25},{0,-1,.25},{0,1,.25}}};

void apply_flat(struct FS* s, double *m1,
double* m2, int index) {

double v = 0.0;
for(int i=0; i<s->ps; i++) {

struct FP* p = s->p + i;
v += p->f * m1[index+p->dx+SZ*p->dy];

}
m2[index] = v;

}

// sorted version
struct SP { int dx, dy; };
struct SG { double f;

int ps; struct SP p[]; }
struct SS { int gs; struct SG p[]; };
...

Figure 7: Generic 2d stencil computation code (element
kernel) with the stencil given as a data structure.

optimization pipeline as long as the function is not recur-
sive. The specialization is also done using the optimization
passes as the constant parameter will be propagated through
the now-inlined function. To make this approach work for
memory regions, some additional effort is needed. As it is
not possible to specify a given pointer as constant in the
LLVM-IR, the content of the constant memory region has
to be copied into the LLVM module as a global constant.
Currently, the size of the constant memory area has to be
specified explicitly. Furthermore, as the data type of the
values in the memory region is not known, nested pointers
will not be marked as constant and therefore, in contrast to
DBrew, no further specialization can take place.

V. CASE STUDY: SPECIALIZING A GENERIC STENCIL

To evaluate the effects of LLVM integration, we use the
same example as in our previous work [7]. We use DBrew
to specialize a generic 2d stencil computation. The resulting
code is to be used in a loop over the matrix cells. The code in
Figure 7 shows the definition of a 4-point stencil using a (1)
flat data structure and corresponding generic code, as well
as a (2) sorted data structure which groups stencil points
by coefficient (the corresponding generic code involves two
nested loops; left out due to length).

We configure the rewriter to assume the stencil to be fixed.
For this, we mark the first parameter to be a pointer to known
fixed data (this applies recursively if pointers would have
been used in struct FS or struct SS, respectively).



pxor xmm1,xmm1
pxor xmm1,xmm1
mov rax, -1
add rax, rcx
movsd xmm0, [rsi + 8 * rax]
mov rax, 1
add rax, rcx
addsd xmm0, [rsi + 8 * rax]
// ...
mulsd xmm0, [0x14c47d8]
addsd xmm1, xmm0
movsd [rdx + rcx * 8], xmm1
ret

movsd xmm0, [rsi + 8 * rcx + 8]
addsd xmm0, [rsi + 8 * rcx - 8]
addsd xmm0, [rsi + 8 * rcx - 8 * 649]
addsd xmm0, [rsi + 8 * rcx + 8 * 649]
mov rax, 0x14c47d8
mulsd xmm0, [rax]
movsd [rdx + 8 * rcx], xmm0
ret

Figure 8: Comparison of codes generated by plain DBrew
(top) and after LLVM optimization (bottom).

We study two different types of codes: for the element kernel
we rewrite the stencil function, and call the rewritten code in
the inner loop over the matrix elements. For the line kernel,
we wrap the kernel call into a loop over one line of the
matrix, and rewrite the complete loop. This ensures that the
stencil kernel gets inlined as loop body.

VI. RESULTS

We transform different compiled codes into LLVM-IR,
apply optimizations with the standard pipeline at optimiza-
tion level 3 with floating-point optimizations enabled, and
measure the running time of the original and the modified
code. For the code which is used as input to the trans-
formation we can also use the code which was produced
by an optimization using DBrew. If DBrew is applied on
the line kernel, the actual computation of an element is
moved to a separate function which is inlined by DBrew
to prevent loop unrolling of the loop over the elements
of a line. Furthermore, we can use the parameter fixation
as described in Section IV. This, however, does not make
sense in combination with DBrew as a specialization on a
parameter is only needed one time. In total, we have the
following modes:

• Original: unmodified, as produced by the compiler.
• LLVM transformation: the code is transformed into the

LLVM-IR, optimized and compiled back to assembly
code. This is basically an identity transformation, which
does not change the behavior of the code and is ideally
as fast as the original code.

• LLVM transformation with fixation: the code is trans-
formed into LLVM-IR and back to assembly code as
above with the difference that the parameter which
specifies the generic stencil is fixed.

• DBrew: specialized by rewriting through DBrew.
• DBrew combined with LLVM transformation: the as-

sembly code specialized by DBrew is transformed into
LLVM-IR, optimized and then compiled back into
assembly code.

The running time is measured by computing multiple iter-
ations of a Jacobi approximation, where the computation
of the stencil is performed using the codes obtained by
applying the methods described above. The matrix has a
size of 9 × 9 with 80 interlines, resulting in a matrix of
size 649×649, which requires 3.2 MB of memory. In total,
two matrices are used for the Jacobi iteration. To achieve
significant running times, we perform 50,000 iterations.
Beside the actual computation of the values, the measured
running time also includes the loop which is used to iterate
over the matrix and the overhead of the function call
for the computation. In addition to the running time, we
also measure the time needed to perform the optimization,
because the transformation and specialization is designed to
happen at runtime.

The performance is measured on a computer with an Intel
Xeon E3-1270 v3 processor (Haswell) clocked at 3.5 GHz
(3.9 GHz turbo) with 8MiB L3 cache. The machine is
running Linux Mint 17 (64-bit) with Linux kernel 4.2.0. The
benchmark code was compiled with GCC 5.4.1 with the
-O3 -march=native -mno-avx options and linked
statically against LLVM 3.7.1 and DBrew5. We disable AVX
for the original code and for the LLVM generated code as
this extensions are not supported yet by the transformation.

A. Runtime Element Kernel

The runtimes of the element kernel is shown in Figure 9a.
Direct: For the variant with the hard-coded stencil, we can

observe no major differences between the different modes.
This also implies that the transformation of the simple code
to LLVM-IR does not involve any overhead.

Flat Structure: Using a generic structure for the stencil
obviously leads to slower code than the hard-coded stencil.
Applying the LLVM identity transformation on this code
leads to slightly faster code. This is unexpected and implies
that the original code produced by GCC is not optimal. The
only difference is that GCC uses multiple lea instructions
whereas LLVM employs a single imul instruction for
the multiplication in the index computation (see above).
However, we can also observe that the transformation to
LLVM-IR does not involve any overhead in this case. The
parameter fixation at the level of LLVM-IR leads to the same

5Commit e99c2c81 at github.com/lrr-tum/dbrew branch “llvm-hips17”



0 20 40 60 80 100 120

D
ir

ec
t

St
ru

ct
So

rt
ed

St
ru

ct
39.67

100.88

120.42

38.67

86.52

99.78

38.42

38.52

59.96

38.62

54.89

43.75

38.83

44.04

38.57

Run time [s]

Native LLVM LLVM-fix. DBrew DBrew+LLVM

(a) Running times with the element kernel.

0 20 40 60 80 100 120

D
ir

ec
t

St
ru

ct
So

rt
ed

St
ru

ct

10.54

83.28

92.92

10.54

69.43

76.24

10.71

21.39

21.47

21.74

38.98

31.72

20.24

29.25

21.58

Run time [s]

Native LLVM LLVM-fix. DBrew DBrew+LLVM

(b) Running times with the line kernel.

Figure 9: Comparison of the running times of the codes produced by the LLVM transformation (with and without fixation),
DBrew specialization and DBrew with LLVM code generation back-end.

performance as the hard-coded stencil. The DBrew special-
ization has some overhead as no advanced combination of
instructions or floating-point optimizations are performed,
see Figure 8. Also, the combination of DBrew and LLVM
has some overhead because the information about constant
multiplication factors is not forwarded.

Sorted Structure: For the sorted structure, the LLVM
identity transformation is also slightly faster than the original
code as a consequence of non-optimal instruction selection
by GCC. The parameter fixation at LLVM-IR level has a
high overhead. This was expectable as the sorted structure
has nested pointers, which are currently not handled. Similar
to the findings described in [7], the DBrew specialization
has a lower overhead as for the flat structure because
the redundant multiplications are eliminated. Applying the
LLVM optimizations on the top of the DBrew specialization
again leads to code with the same performance as the hard-
coded stencil.

B. Runtime Line Kernel

The runtimes of the line kernel are shown in Figure 9b.
Direct: For the hard-coded stencil GCC employs vec-

torization, where, depending on the alignment, the first or
last element is computed separately. Applying the LLVM
transformation leads to code with similar performance. The
code produced by DBrew is significantly slower as the
original code does not involve vectorization and unoptimized
move instructions. Involving LLVM on the code produced

by DBrew removes these move instructions, but does not
lead to vectorized code.

Flat Structure: Similar to the element kernel, the LLVM
identity transformation produces significantly slower code
for reasons of missed optimizations across basic blocks.
Specialization at LLVM-IR level improves the performance,
but is still slower than the code with the hard-code stencil as
vectorization is not performed. Involving LLVM on the code
produced by DBrew leads to performance improvements, but
does not reach the performance of the LLVM-IR specializa-
tion as information about constant memory regions is not
preserved.

Sorted Structure: For the sorted structure, we can observe
similar results to the flat data structure, with the difference
that the LLVM transformation applied on the top of DBrew
leads to the same performance as the specialization at
LLVM-IR level.

We note that in any case with specialization no vec-
torized code is generated by LLVM as the loop analysis
passes of LLVM consider vectorization as non-beneficial
for this loop. However, LLVM performs vectorization on
the original source code. Therefore, we assume that missing
meta-information leads to this missed optimization. When
forcing vectorization (via the -force-vector-width=2
command line flag), we can observe that the loop vectorized
by LLVM is only 23% slower than the loop vectorized by
GCC at compile-time. The difference is caused by unaligned
memory accesses: while GCC includes alignment checks



0 5 10 15 20

D
ir

ec
t

St
ru

ct
So

rt
ed

St
ru

ct
8.83

8.6

11.75

8.8

11.39

18.17

0.02

0.03

0.03

5.89

7.17

6.34

Compile time [ms]
LLVM LLVM fixation DBrew DBrew+LLVM

Figure 10: Average transformation times of the different
modes when performing 1000 compiles on the line kernel.
DBrew uses less than 0.05ms in any case while the time
required by LLVM increases with the code complexity.

to perform aligned loads where possible, LLVM only uses
unaligned accesses, which have a higher latency.

C. Compile Time

To analyze the compile times of the different code trans-
formation modes, each transformation is applied 1000 times
to achieve significant running times. The results are shown
in Figure 10. We can observe that the time used for a single
LLVM transformation is below 20 milliseconds for the more
complex codes as more optimizations are performed. We
can also observe that a standalone DBrew transformation re-
quires significantly less time as less complex transformations
are made. The additional overhead introduced by the LLVM
transformation can, however, be considered as neglectable
given the observed performance improvement.

D. Discussion

First, we note that with our approach, the semantic
reconstruction of conditions in the transformation from x86-
64 to LLVM-IR code works quite well. From our results,
we find that the transformation has almost no overhead
for simple codes. Unfortunately we could not convince the
LLVM backend to generate vectorized code as the loop is
considered as non-profitable. Most probably, this is caused
by missing information about the actual type of the data
stored in registers and memory. Another source of overhead
are missing semantics, such as missing information about
alignment of data or about constant memory regions.

Even though the LLVM transformation had no overhead in
our example, we expect that some overhead might occur for

more complex codes which stronger differ from the LLVM-
IR generated by compilers, especially Clang. Support for
other instructions and extensions like AVX can be added
easily in future by simply extending the size of the vector
registers and including appropriate facets.

VII. RELATED WORK

Our proposal for lightweight code generation allows ap-
plication programmers to use dynamic code generation in
a controlled, explicit way. This is different from tools for
observing the execution of another executable by inserting
analysis code before [10] or during execution [11]–[13], but
similar to functionality as found in [14] which proposes
an extension of C using annotations. DyC allows parts
of the C code to be transferred to runtime for allowing
deferred specialization. DeGoal [15] is a recent proposal to
integrate dynamic code generators at runtime. It provides
programmers a specification language for controlling what
the generator should do, including C code “compilettes” to
be used by the generator as precompiled building blocks.
Our approach actually tries to be a minimalisic version of
this. However, we allow arbitrary compiled functions to be
used as building blocks. Other language specific extensions
to allow specialization at runtime are SEJITS [16] (replacing
selected Python functions by dynamically generated native
code at runtime) or Graal [17], a API proposed for Java
to control dynamic compilation. In contrast to DBrew, all
mentioned proposals do not directly work on binary level.

Regarding the work presented in this paper on x86 to
LLVM-IR transformation, we know two similar projects:
McSema [18] is a project that tries to reconstruct the
semantics of binary code and transform it to LLVM-IR,
meant for reverse-engineering and de-obfuscation of binary
code. Fcd6 has similar goals, but constructs C++ code
for each instruction, which is lowered to LLVM-IR by
Clang. In contrast to our approach, the existing systems do
significantly less effort in optimizing the performance of the
transformed code. The registers are only stored in the bitwise
representation without type information, leading to missed
optimizations for pointers and vector registers. Reconstruct-
ing this information and performing other optimizations
(e.g. condition semantics) on the generated LLVM-IR would
require significantly more effort. In general, we found that
both, McSema and Fcd, are lacking the required flexibility
and efficiency to produce performant LLVM-IR at runtime.
We note that our x86-64 to LLVM-IR transformation can be
used for reverse-engineering and de-obfuscation as well.

VIII. CONCLUSION

In this paper, we presented our work on transformation
of x86-64 binary code to LLVM-IR. This is used to post-
process the output of our previously proposed technique

6http://zneak.github.io/fcd/



for lightweight code generation at runtime (DBrew), by re-
combining and specializing pieces of code at the binary
level. The extension presented in this paper had different
goals: first, we wanted to understand how far we can get
by post-processing the generated binary code using a state-
of-the-art compiler backend. For our test case, a generic 2d
stencil code, we found that we can approach the performance
of specialized variants done by hand quite well. The second
goal of our LLVM transformation was to come up with a
way to understand which specific optimization passes are
most essential for high performance. We did not actually
show such results in this paper, but we can do this kind
of studies now. We hope that can identify a small subset
of optimizations we would like to implement as lightweight
post-processing for DBrew without the heavy cost of LLVM.
Finally, from the experiments shown in this paper we got
important insights regarding lost meta-information at the
binary level: a lot of LLVM optimization passes expect
information such as type information which is not readily
available from DBrew. To really take advantage of a lot of
LLVM passes (such as vectorization), we need to have meta-
information available. However, DBrew already has a lot of
ways to control rewriting at the binary level – it seems to
be more effective to provide explicit APIs, such as a way to
transform scalar kernels into vectorized kernels.

REFERENCES

[1] M. P. I. Forum, “MPI: A Message-Passing Interface Standard
Version 3.0,” 2012.

[2] U. Consortium, “UPC language specifications, version 1.3.”

[3] H. Zima, B. L. Chamberlain, and D. Callahan, “Parallel pro-
grammability and the Chapel language,” International Journal
on HPC Applications, Special Issue on High Productivity
Languages and Models, vol. 21, no. 3, pp. 291–312, 2007.

[4] V. Saraswat, B. Bloom, I. Peshansky, O. Tardieu, D. Grove,
A. Shinnar, M. Takeuchi, O. Tardieu, P. M. I. S. Agarwal,
B. Alpern, D. Bacon, R. Barik, B. Blainey, B. Bloom,
P. Cheng, J. Dolby, S. Fink, R. Fuhrer, P. Gallop, C. Grothoff,
H. Horii, K. Kawachiya, A. Kielstra, S. Ko, I. Peshansky,
V. Sarkar, O. Solar-lezama, S. Alex, E. Spoon, S. Sur,
T. Suzumura, C. V. Praun, L. Unnikrish, P. Varma, K. N,
I. Venkata, J. Vitek, H. C. Wang, S. Zakirov, Y. Zibin, R. K.
Shyamasundar, V. T. Rajan, F. Tip, A. Vaziri, and H. Xue,
“X10 language specification version 2.5,” 2014.

[5] T. Alrutz, J. Backhaus, T. Brandes et al., “GASPI: A Par-
titioned Global Address Space programming interface,” in
Facing the Multicore-Challenge III, ser. Lecture notes in
computer science, vol. 7686. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013, pp. 135 – 136.

[6] K. Fürlinger, C. Glass, A. Knüpfer, J. Tao, D. Hünich,
K. Idrees, M. Maiterth, Y. Mhedheb, and H. Zhou, “DASH:
Data structures and algorithms with support for hierarchical
locality,” in Euro-Par 2014 Workshops (Porto, Portugal),
2014.

[7] J. Weidendorfer and J. Breitbart, “The case for binary rewrit-
ing at runtime for efficient implementation of high-level
programming models in HPC,” in 2016 IEEE International
Parallel and Distributed Processing Symposium Workshops
(IPDPSW), May 2016, pp. 376–385.

[8] LLVM-Project, “LLVM language reference manual, for
LLVM version 3.8.1.” 2016, http://llvm.org/releases/3.8.1/
docs/LangRef.html, Accessed Feb 3, 2017.

[9] ——, “Performance tips for frontend authors, for LLVM
version 3.8.1.” 2016, http://llvm.org/releases/3.8.1/docs/
Frontend/PerformanceTips.html, Accessed Feb 3, 2017.

[10] A. R. Bernat and B. P. Miller, “Anywhere, any-time binary
instrumentation,” in Proceedings of the 10th ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools,
ser. PASTE ’11. New York, NY, USA: ACM, 2011, pp. 9–16.

[11] N. Nethercote and J. Seward, “Valgrind: A framework for
heavyweight dynamic binary instrumentation,” in Proceedings
of the 2007 ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’07. New
York, NY, USA: ACM, 2007, pp. 89–100.

[12] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. . Reddi, and K. Hazelwood,
“Pin: Building customized program analysis tools with dy-
namic instrumentation,” in Proceedings of the 2005 ACM
SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’05. New York, NY, USA: ACM,
2005, pp. 190–200.

[13] V. Bala, E. Duesterwald, and S. Banerjia, “Dynamo: A
transparent dynamic optimization system,” SIGPLAN Not.,
vol. 35, no. 5, May 2000.

[14] B. Grant, M. Mock, M. Philipose, C. Chambers, and S. J.
Eggers, “DyC: An Expressive Annotation-Directed Dynamic
Compiler for C,” in Theoretical Computer Science, 2000.

[15] H.-P. Charles, D. Courouss, V. Lomller, F. Endo, and R. Gau-
guey, “deGoal: a tool to embed dynamic code generators
into applications,” in Compiler Construction, ser. Lecture
Notes in Computer Science, A. Cohen, Ed. Springer Berlin
Heidelberg, 2014, vol. 8409, pp. 107–112.

[16] B. Catanzaro, S. A. Kamil, Y. Lee, K. Asanovic, J. Demmel,
K. Keutzer, J. Shalf, K. A. Yelick, A. Fox, B. Catanzaro,
S. Kamil, Y. Lee, J. Demmel, K. Keutzer, J. Shalf, K. Yelick,
and O. Fox, “SEJITS: Getting productivity and performance
with selective embedded JIT specialization,” in In First Work-
shop on Programming models for Emerging Architectures,
2009.

[17] G. Duboscq, T. Würthinger, L. Stadler, C. Wimmer, D. Si-
mon, and H. Mössenböck, “An intermediate representation
for speculative optimizations in a dynamic compiler,” in
Proceedings of the 7th ACM Workshop on Virtual Machines
and Intermediate Languages, ser. VMIL ’13. New York,
NY, USA: ACM, 2013, pp. 1–10.

[18] A. Dinaburg and A. Ruef, “McSema: Static translation of x86
instructions to LLVM,” 2014, talk at REcon 2014, https://
www.trailofbits.com/resources/McSema.pdf, Accessed Feb 3,
2017. Montreal, Canada, June 2014.


