
Department of Informatics
Technical University of Munich

Master’s Thesis in Informatics

Reconstructing Program Semantics
from Go Binaries

Alexis Engelke

Department of Informatics
Technical University of Munich

Master’s Thesis in Informatics

Rekonstruktion der Programmsemantik
anhand von Go-Binärdateien

Reconstructing Program Semantics
from Go Binaries

Author: Alexis Engelke
Supervisor: Prof. Dr. Claudia Eckert
Advisor: Julian Kirsch, M.Sc.
Submission Date: 15. September 2017

I confirm that this master’s thesis is my own work and I have documented all sources and
material used.

Ich versichere, dass ich diese Master’s Thesis selbständig verfasst und nur die angegebenen
Quellen und Hilfsmittel verwendet habe.

Ort, Datum Alexis Engelke

Acknowledgments
First, I would like to thank Claudia Eckert for giving me the opportunity to
write this thesis. I thank Julian Kirsch for his permanent encouragement,
for reading through an earlier version of this thesis and providing lots of
feedback, and for listening to my ideas. I also thank Charlie Groh for
reading this thesis and giving additional feedback. Finally, I want to thank
my mother for her extraordinary support, without her I would not be able
to write a thesis at this place and time.

Abstract
Go is a new programming language with the goal to combine simplicity,
safety and efficiency. As such, the official compiler does not involve standard
compiler infrastructures but uses a custom code generation procedure. With
the increasing popularity, however, the language also gains traction among
malware developers, motivating the research of binary analysis procedures on
Go binaries. Existing tools for automated analysis have problems in handling
peculiarities of the Go compiler and the available tooling for extracting
metadata has a very limited scope. Moreover, the internal data structures
generated by the compiler are poorly understood and not documented
publicly.
In this thesis, we will provide a documentation of metadata structures and
specifics of the code generation procedure relevant for reverse engineering
along with a strategy to extract this information from stripped binaries
compiled by Go 1.6–1.8. Furthermore, we present an assembly-based code
representation named Higher-level Go Assembly which models specifics of
the compiler appropriately and concisely and therefore facilitates automated
and manual analysis. Based on this, we propose a constraint-based type
analysis strategy to determine the basic type of function parameters and
return values, but encounter modeling limitations for specific language
features and find that an explicit analysis appears beneficial.

Contents

1 Introduction 1

2 Background 3
2.1 Related Work . 3
2.2 SMT Solvers . 4

3 The Go Language 5
3.1 Core Language Concepts . 5
3.2 Data Type Representation . 7
3.3 Calling Convention . 9
3.4 Static Metadata . 10

3.4.1 Module Data . 10
3.4.2 Runtime Symbol Information . 10
3.4.3 Runtime Type Information . 11

3.5 Runtime Memory Layout . 11
3.6 Safety . 12
3.7 Compiler . 13

3.7.1 Register Usage . 13
3.7.2 Instruction Selection . 14
3.7.3 Status Flags . 14
3.7.4 Call Types . 15
3.7.5 Compiler-generated Checks . 15
3.7.6 Runtime Support . 15

4 Design 17
4.1 Extracting Metadata . 17

4.1.1 Runtime Symbol Information . 18
4.1.2 Module Data Structure . 18
4.1.3 Type Information . 20

4.2 Intermediate Code Representation . 20
4.2.1 Structure . 21
4.2.2 Registers . 21
4.2.3 Instruction Operands . 22
4.2.4 Instructions . 22

4.3 Code Lifting . 24
4.3.1 Control Flow Recovery . 24
4.3.2 Initial Lifting . 24
4.3.3 Dead-end Block Elimination . 25

vii

Contents

4.3.4 Critical Edge Elimination . 26
4.3.5 Function Calls . 26
4.3.6 Calls to Duff’s Device . 27
4.3.7 Instruction Sizes . 27
4.3.8 Operand Sizes . 28
4.3.9 Miscellaneous . 29

4.4 Argument Region Analysis . 29
4.4.1 Caller-based Analysis . 29
4.4.2 Callee-based Analysis . 30

4.5 Basic Type Analysis . 31
4.5.1 Type Model . 33
4.5.2 Constraints . 34
4.5.3 Problems . 39

5 Evaluation 43
5.1 Targets . 43
5.2 Setup . 44
5.3 Results . 44

5.3.1 Metadata Extraction . 44
5.3.2 Code Lifting . 46
5.3.3 Argument Region Analysis . 46
5.3.4 Type Analysis . 48

5.4 Discussion . 52

6 Summary 55

A Usage Instructions 57

B Implementation Remarks 59

C Instructions Used by Go Compiler 61

D Higher-level Go Assembly 63

E Vulnerable Safe Go Program 69

Acronyms 71

List of Figures 73

List of Tables 75

Listings 77

Bibliography 79

viii

1 Introduction

The Go programming language is a newer language developed at Google aiming to combine
simplicity, safety and efficiency [31]. An important goal is to provide memory safety,
preventing many kinds of vulnerabilities like buffer overflows found in widespread languages
like C or C++. For efficiency, Go is compiled to machine code and has built-in support
for multi-threading and parallel computations. Another fundamental property is efficiency
of compilation.

To achieve a performant compilation, the official Go compiler (Gc) is not based on
existing compiler infrastructures like LLVM [22,31] but includes a custom optimization
process, code generation procedure and assembler and also uses a different calling conven-
tion for functions. A front-end for the GCC compiler infrastructure exists (Gccgo), which
performs more expensive optimizations at the cost of compile-time and uses the standard
code generation procedure of GCC [30]. Beside the different code generation strategy,
there exists another major difference to compilers of conventional languages: Go binaries
include a huge amount of metadata to allow specific language features such as garbage
collection, reflection or stacktrace generation. In addition to being linked statically by
default, this metadata significantly contributes to the size of the binaries.

Even though the language was just published in 2009 and had its first stable release in
2012 [31], Go has rapidly grown in popularity and is ranked in the Top 10 of the 2017
IEEE Spectrum ranking of programming languages [12]. A survey conducted by the Go
developers reveals that a common use case of Go are web and other network services as
well as infrastructure-related tasks [16] and in fact the standard library especially focuses
on topics related to web programming, e.g. the HTTP protocol, cryptographic functions
or support for HTML templates1.

In addition, also first samples of malware being written in Go have been observed. For
example the Encriyoko trojan2 discovered in 2012 attempts to encrypt files in several
formats on affected computers; and in 2016 the trojan Rex3 was found, which tries to fetch
credentials from infected computers and allows to launch a remotely controlled DDoS
attack.

However, existing analysis tools have difficulties in handling Go binaries. For example,
the Hex-Rays Decompiler [17] has significant problems in handling the unique calling
convention as well as specific aspects of the code generation strategy and the result of
the decompilation is overly complex in most cases. In general, the included metadata
about functions and data types is ignored completely in most cases. Few attempts have
been made to develop plug-ins for the IDA disassembler [18], but these have very special

1https://golang.org/pkg/, accessed 2017-08-25
2https://www.symantec.com/connect/blogs/malware-uses-google-go-language, accessed 2017-

08-25
3https://vms.drweb.com/virus/?_is=1&i=8436299&lng=en, accessed 2017-08-25

1

https://golang.org/pkg/
https://www.symantec.com/connect/blogs/malware-uses-google-go-language
https://vms.drweb.com/virus/?_is=1&i=8436299&lng=en

1 Introduction

assumptions or a limited scope, or both. Moreover, the documentation of the internals of
the Go compiler and runtime is poor4 and existing blog post are partially outdated.

Focusing on the x86-64 architecture, we will provide a documentation of important
metadata structures along with a strategy to extract this information from Go binaries of
different versions. In addition to this, we will describe the employed calling convention
and crucial aspects of the code generation strategy. Using this information, we provide a
very low-level intermediate representation streamlining some peculiarities for Go functions
to ease analysis. Based on this, we will explore the possibilities of the analysis of function
types using constraints in the context of Go binaries.

Outline
The remainder of this thesis is structured as follows. In Chapter 2, we will describe
existing work related to the analysis of Go binaries and basic foundations for our type
analysis. Chapter 3 revisits some uncommon language constructs of Go along with a
description of the fundamental data types, the metadata included in the binaries and
the calling convention as well as other specifics of the code generation procedure. In this
chapter, we will also describe the requirements for memory safety and briefly summarize
ways to break this. In Chapter 4 we present our strategy to extract the metadata from
a given binary and describe a more idiomatic low-level intermediate language for Go
code as well as a lifting procedure. Based on this, we describe our constraint-based type
analysis for compiled Go functions. We will evaluate and discuss the proposed strategies
in Chapter 5. Finally, we will summarize our findings and give an outlook to future work
and possibilities for further extensions.

Contributions
Key contributions of this thesis include:

• A documentation of several Go internals on the x86-64 architecture as of version
Go 1.8, including the layout of core data types, the calling convention, critical
metadata structures and specifics of the code generated by the Go compiler.

• A strategy and tool to identify the Go version and to extract information about
functions and types from stripped Go binaries.

• An assembly-based low-level intermediate representation which allows the elimination
of specific compiler generated code idioms, simplifying the assembly code and easing
analysis; combined with a lifting procedure for functions compiled from Go code.

• A constraint-based analysis of the type of the functions making use of available type
information.

4https://github.com/golang/go/issues/16199, accessed 2017-08-25

2

https://github.com/golang/go/issues/16199

2 Background

In this section, we will describe existing work in the field of analyzing Go binaries and lay
the foundations for our type analysis of Go functions employing type constraints.

2.1 Related Work

To the best of our knowledge, little work on reverse engineering Go binaries has been
done so far. We know a set of scripts named goutils1 with the goal to ease analysis of
stripped, Go-compiled ELF binaries using IDA [18]. These scripts provide (1) a simple
heuristic to get the size of the argument region when calling functions; (2) a heuristic
to find strings in the binary; (3) a simple heuristic to find and extract function names
from the symbol information table (later referred to as runtime symbol information or the
pclntab); and (4) a parser for the included type information where the Go version has to
be specified manually. These scripts, however, do not support PE files (Windows) and
also ignore the fact that much more metadata (e.g. the size of the argument region) is
readily available from the binary.

We also know a blog post by Tim Strazzere2 about reverse engineering with Go binaries
using IDA. The developed plugin for IDA attempts to find functions by tracing calls
to a specific routine found at the beginning of most functions3. Based on the goutils
described above, it similarly extracts the function names from the symbol information
table. Additionally, the script applies some heuristics to identify strings as well as their
length in the binary. However, this script also ignores large parts from the available
metadata and the employed heuristics appear to be rather simple, and are likely to fail for
complex binaries and functions. For example, this script will not identify simple functions
or closures and when storing constant strings in memory, the address is expected in one
of only four registers although more registers are available and generally also used.

Additionally, the Go standard library includes a package (debug/gosym) which parses
a given symbol information table as it is included in Go binaries.4 However, this package
only parses small parts of the symbol information and requires an additional metadata
table, which is no longer present in binaries produced by recent versions of the compiler.

In the context of parsing meta information from C++ binaries, MARX [26] is a
framework to extract information about class hierarchies from striped binaries using
static analysis. Starting with a heuristic to find virtual function tables (vtables), the

1https://gitlab.com/zaytsevgu/goutils, accessed 2017-08-22
2https://rednaga.io/2016/09/21/reversing_go_binaries_like_a_pro/, accessed 2017-08-21
3The function is runtime.morestack noctxt and is conditionally called to enlarge the stack if necessary.
4See https://golang.org/pkg/debug/gosym/, accessed 2017-08-22

3

https://gitlab.com/zaytsevgu/goutils
https://rednaga.io/2016/09/21/reversing_go_binaries_like_a_pro/
https://golang.org/pkg/debug/gosym/

2 Background

identification of the class hierarchy is based on an analysis of entries in the function
table combined with a data flow analysis. There are also approaches to reconstruct this
meta information using the Runtime Type Information (RTTI) included in many C++
binaries [14].

2.2 SMT Solvers
The Satisfiable Modulo Theories (SMT) problem is a decision problem for formulas,
extending the Boolean Satisfiability (SAT) problem by arithmetic, arrays, uninterpreted
functions and other theories [11]. The task of an SMT solver is to decide the satisfiability of
given set of formulas or constraints. There are two main approaches for the implementation
of SMT solvers, referred to as eager and lazy approaches [4]. The idea of the eager approach
is to convert the SMT input problem into a SAT problem, making implicit consequences
of the used theories explicit. This allows for the use of existing SAT solvers on the
transformed formula. However, depending on the input the number of constraints might
grow large. In contrast, solvers following the lazy approach integrate SAT solvers with
specialized solvers for different theories. A common variant of lazy SMT solvers are
DPLL5 solvers [2, 4]. In its simplest form, the input is abstracted into a SAT problem,
where the underlying SAT solver either proves unsatisfiability, implying that also the
input is unsatisfiable, or provides a satisfying assignment, which is given to the theory
solver. If the assignment is consistent with the theory, the input is satisfiable, otherwise an
additional constraint regarding the inconsistency is added to the abstracted SAT problem.

If a set of SMT constraints is found to be unsatisfiable, the unsatisfiability core is
an unsatisfiable subset of constraints [4]. One approach (assumption-based approach)
to receive an unsatisfiability core is to add a new boolean selector variable Si for each
constraint Ci, to replace each constraint Ci with Si ⇒ Ci and to force Si = true. In case
of a conflict while solving the constraints, the constraints whose selector variables Si are
part of the conflict are returned as unsatisfiability core.

Z3 [11] is a SMT solver developed at Microsoft Research following the lazy approach.
In addition to deciding satisfiability, it is also capable of providing a model satisfying the
constraints and an unsatisfiability core using an assumption-based approach. The con-
straints can be formulated using the SMT-LIB 2.6 [3] language or a dedicated Application
Programming Interface (API).

5Abbr. Davis-Putnam-Logemann-Loveland

4

3 The Go Language

The Go programming language and compiler have some major differences compared
to other languages like C or C++. After describing uncommon language concepts, the
internal representation of data types, the calling convention as well as the meta information
included in compiled binaries will be described. Then, the aspects of memory safety in
Go programs will be analyzed briefly. Finally, some peculiarities of the code generated by
the Go compiler will be explained.

This description focuses on the x86-64 architecture. All references to the source of the
Go runtime and compiler refer to Go 1.8.1, as released on April 7, 2017.1

3.1 Core Language Concepts
The Go language has some rather uncommon language concepts. In this section, some of
these concepts will be described briefly.

The idea of goroutines is to run multiple, parallel executing functions on a set of threads
provided by the operating system [31]. When a goroutine blocks, e.g. by waiting for a
mutex or issuing a system call, the runtime transparently switches between the goroutines
on the same thread. Therefore, compared to an operating system thread, a goroutine
is more lightweight: a goroutine has a dynamically sized stack (starting at 2kiB) and a
small control data structure, allowing to create and execute many goroutines efficiently.

In terms of structures within the runtime, a goroutine is represented by an instance
of the type g, which is also accessible at address fs:[-0x8] in the Thread-local Storage
(TLS). An operating system thread is represented by the type m. Each operating system
thread additionally has a separate signal handling goroutine and a scheduling goroutine,
which use the stack provided by the operating system.

Communication between goroutines can either happen via a shared variable and appro-
priate locking or via channels. Channels allow to pass values across different goroutines
and can also be used for synchronization. A special select statement allows a goroutine
to wait for multiple communication operations in parallel [32].

A Go function can defer a function call by pushing it to a list, where the actual function
call is performed after the function returned [32]. This is commonly used to call clean-up
functions (e.g. closing a file, releasing a lock) independently of the following control flow.
An example of a simple defer statement is shown in Listing 3.1. The arguments of a
deferred function call are evaluated when the defer statement is evaluated and stored with
the function to call.

1https://github.com/golang/go/tree/go1.8.1, accessed 2017-05-10, tag go1.8.1, commit a4c18f0

5

https://github.com/golang/go/tree/go1.8.1

3 The Go Language

1 func foo(name string) error {
2 file , err := os.Open(name)
3 if err != nil {
4 return err
5 }
6 defer file.Close ()
7
8 ...
9 }

Listing 3.1: Example of a Defer
Statement. The file is closed independently
of the following control flow.

1 func foo(name string) error {
2 defer func () {
3 if r := recover (); r != nil {
4 ...
5 }
6 }()
7 ...
8 panic (...)
9 }

Listing 3.2: Example of a Defer Statement with
recover. The panic is not propagated outside of the
function foo but catched inside the deferred function.

Instead of exceptions, Go employs two different approaches of propagating errors through
the program: one approach is to add an additional error return value, which the caller
has to check. The other approach is panicking. A panic can be issued by the panic
function or by the runtime, e.g. when a nil pointer is dereferenced. In case of a panic,
the ordinary control flow is stopped and the goroutine enters the panicking mode. The
panic propagates through the call stack, calling the deferred functions of the panicking
function and its callers. When the panic reaches the top-most function, a stack trace is
printed and the program is aborted.

However, it is possible to recover from a panic. When a deferred function calls the
recover function while the goroutine is panicking, the panic is stopped and the normal
control flow continues at this point. The state of the functions between the panic and the
recovering is discarded.

An interface is a type which specifies a set of methods [32]. All data types which
implement all required methods can be implicitly converted to the corresponding interface
type. The interface type which has no methods (the empty interface) is implemented by
all types and can be compared to the Object base class in Java. The actual type of the
value stored in an interface variable at run time is referred to as dynamic type.

It is also possible to convert an interface back to a fixed type or another interface type
using type assertions, which are similar to class casts in object-oriented programming
languages. A simple example for a type assertion shown in Listing 3.3. If the dynamic
type of the interface value does not have the required type or does not implement the
required interface type, the invalid assertion must be caught or a panic occurs. In contrast

1 func foo(v interface {}) int {
2 if i, ok := v.(int); ok {
3 return i
4 }
5 return 0
6 }

Listing 3.3: Example of a type assertion.
If the argument does not have an integer
type at runtime, a constant is returned.

1 func foo(v interface {}) int {
2 switch i := v.(type) {
3 case int: return i
4 case uint: return int(i)
5 }
6 }

Listing 3.4: Example of a type switch.
Depending on the actual type of the argument
a different code path is executed.

6

3.2 Data Type Representation

to many other languages, it is also possible to use a switch statement over the dynamic
type of the interface, as shown in Listing 3.4.

3.2 Data Type Representation
The Go programming language provides a range of simple and structured types. In
this section, the provided types as well as their internal representation in the x86-64
architecture will be described briefly. An overview is given in Table 3.1. Each data type
in Go has an alignment requirement, which must always be satisfied.

The numeric types of Go contain a range of types for integers, floating-point numbers
and complex numbers. They include signed and unsigned integers with sizes of 8-, 16-, 32-
and 64-bits as well as floating-point numbers with sizes of 32-bits and 64-bits. Furthermore,
complex numbers with a size of 64- or 128-bits consisting of two appropriately sized floats
are supported. The uintptr type has the size of a pointer, which is 64-bit. Likewise, the
int and uint types have a native size of 64-bit. The boolean type (bool) is stored as
byte with the values 0 or 1.

A string in Go is a tuple of (1) a pointer to the actual string and (2) the length of
the string. In contrast to C, the string data is not zero-terminated but just an array of
bytes [27]. As strings are immutable, slicing operations on a string are implemented by
modifying the pointer and the length of the substring. The actual string data is placed in
the binary or on the heap.

An array is a constant-length sequence of values of the same type with padding between
the elements to satisfy alignment requirements. A slice provides a view on an array and is
stored as a tuple of (1) a pointer to the underlying array, (2) the length of the slice and
(3) the capacity of the underlying array [15, 32]. If the capacity and length of the slice
are zero, the data pointer is allowed to be nil and the slice is referred to as nil-slice.
Maps and channels are pointers to the corresponding runtime structures. The length of
the map or channel is stored as integer in the first field and the capacity of a channel is
stored in the second field of the runtime structure. These fields are known to the compiler
and generated code can access the length and capacity directly.2

A data pointer is a simple pointer to the data, or nil. A function pointer, however, is
not a pointer to the function itself but to a structure containing the function pointer and
additional data. This data is used for closures to store captured variables, e.g. variables
which are preserved across calls. For further details on the implementation of closures
refer to the design document about function calls [9].

An interface is stored as a tuple of (1) a pointer to the interface metadata and (2) the
actual data [7]. The metadata (itab) includes the type of the interface, the type of the
data and a function table for the required functions. Although for some combinations of
interfaces and data types the corresponding structure is already allocated in the binary,
the metadata structure is filled at runtime. For the empty interface (the interface without
functions) the type of the data is stored directly instead of a pointer to the metadata
structure. As opposed to the description by Cox [7], it turns out that the data field of

2Source: cmd/compile/internal/gc/ssa.go:3890

7

3 The Go Language

Table 3.1: Overview of the Go type system and the internal representations.† The size and
alignment requirements relate to the x86-64 architecture. The internal name refers to the name of
the corresponding structure in the runtime package.‡

Type Size Align Representation Internal Name

Basic Types
bool/int8/uint8/byte 1 1
int16/uint16 2 2
int32/uint32/rune 4 4
float32 4 4
complex64 2 · 4 4 [2]float32
int64/uint64 8 8
int/uint/uintptr 8 8
float64 8 8
complex128 2 · 8 8 [2]float64
string 2 · 8 8 {ptr,len} stringStruct
unsafe.Pointer 8 8

Array ([n]T) –§ –§
Slice ([]T) 3 · 8 8 {ptr,len,cap} slice
Map (map[K]V) 8 8 *{len,...} *hmap
Channel (chan T) 8 8 *{len,cap,...} *hchan
Pointer (*T) 8 8
Function Pointer (func(...)) 8 8 *{fn,...} *funcval
Empty Interface (interface{}) 2 · 8 8 {type,ptr} eface
Interface (interface{...}) 2 · 8 8 {itab,ptr} iface
Structures (struct{...}) –§ –§
† Sources: src/go/types/sizes.go, src/cmd/compile/internal/gc/type.go
‡ Source: https://golang.org/pkg/runtime/?m=all, accessed 2017-08-18
§ Size and alignment of structures and array types depends on the field or element types

8

https://golang.org/pkg/runtime/?m=all

3.3 Calling Convention

Args Returns Locals FP IP Args Returns . . .

Callee Arguments Caller Arguments

rsp rbp
Low Addr → High Addr

Figure 3.1: Stackframe of a Go function. Arguments and return values are passed on the stack.
The frame pointer is not used for leaf functions without local variables.

an interface always stores a pointer to memory in contrast to storing raw data (e.g. an
integer) directly, most probably to simplify garbage collection.3

The members of a structure are laid out sequentially in memory. To satisfy alignment
requirements of the elements, the padding is included between the members when necessary.

3.3 Calling Convention

Contrary to other programming languages and compilers, the Go compiler does not employ
the standard System-V [23] calling convention.4 In general, all registers except rbp and
rsp are considered as scratch registers. The register rbp is used as frame pointer to
ease stack unwinding for functions, except for leaf functions without local variables.5
Arguments and return values are passed on the stack as depicted in Figure 3.1, where
the argument and return regions are both 8-byte aligned, independently of the alignment
required by the individual argument or return types. The receiver of a function (i.e.
the value on which a method is called) is passed internally as the first argument. The
arguments do not need to be preserved, the callee can use the arguments as normal
variables. Return values are initialized with zero by the callee. However, any padding
between the individual arguments or return values is not necessarily initialized.

For variadic functions, where the last parameter has the type ...T, the additional
arguments are copied into a slice of type []T by the caller and passed as single argument.
If no additional arguments are passed, the nil-slice is used [32]. If a slice is passed instead
of variadic arguments (via slice...), the slice is used as argument without copying.

As described in Section 3.2, a function pointer includes metadata in addition to the
address of the function. When a function is called indirectly (closure), the address of the
structure containing address and metadata (the context containing captured variables,
runtime.funcval structure) is passed in the register rdx in addition to the arguments.

However, some runtime functions have a different calling convention: The functions to
add a deferred procedure (runtime.deferproc), which gets automatically executed at the
end of the function, and to start a new go-routine (runtime.newproc) have a variably-sized
argument region. The size of the argument region is given as first parameter. Additionally,
the function runtime.deferproc returns a value in the register rax, indicating whether

3Source: cmd/compile/internal/gc/subr.go:2183
4https://github.com/golang/go/issues/16922, accessed 2017-05-10
5There is an option to disable the use of the frame pointer entirely.

9

https://github.com/golang/go/issues/16922

3 The Go Language

the function returned normally (value 0) or whether the deferred function recovered from
a panic (value 1).

The special Duff-functions for zeroing (runtime.duffzero) or copying memory
(runtime.duffcopy) are an unrolled loop to process up to 1024 bytes of memory.6 The
amount of memory to be processed is determined by the compiler, which emits the jump
to an appropriate position in the middle of the function. The arguments are passed in
registers: for the Duffzero function, rdi contains the start address and xmm0 must be
zero. For the Duffcopy function, rsi contains the source address and rdi contains the
destination address. As these functions cannot set the frame pointer themselves, which is
required for proper trace generation, the caller will perform the necessary stack frame
setup.7

3.4 Static Metadata
Beside the actual code and program data, the Go compiler additionally includes a significant
amount of metadata into the compiled program, mainly used for the Garbage Collector
(GC) and stack trace generation.

3.4.1 Module Data
The module data structure is included in each executable or shared object file and contains
meta-information about the executable. This includes the limits of specific sections
(e.g. the code section (text) or the type section), information for the GC about the
types of global variables and a pointer to the Runtime Symbol Information (pclntable).
Furthermore, pointers to types and interface metadata are included.

3.4.2 Runtime Symbol Information
To (1) ease stack unwinding, (2) for the implementation of garbage collection and (3) the
mapping of Program Counter (PC) value to additional meta information a Go binary
contains a separate section with function metadata used by the language runtime [10].

The section begins with a constant 32-bit magic number (-5), which is used to identify
the table version and the endianness of the binary. After two zero bytes follows one byte
indicating the instruction size quantum (i.e. the required PC alignment, 1 byte on x86-64)
and one byte indicating the size of a pointer (8 bytes on x86-64). This header is followed
by the function table.

The table begins with a 64-bit value containing the number of entries in the table,
followed by a list of function entry addresses and the offsets to the function metadata in
the section, sorted by function addresses in ascending order. The remainder of the section
is filled with data referred to by the offsets in an unspecified order.

The structure of the function metadata contains the name of the function (offset relative
to section) and the size of the arguments. It also includes a variable-length table of
per-function data, which is currently used for a list of bitmaps (stackmap) indicating

6Sources: runtime/mkduff.go, runtime/duff amd64.s
7Source: cmd/internal/obj/x86/asm6.go:3727

10

3.5 Runtime Memory Layout

which parts of the stack frame and argument region are pointers. This information can
be different at different points in the function as regions on the stack can have different
types. However, this information is only valid at function calls as this is the only point
where the garbage collector can get triggered.

Additionally, the function metadata includes several PC-value tables, the encoding is
described in the corresponding design document [10]. This currently includes mappings
from the PC (1) to the stack frame size (pcsp), (2) the line number (pcln) and (3) the
file name (pcfile), as well as (4) to the stackmap index from the function metadata.

3.4.3 Runtime Type Information

To allow for interfaces, reflection and garbage collection, the Go compiler includes type
information for many types in the binary.

Beside the actual description of the type, also links to functions responsible for checking
equality and computing a hash are included. The type information also includes a
bitmask indicating which parts of the type in memory are pointers.8 This is used for
garbage collection. Immediately after the common type information follows type-specific
information, e.g. the element type and length of an array or the signature of a function.
All named or structure types include additional information (the uncommon type): for
these the type information is followed by an additional structure, containing the methods
of the type sorted by name, which are used to create the method table when casting a
type to an interface, and the package path which is used to check type equality.

A method, however, has two function pointers: one for the function which has the type
itself as receiver type and one for the function which has the type as it is stored in an
interface structure (usually a pointer) as receiver. If the type itself fits into the 8-byte
field of the interface structure (e.g. a pointer), both pointers point to the same function.
Otherwise (e.g. for a structure), the compiler emits an additional wrapper function.

3.5 Runtime Memory Layout

The runtime memory layout of a Go program is designed to be deterministic. Go binaries
are usually statically linked against the runtime and are linked to a fixed address. The
Go runtime does not use the standard libc heap implementation but instead contains a
different heap implementation at a deterministic position. This implies that Go programs
in general do not benefit from Address Space Layout Randomization (ASLR), except for
the stack provided by the operating system.9

Beside standard heap allocations, the heap also includes the stacks for the goroutines.
Contrary to stacks provided by the operating system, the Go stacks have a dynamic
size and can grow or shrink on demand [24]. Each function includes a prologue which
checks whether the stack is large enough and eventually calls a stack enlargement function

8A type can also have the GCProg flag set in which case the bitvector is stored in a compact
representation.

9See: https://groups.google.com/d/msg/golang-nuts/Jd9tlNc6jUE/fJodJUqZV-YJ, accessed 2017-
08-31

11

https://groups.google.com/d/msg/golang-nuts/Jd9tlNc6jUE/fJodJUqZV-YJ

3 The Go Language

(morestack), which switches the stack.10 Shrinking the stack does not require a stack
switch as it is a simple free operation.

The stack switching is realized by copying the stack contents to the newly allocated
memory region and fixing pointers to the stack afterwards. By definition, the only place
where pointers to the stack can reside at the beginning of the function is the stack itself.
Therefore, the fixup function iterates through the stack and adjusts the pointers. To
ensure correctness, only slots in the stack frame of the function which contain pointers
are updated, this information is stored in the function metadata (see Section 3.4.2).

3.6 Safety

One of the design goals of Go is safety, which influences the language design as well as the
machine code generation [31]. At language level, Go is statically typed and does in general
not allow type casts between types of a different memory layout. Type assertions and
type switches ensure that the value of the interface has the required type and otherwise
cause a panic unless the invalid cast is caught.

During compilation, bounds checks for array and slice accesses (and slice operations) are
inserted, resulting in a panic on an out-of-bounds access. When a pointer is dereferenced
with an offset larger than 0x1000 (e.g. a field of a large structure), an additional nil-check
which might cause a segmentation fault is inserted. This implies that a (safe) Go program
can cause a segmentation fault. These are caught by a signal handler which also causes a
panic. However, the address of an illegal memory access should be within the address
range of 0x0–0x1000.11

This nil-checking strategy implies that the Go compiler assumes that the page at
address 0x0 is never mapped. While this is usually the case, all compiler-generated
nil-checks will succeed and no panic occurs when this page is mapped, significantly
increasing the likelihood of vulnerabilities.

Following Cox [8], there are two mechanisms to break the safety of the language:
the unsafe package and data races. While the Go language does not provide explicit
pointer arithmetic [31], pointer arithmetic and casts are possible using the unsafe package.
Although this can improve performance and might even be necessary for some applications
(e.g. to perform a bitwise cast of a floating-point value to an integer), the unsafe package
can also be used to access arbitrary memory with the corresponding consequences. We
add that also the syscall package can be used to break memory safety, a proof-of-concept
for this can be found in Appendix E.

As a consequence of non-atomic multi-word structures, e.g. interfaces and slices, a
data race can occur when one goroutine writes to the structure while another goroutine
reads the structure. In this case, the reading goroutine might read the result of a partial
update, breaking type safety (for interfaces) or bounds checks (for slices). These data

10Earlier versions of Go used stack splitting instead.
11Source: runtime/signal unix.go:271, runtime/signal windows.go:160

12

3.7 Compiler

races are shown to be fully exploitable.12 This problem can be circumvented by using
synchronization [8]. To aid development, the Go tool chain includes a race detector, which
instruments code and emits a warning when a data race is detected and can be activated
via a compiler flag [36].

When a Go program is vulnerable, e.g. by linking against a vulnerable (C) library, ex-
ploitation is eased by a significant amount of code and gadgets combined with deterministic
addresses and writable function pointers in interface tables.

3.7 Compiler

The Go compiler for the x86-64 architecture (internally referred to as 6g) generates
machine code using a strongly-typed Single-Static Assignment (SSA) intermediate stage.
After parsing and verifying the input files the code for a module is transformed into
the SSA form. In this stage, different light-weight optimization passes (e.g. dead code
elimination and null check elimination) and lowering passes (e.g. instruction selection,
register allocation) are applied. In the remainder of this section, the structure of the
resulting machine code as a consequence of the applied passes will be described.13 The
results are mostly inferred from the compiler itself and analysis of compiled code.

3.7.1 Register Usage

As the calling convention does mandate the usage of almost all registers (see Section 3.3),
the Go compiler is able to use almost all available registers.

General Purpose Registers For closures, the closure pointer is passed in the register
rdx. If this pointer is no longer used or stored elsewhere, the register will be used as
normal register. A pointer to the metadata structure of the goroutine (g) is loaded in
the register rcx at the beginning of a function and is only used to check whether a stack
enlargement is required.14 After this check, the register will be used freely.

The compiler never uses the high-byte registers (e.g. ah) of the architecture explicitly.15

The only case where the register ah is used is the result of an 8-bit multiplication. However,
such an instruction will always be followed by a mov dl,ah instruction.16

Furthermore, the compiler will never use the fact that operations on the 8-bit or 16-bit
registers do not clear the untouched part of the register. In fact, instructions like movzx
are used to explicitly zero the upper part. However, the Go compiler will access shorter
parts of a register (e.g. ax of rax) for truncations.

12http://blog.stalkr.net/2015/04/golang-data-races-to-break-memory-safety.html, accessed
2017-05-10

13A Go program may also contain non-compiler generated assembly code, e.g. in form of hand-written
assembly, which might not follow these rules and observations.

14Source: cmd/internal/obj/x86/obj6.go:981
15Source: cmd/compile/internal/sss/gen/AMD64Ops.go:17
16Source: cmd/compile/internal/amd64/ssa.go:298

13

http://blog.stalkr.net/2015/04/golang-data-races-to-break-memory-safety.html

3 The Go Language

Vector Registers The Streaming SIMD Extension (SSE) registers have three functions:
first, they are used for floating-point arithmetic on float32 or float64 values, in which
case the lowest 32-bit or 64-bit are used. Second, they are sometimes used to zero small
(≤ 64 bytes) parts of memory, in which case a xorps xmmn,xmmn instruction precedes
one or more 128-bit stores (movups).17 Third, they are used to move small (≤ 16 bytes)
structures within memory, in which case a 128-bit load is followed by a 128-bit store.18

3.7.2 Instruction Selection

In general, the Go compiler will only emit basic arithmetic (integer and floating-point),
move and control flow instructions. (A full list of instructions can be found in Appendix C.)
Most importantly, memory operations are in general only performed with moves (including
sign- and zero-extending variants) or atomic operations as well as string instructions (e.g.
rep movsq).19 Additionally, loads of 8-bit and 16-bit values are always sign-extending or
zero-extending to the whole register width.20 It is also notable that common instructions
for stack operations, e.g. push, pop and leave, are not used. The x86-64 address operands
used by memory access instructions and the source operand of a lea instruction is either
relative to the Instruction Pointer (RIP) or composed of additions and shifts during
optimizations.21 It turned out that the stack pointer (rsp) is commonly used in a memory
operand (including the lea instruction) and not as register operand. As a consequence of
this, the Go compiler will also emit lea rdi,[rsp] instead of mov rdi,rsp. Likewise,
even if the binary is linked to a static address, the compiler will only use RIP-relative
addressing.

For many integer arithmetic operations on 8-bit and 16-bit operands the 32-bit sized
instruction is used. For example, the addition of two 8-bit operands in al and dl is
lowered to add eax, edx. For floating-point arithmetic, only the basic arithmetic and
conversion instructions from the SSE instruction set are emitted. This also implies that
no vector instructions are emitted. As described in Section 3.7.1, the SSE registers are
also used for small memory moves and zeroing of memory.

In contrast to other compilers like GCC, the Go compiler does not emit jump tables,
even for numeric switches. Instead, all kinds of switches are lowered as a binary tree of
comparisons where possible. Furthermore, the Go compiler does not perform tail call
optimizations for ordinary functions, implying that each function is terminated with a
return instruction.

3.7.3 Status Flags

The handling of status flags in the Go compiler partially differs from the handling of
other compilers: it is simply treated as additional register in the internal SSA form, with
the difference that it cannot be stored in memory and must be recomputed if another

17Source: cmd/compile/internal/amd64/ggen.go:129
18Source: cmd/compile/internal/ssa/gen/AMD64.rules:320
19Earlier compiler versions also used memory operands also in other instructions.
20Source: cmd/compile/internal/amd64/ssa.go:41
21Source: cmd/compile/internal/ssa/gen/AMD64.rules

14

3.7 Compiler

instruction clobbers the flags. As a consequence, only flags set by instructions without
any other effects (cmp, test, ucomiss, ucomisd) are used.

The status flags set by one instruction can be used multiple times: for example, a
single floating-point comparison can be used to test for “less-than” followed by a test for
“Not-a-Number”. Other instructions which do not set flags (e.g. a store) can occur between
two flag usages and flags are also maintained over basic block boundaries. Moreover, an
instruction which uses flags can depend on multiple instructions which actually set the
flags.

3.7.4 Call Types

Within the compiler, there are five different types of function calls (cf. Section 3.3): first,
there are static calls to a function within the module, the address is resolved at compile
time. Second, there are closure calls, which are indirect calls with the closure context
passed in the register rdx. Then, there are go calls and defer calls, which are referred
to as non-normal calls22 and correspond to the respective language constructs. Finally,
there are interface calls (internally also referred to as intercalls), where the address of the
function is loaded from the interface metadata.

3.7.5 Compiler-generated Checks

A compiler-generated nil-check is lowered to the test al,[rax] instruction.23 If the
pointer in rax points to invalid memory, this instruction will cause a segmentation fault,
which will be caught using a signal handler and propagated as a panic.

Bounds checks for indexing24 and slicing25 of arrays are lowered to conditional branches
to corresponding internal panic functions in the runtime. Type assertions are lowered
to conditional branches to panic functions or to runtime functions for interface type
assertions, which also have variants returning whether the type assertion was successful
instead of panicking.26 A type switch generates a binary search over the hash of the
type.27

3.7.6 Runtime Support

Beside compiler-generated checks, many language features heavily rely on runtime sup-
port.28 This includes the allocation of objects and slices as well as conversions of interfaces,
but also most functions and language constructs operating on string, hash maps and
channels. Most notably, many of these functions not only take a pointer to the actual
object as argument but also require an explicit pointer to the type of the object. For

22Source: cmd/compile/internal/gc/ssa.go:2546
23Source: cmd/compile/internal/amd64/ssa.go:865
24Source: cmd/compile/internal/gc/ssa.go:3288
25Source: cmd/compile/internal/gc/ssa.go:3301
26Source: cmd/compile/internal/gc/ssa.go:4055
27Source: cmd/compile/internal/gc/swt.go:677
28Source: cmd/compile/internal/gc/builtin/runtime.go

15

3 The Go Language

example, almost all operations on maps are runtime functions, which take the type of the
map as first argument.

To allow concurrent garbage collection, the compiler emits write barriers for writes of
pointer types to the heap. These write barriers are necessary in order to give the garbage
collector a consistent view of memory. To improve performance, the write barriers are
controlled using a global variable: if a global variable (writebarrier.enabled) is set,
the memory operation, i.e. a pointer write, memory move or memory zero, is performed
using runtime functions instead of performing the operation using normal instructions.29

The runtime functions for memory moves and zeros take the type of the object to move
as additional parameter.30

29Source: cmd/compile/internal/gc/writebarrier.go:29
30Source: cmd/compile/internal/gc/builtin/runtime.go

16

4 Design

Binaries produced by the Go compiler include additional metadata compared to other
compilers and languages. Therefore, we will first describe our strategy to identify the
version of the Go compiler and extract important metadata even from stripped binaries
in detail. Then, we will describe our intermediate representation for code, an extended
assembly language abstracting some specifics of the Go compiler, as well as a procedure
to lift Go code of different versions into this representation. Based on this, we will finally
present our approach for the analysis of function types using type constraints.

4.1 Extracting Metadata

An important step in analyzing Go binaries consists in finding and extracting the included
metadata described in Section 3.4. While the metadata is mostly used to enable garbage
collection and dynamic typing via interfaces, it also provides information about used
datatypes and functions of the runtime or other packages.

It is entirely possible that the included metadata is not correct and that the included
information to be modified by another program after compilation. While the range of
potential modifications is limited to maintain the correctness of the program, it is possible
to modify the names of the functions, the mapping of the PC to lines and files as well as
the names and package paths of defined datatypes and the corresponding methods.

In the following, we will assume that the metadata in the binary is produced by the
compiler and contained in the binary in unmodified form. We will particularly use the
name of the functions to identify special runtime functions. We note that these runtime
functions can also be identified by other means, e.g. using simple signatures [34] or more
complex pattern matching strategies [20]. Additionally, to the best of our knowledge,
there does not exist a publicly available tool which modifies or removes this metadata.

The proposed and implemented extraction schema is designed to handle executables
in the ELF (non-PIC) and the PE file format on the x86-64 architecture generated by
the Gc/6g compiler starting from Go 1.5 (released in 08/2015 [33]), which introduced the
module data structure. However, some parts may also be applicable for older Go versions.
For example, the symbol information is present in the current form starting from Go
1.2 [10].

Implementation Remark: The metadata parsing is implemented in Go to ease reuse of
compiler and runtime data structures. While it is not possible to use these structures
directly as they are private to the runtime, only minor modifications are required. The
output of the extraction process is a file in JSON [13] format containing the parsed
metadata as well as other information about the binary file, e.g. the compiler version.

17

4 Design

4.1.1 Runtime Symbol Information

The easiest way to find the runtime symbol information (internally referred to as pclntab,
abbreviation for PC-line number table) is to find the symbol runtime.pclntab in the
binary file. While this method is straight-forward, it does not work when the binary is
compiled without symbol information or stripped afterwards. For non-position-independent
ELF executables, the pclntab can be found at the beginning of a separate section named
.gopclntab. This, however, is not possible for PIC-compiled code, where the table is
placed in the RELRO-section, or other file formats including the PE format used on
Windows.

If the pclntab cannot be found using symbols or the corresponding section, potential
candidates can be found in the .text section (for PE files) or the .data.rel.ro section
(for ELF files) by searching for an 8-byte aligned magic number. Similar to the verification
procedure in the runtime1, we can verify the instruction alignment and pointer size and
can ensure that the entries in the function table are sorted by entry address in increasing
order to avoid false positives.

The actual parsing and processing of the encoded data is very similar to the handling
in the runtime.2 Although the file table is included in the pclntab, the offset is not known
directly and must be fetched from the module data structure.

4.1.2 Module Data Structure

As for the runtime symbol information, the easiest way of finding the module data
structure is to find the runtime.firstmoduledata symbol in the binary. If the symbol is
not present, we can use a signature-based approach to find the structure in the appropriate
section (noptrdata for ELF files, data for PE files). This approach is based on the
information from the runtime symbol information: the first fields of the module data
structure include the known address of the pclntab and its (unknown) length, the address
and length of the function table, which is stored at the beginning of the pclntab and
therefore known, and the minimum and maximum code address, which are known from the
function table and possibly also from section information from the binary. Additionally,
we know that the length and the capacity of slices must be equal as the slices point into
read-only memory. Using this information, we were able to find the mentioned structure
in executables ranging from Go 1.6 to Go 1.8.

Alternatively, the module data structure can be found via the function
runtime.findmoduledatap, which references the structure in the code. We did pre-
fer the signature-based approach as we expect that the code generated for this function is
more likely to change in future than the layout of the structure.

Beside finding the module data structure, it is critical to distinguish between (currently)
three different versions of this structure. The structure was introduced in Go 1.5 and
contained information about the function table, the layout of the executable, pointers to
some types, and bitmasks for the data section for the garbage collector. Go 1.7 extended

1See: src/runtime/symtab.go:347
2See: src/runtime/symtab.go

18

4.1 Extracting Metadata

. . .
gcbss

typelinks ptr
typelinks len
typelinks cap

modulename ptr
. . .

Go 1.5–1.6

C0h

C8h

D0h

D8h

E0h

. . .
gcbss
types
etypes

typelinks ptr
typelinks len

. . .
modulename ptr
modulename len
modulehashes ptr

. . .

Go 1.7

C0h

C8h

D0h

D8h

E0h

108h

110h

118h

. . .
gcbss
types
etypes

textsectmap ptr
textsectmap len

. . .
itablinks ptr
itablinks len
itablinks cap

. . .

Go 1.8

C0h

C8h

D0h

D8h

E0h

108h

110h

118h

Figure 4.1: Layout of different versions of the module data structure, distinguish Go 1.5–1.6, Go
1.7 and Go 1.8.

this structure by links to interface tables and replaced the pointers to the types with
offsets to reduce the binary size. In Go 1.8, support for plugins was implemented, which
allow to load code dynamically at runtime by wrapping dlopen.3 This required additional
fields in the module data structure.

The version identification can be implemented using sanity checks for values at certain
offsets in the structure, the layout of the different versions of the structure is shown in
Figure 4.1. A summary of the described procedure is shown in Algorithm 1. Distinguishing
the structure of Go 1.5–1.6 and later versions is rather simple: at the offset where the
typelinks slice, being a triple of pointer, length and capacity, is stored in Go 1.5, Go 1.7
and later versions store the start and end address of the types section. As the end address
of the section must be larger than the start address of the section, but the pointer to
the typelinks slice must be larger than the length of the slice, we have a simple way to
distinguish Go 1.5–1.6 from later versions. We note that this assumption is a consequence
of the binary layout, where the typelinks slice follows after the types section and each
type is larger than an entry in the slice.

Distinguishing the structure of Go 1.7 from Go 1.8 is less clear. We observe that

3See https://golang.org/pkg/plugin/, accessed 2017-08-21

Algorithm 1 Procedure to identify Go version using the module data structure.
if data [0xC8] > data [0xD0] and data [0xD0] = data [0xD8] then

return Go 1.5–1.6
else if data [0x110] = 0 or data [0x110] 6= data [0x118] then

return Go 1.7
else

return Go 1.8+
end if

19

https://golang.org/pkg/plugin/

4 Design

every Go binary has at least one entry in the interface table, namely the built-in error
type. Furthermore, we note that the modulename string is empty (i.e. length zero) for
executables. Thus, if the length of the itablinks slice in the layout of Go 1.8 would be
zero, we know that the module data structure has the layout of Go 1.7.

These simple checks turned out to be sufficient for the released Go versions, starting
from version 1.5. If the layout has changes in future versions which cannot be detected
using these simple means, more involved approaches can be employed to identify the
version of the Go compiler. For example, the presence, absence or code of specific runtime
functions can be used for identification as well. We did not implement these more accurate
techniques as they seem to be unnecessarily complex without providing any benefit at
this time.

Remark Using the described strategy, we are able to distinguish the Go versions 1.5–1.6,
1.7 and 1.8. The versions 1.5 and 1.6 can be easily distinguished using the implementation
of Duff’s device.

4.1.3 Type Information

Each Go binary contains a significant amount of runtime type information, which are
required for interfaces and reflection but also assist in binary analysis. The module data
structure stores links to all types, except for basic types like int, interfaces and named
types. The interface types can be enumerated using the interface table pointers, which are
also contained in the module data structures. For named types, it turns out that most
types can be found using nested links of processed types. For example, a pointer type to
a named structure contains a pointer to the type description of the structure.

Implementation Remark: In the rare event that a type is not detected automatically,
the type parsing can be triggered manually by supplying the address of the type using
the -rtti-types command line flag.

The actual parsing of the type information follows the description and implementation
in the runtime and is a straight-forward inversion of the compilation process.

4.2 Intermediate Code Representation
Analysis of binary code typically employs an Intermediate Representation (IR) to reduce
the variety of instructions and model side-effects explicitly, e.g. the IR of BAP [6] or VEX
as used by Angr [29].

However, existing IRs have major drawbacks when analyzing Go binaries: first, the
compiler only uses a small subset of architectural features and rarely relies on instruction
side-effects except for status flags (cf. Section 3.7), implying that a high-level IR only
provides a marginal benefit. Second, the Go compiler lowers specific language constructs
to known sequences of instructions or calls with special calling conventions, which would
be harder to identify in an abstract IR (cf. also Section 3.3). Additionally, the IR which

20

4.2 Intermediate Code Representation

is used by the Go compiler internally is not suitable for analysis, as it does not provide a
stable API and requires complete type information, which is not readily available from
the binary.

Therefore, we decided to perform analysis of the assembly code on a modified assembly
language referred to as Higher-level Go Assembly (HGA), which contains elements of the
x86-64 assembly, staying close to the output of the compiler and the IR of the Go compiler,
modeling special constructs, e.g. stack bounds checks or Duff’s device, appropriately. The
scope of the HGA is limited to code generated from Go functions, excluding bindings to C
functions and automatically generated wrapper functions. As the lifting process consists
of multiple stages operating on the HGA, we distinguish between the general HGA, which
is merely the x86-64 assembly cut in basic blocks, and the canonical HGA, which is used
for later analysis and therefore more explicit and simplified.

We did not opt for an SSA form, in contrast to the proposed analysis strategy by van
Emmerik [35] and also by the IR used by the Go compiler, as we do not see a benefit
outweighing the increased complexity of lifting. We note that transforming the canonical
HGA into an abstract SSA form is still possible and also seems advantageous compared
to lifting assembly directly as complex instruction sequences are already removed.

4.2.1 Structure

The HGA is used to model a single Go function, consisting of multiple basic blocks being a
continuous sequence of instructions. Depending on the last instruction, a basic block can
have at most two exits (successors): one exit which is used when a (conditional) jump is
taken, and one exit which is used when a conditional jump is not taken. In special cases,
e.g. when a panic function is called, a basic block is allowed to have no successors. A basic
block must end with a jump instruction or an “unreachable” indicator. All basic blocks
except the entry have at least one predecessor. In the canonical form, the entry basic
block must have no predecessors. To ease lifting and analysis by the insertion of fix-up
code, the canonical HGA must not contain a branch from a basic block with multiple
successors to a basic block with multiple predecessors. (These edges in the Control Flow
Graph (CFG) are referred to as critical edges.) This can be ensured by replacing critical
edges in the CFG with an empty basic block and therefore does not form a limitation (see
also Figure 4.4).

4.2.2 Registers

In the HGA, all 16 general purpose registers and 16 SSE registers can be accessed in any
valid size. The stack pointer register (SP), however, always points to the top of the local
stack frame, regardless of modifications. Additionally, there is a static base register which
points to the base address of the image in memory and an explicit flags register containing
the status flags. As the Go compiler only uses the flags for comparisons, we model the
flags as single abstract register instead of modeling the individual flags. For the purpose
of lifting x86-64 assembly into the canonical HGA, there are additional non-architectural
special purpose registers, named TMP1–TMP5.

Even though a register can be written in any size, it must be accessed in the size it was

21

4 Design

mov rax,[rcx+8*rdi+0x10]

MOVQ TMP1˜8,DI˜8
SHLQ TMP1˜8,$0x3˜8
ADDQ TMP1˜8,CX˜8
ADDQ TMP1˜8,$0x10˜8
MOVQload AX˜8,[TMP1]˜8

(a) Complex memory
operands are split into
multiple simple instructions.

lea rcx,[rax+0x18]

MOVQ TMP1˜8,AX˜8
ADDQ TMP1˜8,$0x18˜8
MOVQ CX˜8,TMP1˜8

(b) The lea instruction
is replaced with a plain
move.

mov bl,[rsp+rax+0x20]
lea rdi,[rip+<off>]

MOVBload BX˜1,[SP+AX+$0x20]˜1
LEAQ DI˜8,[SB+$<addr>]˜0

(c) The stack and global variables
is accessed using dedicated operand
types.

Figure 4.2: Examples for lifting of x86-64 memory operands into the HGA

written before in the canonical HGA. Implicit truncations (e.g. accessing ax of rax) or
extensions are not allowed. In the canonical form, the stack pointer (SP) must not be
used as direct register operand, except for the stack frame setup.

4.2.3 Instruction Operands

The supported instruction operands of the HGA are kept closely to the operands provided
by the x86-64 architecture. This includes register and immediate operands. However,
to simplify analysis, the HGA does not provide a single complex memory operand but
provides three more simple forms instead: first, there are simple memory operands, where
the address is stored in a register. Second, there is stack-based memory operands, where
the address is computed relative to the stack frame of the function, consisting of a constant
offset and an optional register offset. This type of addressing is kept separately to ease
stack frame analysis. Third, RIP-relative addressing is lifted to global memory operands,
which are relative to the static base register.

Complex x86-64 memory operands, with the exception of stack-relative operands, are
lifted by inserting sequences of additions and shifts on the non-architectural register TMP1,
which is then used as simple memory operand. Examples for this procedure are shown in
Figure 4.2. This is also the opposite of the way complex memory operands are constructed
while compiling: as shown in Section 3.7.2, this type of operand is formed as combination
of the underlying operations.

4.2.4 Instructions

An HGA instruction is defined by an opcode and operands. The instruction types are
a mixture of x86-64 instructions, internal instructions of the Go compiler as well as
additional instructions. An overview about the existing instructions can be found in
Table 4.1, for a complete list of instruction see Appendix D.3. The instruction types can
be roughly classified in four categories:

1. Data Processing Instructions: These instructions operate on registers and im-
mediate values only and includes most x86-64 instructions, e.g. ADDQ. Multiplication

22

4.2 Intermediate Code Representation

Table 4.1: Overview of the provided instruction types of the HGA, grouped by functional classi-
fication and naming origin. The suffix of most instructions indicates the operand size. Pseudo
instructions have no significant effect to the program state.

Class x86-64 ISA Go Compiler Miscellaneous

Data ADDB, ADDW, ADDL,
ADDQ, SUBQ, MOVQ,
MOVLQZX, MOVBWSX,
SETcc , . . .

MULB, MULQ, MULQU2, HMULW,
HMULWU, NilCheck, GetG,
GetClosurePtr, Trunc16to8,
Trunc64to32 . . .

CheckIndex,
CheckSlice,
CheckDivide,
GetBP,GetSP,. . .

Memory LEAQ, MOVQload,
REPSTOSQ∗, . . .

MemZero, DuffCopy∗,
DuffZero∗

Control Flow JMP, Jcc , CALL∗,
RET

StaticCall, GoCall,
DeferCall, ClosureCall,
InterCall

Unreachable

Pseudo NOP MoreStack,
MoreStackCtxt,
CmpStackLimit,
AddressMarker,
SizeAssert∗

∗ non-canonical HGA only

and division instructions however follow the internal Go naming convention. Ad-
ditional instructions for bounds and division checks (CheckIndex et al.) serve as
replacement for conditional calls to the respective panic functions in the runtime
and therefore simplify the control flow. Furthermore, there are special instructions
to set the values of registers (e.g. GetBP) in the beginning of a function, mainly to
ensure that the source of each register is well-defined.

2. Memory Instructions: In contrast to the x86-64 instructions, memory can only
be accessed using explicit load and store instructions (cf. Section 3.7.2). As there
is no complex memory operand in the HGA, the LEAQ instruction is only used
for address generation of stack-relative or global addresses and replaced with a
plain move otherwise. Special sequences of instructions (e.g. for Duff’s device) are
compacted to a single instruction.

3. Control Flow Instructions: These includes the jump instructions JMP and Jcc .
In contrast to the x86-64 ISA, conditional jumps have two targets and no implicit
fall-through. Control flow instructions also include function calls and returns. As the
Go compiler internally distinguishes five different types of calls (see Section 3.7.4),
each type has a different instruction to simplify later analysis. Additionally, there is
a special Unreachable instruction, which is used after a call to a panic function and
indicates that the basic block will not terminate regularly. Although this instruction
has similar semantics as the ud2 instruction on x86-64, we named it differently for

23

4 Design

clarity.

4. Pseudo Instructions: In addition to the other categories, the HGA also includes
non-functional instructions, mainly for simplicity, temporary analysis and debugging.
Conditional calls to stack enlargement routines are compacted into one unconditional
instruction, which has no further effect in analysis. The AddressMarker contains
the address and stack frame size of the following instructions in the original binary.
However, the address is only used for debugging purposes.

Some instructions like CALL can only occur in the non-canonical form and will be removed
or replaced during the lifting process.

4.3 Code Lifting
After disassembling the function, the lifting into the HGA happens in multiple passes. After
the control flow graph is recovered, the first pass lifts the x86-64 assembly into the general
HGA while subsequent passes perform further simplifications and clean-ups, resulting in a
canonical HGA for the function. The lifting procedure is designed for the newer SSA code
generation back-end of the Go compiler, introduced in Go 1.7. The code generator from
older Go versions is supported partially: while the described lifting procedure will work
in many cases, some rare cases are not be handled yet, see Section 4.3.2.

Implementation Remark: The implementation of the HGA and the lifting process is
written in Python 3 as more bindings to other libraries (e.g. Z3 [11]) are available.

4.3.1 Control Flow Recovery

Before the x86-64 instructions can be lifted, it is necessary to recover the control flow
graph to form the structure of basic blocks in the resulting HGA representation of the
function. For the Go compiler, it turned out that a linear disassembly of the function,
whose address and size are known from the function table, is sufficient. A separate basic
block is started at the entry of the function, at targets of jumps and after conditional
jumps. This is sufficient, as the Go compiler does not emit jump tables. A basic block
is terminated on a jump instruction, a return instruction or a ud2 instruction, which is
used to indicate that the current instruction is unreachable. Additionally, a basic block
is terminated at an instruction which starts a new basic block, e.g. by being a target of
another jump. While this is not strictly necessary for a semantically correct lifting, it
prevents code duplication and therefore eases automated as well as manual analysis.

4.3.2 Initial Lifting

The initial lifting pass basically replaces each x86-64 instruction with one or more corre-
sponding HGA instructions, where complex memory operands are replaced with a sequence
of simple instructions, see Section 4.2.3. At the boundaries of x86-64 instructions special
markers are inserted, which indicate the address of the instruction and the stack frame

24

4.3 Code Lifting

Table 4.2: Special cases while lifting single x86-64 instructions to the HGA for Go 1.7+.

x86-64 Instruction HGA Instruction Comment

mov <reg>,fs:[-8] GetG <reg> Special access to goroutine data
mov dl,ah — Fix-up code for multiplications
mov <reg>,rsp LEAQ <reg>,[SP-...] Consistency with stack accesses

xor <reg>,<reg> MOVL <reg>,$0 Break dependency∗ of zero-idiom
xorps <reg>,<reg> MOVO <reg>,$0 Break dependency∗ of zero-idiom
sbb <reg>,<reg> SBBLcarrymask <reg> Break dependency∗ for shift masks

movzx <reg>,<mem> Load + Zero-Extend Explicit semantics
movsx <reg>,<mem> Load + Sign-Extend Explicit semantics

test al,[<reg>] NilCheck <reg> Explicit nil-checks, see Sec. 3.7.5
test <reg>,<imm> AND + CMP Explicit semantics
cmp <reg>,[rcx+0x10] CmpStackLimit Stack bounds checking
cmp <reg>,[rcx+0x18] CmpStackLimit Stack bounds checking
test <reg>,<reg> CMP <reg>,$0 Compare with zero
∗ The original instruction technically has a read dependency on a register, although the result is

independent of the original value of that register. The replacement removes this false dependency.

size. Additionally, some special cases of instructions (see Appendix C) are handled during
this pass, an overview can be found in Table 4.2. Most notably, the implicit extension of
32-bit registers is handled at a later stage in the lifting process.

Handling Older Go Versions

Older versions of the Go compiler emit different code for some higher-level instructions.
We currently handle two common cases: first, in some cases a memory operand is used in
combination with an arithmetic instruction. This can be lifted to the HGA by splitting the
memory operations and the arithmetic operation and using a temporary register (TMP5)
to hold the intermediate result. Second, nil-checks are implemented using a conditional
branch and an explicit load from address zero. This instruction sequence is detected and
replaced with a single NilCheck instruction. Currently unhandled cases include larger
memory moves and big integers, which are left as future work. We note that operations
on big integers only occur inside the math/big package of the standard library.

4.3.3 Dead-end Block Elimination

The Go compiler lowers bounds and type checks by inserting a comparison followed by a
conditional jump to a basic block which calls the appropriate panic function in the runtime,
see Figure 4.3. These conditional branches provides important meta information about
arrays, slices and types and requires special handling to ease later analysis. Furthermore,
most functions contain a stack bounds check in the prologue with a conditional call to a
stack enlargement function (see Section 3.5). This additional basic block only indicates

25

4 Design

CmpStackLimit

CheckIndex
call morestack

. . . call panicindex

Figure 4.3: The dashed basic blocks with the
call to the panic function for indexing and the
call to the stack enlargement function will be
removed, simplifying the control flow.

1

2

3

1

2

3

Figure 4.4: The critical edge from block 1,
which has multiple successors, to block 3, which
has multiple predecessors, will be replaced with
an empty basic block.

whether the function is a closure (closures call a different stack enlargement function),
but has no further use and has to be removed to lift the function into the canonical HGA.
Consequently, it can be considered as beneficial to remove these basic blocks and keep the
provided meta information in form of additional instructions.

For bounds checks, the panicking basic block can be removed easily. The corresponding
jump is simply replaced with an unconditional jump. Behind all instructions which set
the flags for the conditional jump to the panicking block, an additional CheckIndex or
CheckSlice instruction is inserted. The operands of these instructions are the same as
for the comparison, regarding a potential inversion of the branching condition. We note
that a conditional jump can depend on multiple instructions which set the flags (see
Section 3.7.3) and therefore multiple check instructions can be inserted.

The basic block which contains the call to the stack enlargement routine can be removed
and the conditional branch is replaced by a MoreStack or MoreStackCtxt instruction.

4.3.4 Critical Edge Elimination

To simplify later stages of lifting and analysis, the canonical HGA does not allow edges in
the CFG from a block with multiple successors to a block with multiple predecessors. In
the internal SSA form of the Go compiler critical edges are not allowed as well, but may
get introduced during the lowering process. Eliminating critical edges can be done in a
straight-forward manner (see Figure 4.4): the edge in the CFG is simply replaced by a
new block with a single branch instruction to the original branch target. The branch at
the end of the preceding block is adjusted to point to the new block instead.

4.3.5 Function Calls

The Go compiler emits different types of calls, see Section 3.7.4. Static calls, which jump
to an address known at compile time, are simply replaced by a StaticCall instruction.
Indirect calls (i.e. call reg) can be either closure or interface calls. It turned out that
the Go compiler handles the wrapping interface or closure independently of the contained
function value, which implies that these types cannot be distinguished by analyzing
instruction sequences only.

However, for closure calls, the closure pointer must be passed in the register rdx, as
defined by the calling convention. The caller will not use the contents of the closure

26

4.3 Code Lifting

pointer, except for loading the actual function pointer once. Therefore, a simple approach
to distinguish closure calls and interface calls is to analyze the usage of the rdx register
before the call: if the register is set and only used to load the address of the call or not
used at all, the call can be a closure call and must be an interface call otherwise. It might
happen that the register rdx is set as unused side-effect of another instruction, e.g. imul.
Thus, we only declare a call as closure call when the closure pointer register is set by a
mov instruction. Depending on the result of this detection procedure, we replace the call
instruction with a ClosureCall or InterCall instruction. We note that this detection
technique is solely based on the code generation habits of the compiler. For future Go
versions this heuristic may be inappropriate and more sophisticated detection techniques
might be required.

As described in Section 3.3, the Go compiler will emit function calls to some runtime
functions which do not follow the Go calling convention. The functions runtime.newproc
and runtime.deferproc have a variably sized argument region, where the first argument
on the stack will be set to a constant describing the size of the arguments. Calls to
these runtime functions will be replaced with the GoCall and DeferCall instruction
respectively, which contains the argument region as second operand.

4.3.6 Calls to Duff’s Device

The remaining functions not following the calling convention are the functions implementing
Duff’s device for zeroing and copying memory, to which calls are generated automatically by
the compiler. Calls into the runtime.duffcopy function and the corresponding arguments
can be detected easily and are replaced with a DuffCopy instruction, which encodes the
size of the copied memory region explicitly.

For the runtime.duffzero function, the Go compiler emits calls in two different stages
during compilation with different assumptions: first, normal memory zeroing instructions
emitted in the IR can be lowered to this function. In this case, the side-effects of the
function are not used. Second, this function is called to initialize stack memory in the
function prologue. An example for this case is shown in Listing 4.1. Here, side-effects on
the registers of the function might be used and further care has to be taken. Moreover,
the implementation of the Duffzero function requires pointer adjustments in some cases.
Thus, lifting the call into a DuffZero instruction requires additional analysis of pointer
adjustments.

For both types of function calls, the stack frame setup in the caller can be safely removed
and the register operands can be moved directly into the instruction.

4.3.7 Instruction Sizes

For some instruction types and sizes, the Go compiler emits an instruction with a wider
register size than in the original source, see Listing 4.3 for an example and Section 3.7.2.
From the instructions operating on general purpose registers, the register operands of
twelve instruction types4 use a register size of 4-bytes instead of 1-byte or 2-byte registers,
and from the SSE instructions, the movups instruction is used with 16-byte operands

4Instruction types with register widening: mov, add, sub, neg, imul, shl, not, and, or, xor and sbb

27

4 Design

1 // Arguments for duffzero
2 MOVO X0 ˜16, $0x0 ˜16
3 LEAQ DI ˜8,[SP+$0x10]˜0
4 // Frame pointer setup and call
5 MOVQstore [SP+$-0 x10]˜8,BP ˜8
6 LEAQ BP ˜8,[SP+$-0 x10]˜0
7 CALL $runtime . duffzero +0 x11d
8 MOVQload BP˜8,[BP]˜8
9 // Modified register DI is used

10 MOVQ TMP1 ˜8,DI˜8
11 ADDQ TMP1 ˜8, $0xfffffffffffffff8 ˜8
12 MOVOstore [TMP1]˜16 , X0 ˜16

Listing 4.1: Side-effects of calls to Duffzero
might be used.

1 DuffZero [SP+$0x10]˜72

Listing 4.2: Lifted code for Listing 4.1.

1 MOVWload AX˜2,[SP+$0xa]˜2
2 MOVWload CX˜2,[SP+$0x8]˜2
3 ADDL AX˜4,CX ˜4
4 MOVWstore [SP+$0x10]˜2,AX˜2
5 RET

Listing 4.3: Addition of two 16-bit
integers. The add instruction operates on
the 32-bit registers.

instead of moves with 4-byte or 8-byte operands. We will refer to cases where the
instruction size is potentially wider than mandated by the source as widened instructions.

While this widening does not change the result (the higher part is not used), it increases
the difficulty of analysis, as the higher part of the source operands is possibly undefined.
On the other side, the canonical HGA requires instructions to only read registers in the
size they were written before. Therefore, lifting compiled Go code into the canonical HGA
requires a detection and handling of widened instructions.

The main idea to reconstruct the real size of widened instructions is to analyze the
maximum use size of the result and the minimum source size of the input operands. As,
however, uses and sources may be widened instructions as well, an iterative approach is
required, which also handles circular dependencies as they can occur in loops.

The procedure to reduce the size of (potentially) widened instructions to the real
instruction size works as follows: while widened instructions exist, we iterate over the
unhandled widened instructions. If the result of the instruction is not used, we can safely
remove the instruction. If the result of the instruction is not used by other widened
instructions, then we set the real size to the maximum size of use. If the result is used
by an widened instruction, we skip the instruction and continue. However, if in the last
iteration (over all instructions) no further information was gained, we use the minimum
size of the instructions setting the source operands, excluding widened instructions, unless
there are no such instructions. If, for some reason, the last two iterations did not provide
any information, we give up and use the large instruction size as is. This can happen if
two widened instruction mutually depend on each other, e.g. in a loop.

In addition, we have to handle the implicit zero-extension when writing 32-bit registers
in the x86-64 architecture: if the result of an instruction writing to a general purpose
register is used with a size of 8-bytes, we still limit the size of the instruction to 4-bytes.

4.3.8 Operand Sizes

The x86-64 architecture provides implicit truncations and zero-extensions of the general-
purpose registers, which have to be made explicit in the canonical HGA.

To achieve this, an appropriate conversion instruction is inserted before the use of the
register. If the original register is not used afterwards, the conversion can take in-place.

28

4.4 Argument Region Analysis

Otherwise a temporary register (TMP2 and TMP3) has to be used, as the value might be
used in a different size as well.

Basic blocks with multiple predecessors require special handling: it can happen that a
the value of a register is set in different sizes, depending on the predecessors. Therefore, the
necessary conversions must be done in the predecessors.5 For this purpose, we iterate over
the combinations of basic blocks with multiple predecessors and general-purpose registers.
If the register value is (potentially) used, we insert a SizeAssert pseudo-instruction with
the maximum size of use at the end of all preceding basic blocks. This is possible as
critical edges in the CFG were removed and the only successor of all preceding blocks is
the current block itself. After the insertion of the instructions, the conversion instructions
can be inserted as described. Finally, the pseudo-instructions are removed again as they
have no further use.

We note that this does not cover truncations which occur by loading the lower half
of an integer from memory. These cases have to be handled during the analysis when
memory disambiguation is performed.

4.3.9 Miscellaneous
In addition to the described transformations, some minor modifications are also performed.
Special sequences of instructions are replaced with a high-level instruction as in the Go
compiler. For example, the sequence add+rcr, which is used to compute the average of two
numbers, is replaced with an AVGQU instruction. Furthermore, instructions which store the
address of a type description in a register are replaced with dedicated TypePtr instructions
to explicitly identify the purpose of the instruction. Zeroing of memory regions is detected
and replaced with a special MemZero instruction to avoid the problem of finding a type
for a zero value which is used for different types. Finally, some basic simplifications of the
resulting HGA are performed: unused jumps are eliminated, extensions and truncations
are merged where possible, and unused instructions (e.g. comparisons where the jumps
have been replaced with bounds checking instructions) are removed.

4.4 Argument Region Analysis
Arguments and return values of functions are both passed on the stack in adjacent regions,
which is a rather unique strategy compared to other calling conventions of other compilers
and languages. For analyzing functions, it is therefore important to distinguish between the
argument and return region. This is a required step to infer the type of the function and
also necessary to implement analysis of function calls. In theory, there are two possible
ways to get this information: the places where the function gets called (caller-based
analysis) and the function itself (callee-based analysis).

4.4.1 Caller-based Analysis
A caller-based analysis tries to infer information from the call to a function, but suffers
from the problem that hardly any information is available. For interface and closure

5In the HGA, conversion instructions specify the target size as well as the source size explicitly.

29

4 Design

1 // This store is no direct argument ,
2 // only a pointer is passed
3 MOVQstore [SP+$0x18]˜8 ,AX ˜8
4 LEAQ AX ˜8,[SP+$0x18]˜0
5 MOVQstore [SP+$0x0],AX˜8
6 MOVQstore [SP+$0x8],$1 ˜8
7 MOVQstore [SP+$0x10],$1˜8
8 // Actual signature : func (... int)
9 CALL CX ˜8

Listing 4.4: Indirect arguments, e.g. for
variadic functions, are no explicit argument
even though they are stored and never read.

1 // Only stored to keep pointer alive
2 MOVQstore [SP+$0]˜8, CX˜8
3 CALL DX ˜8 // Real: func ()

Listing 4.5: The register CX is only stored
to keep the pointer alive and prevent early
garbage collection.

1 MOVQstore [SP+$0x8]˜8, DX˜8
2 MOVQstore [SP+$0x0],AX˜8
3 CALL CX ˜8 // Real: func(int)
4 // Is this the value stored above
5 // or a return value?
6 MOVQload DI˜8,[SP+$0x8]˜8

Listing 4.6: It is not possible to distinguish
local variables and return values

calls, not even the size of the argument and return region is known. The only available
information is the usage of the stack frame: if a part in the stack frame is written before a
call and never read afterwards (arguments can be overwritten by the callee), it is probably a
argument. However, even this basic assumption has major problems: for variadic functions,
some arguments are stored in the stack and only a pointer to these arguments is passed
to the function as argument (Listing 4.4). These variadic arguments are never read after
being written but are no explicit arguments of the called function. Furthermore, the case
that a register is spilled to the stack only to keep a pointer alive cannot be detected at
all (Listing 4.5). Additionally, there is no guarantee that the arguments are set directly
before the call: the compiler is allowed to do arbitrary transformations as long as the
correctness of the program is maintained. Thus, it can also happen that a argument is
set in a different basic block or even in a conditional branch, significantly increasing the
difficulty of analysis.

For return values, it turned out to be impossible to infer any reliable information. If a
value from the stack frame is read after the call, it can be either a return value of the
called function or a local variable of the calling function (Listing 4.6). We were not able
to find a way to distinguish these cases.

Given that the information provided by a caller-based analysis would be highly unreliable,
especially for calls where the call target is not known, we decided to not implement a
caller-based analysis of function types. When the call target is known, it seems to be
more reliable to infer information directly from the callee. For interface and closure calls,
the necessary information can be inferred from other sources, e.g. when the interface or
the closure is constructed.

4.4.2 Callee-based Analysis

The callee-based analysis infers information about arguments and returns from the access
pattern of the function and has information about the size of the argument and return
region. It is mainly based on two observations: first, all return values must be initialized

30

4.5 Basic Type Analysis

by the callee in any case and also must not be used before the initialization. Second, slots
in the argument region which can be read before being written must be arguments, as all
reads must be well-defined in Go.

While these assumptions generally lead to correct results, this analysis fails in the
unusual case that an argument is always written before it is read, i.e. used as additional
local variable. If such a region is followed by other used arguments, we can still determine
that this is a parameter because arguments and return values are not spatially mixed.
Otherwise, if these unusual arguments are located right before the return region, it turned
out to be impossible to reason about argument or return value by a simple access analysis.
It might be possible to infer information from code generation habits of the compiler, e.g.
that return values are usually written at once, either initialized in the beginning or set at
the end of the function. We did not implement such detection heuristics as they seem
to be too unreliable and note again that the compiler is free to perform arbitrary code
transformations as long as the program remains correct.

Despite that the case that the last arguments are only used as local variables is very
unlikely to occur in practice, it will also have no significant impact for further analysis: if
an unused argument is misclassified as return value, we only lose potential information
about the unused value passed as argument. There is no impact from the classification as
return value since the value will never be used.

4.5 Basic Type Analysis
The goal of the basic type analysis is to infer information about the parameter and return
types of a function, the types of local variables on the stack and the data types stored in
memory. We will only focus on basic types, e.g. integers, pointers or floating-point values,
and their flat layout in memory, but will not analyze nested structures.

Type Information Sources There are different sources for type information in the binary:

1. When type information is readily available, e.g. from a conversion to an interface
or other typed runtime calls, the analysis is eased. However, this information is
typically only partially available, and some structures may not have complete type
information at all.

2. Beside the runtime type information, calls to functions of the runtime or standard
library can provide type information as the type of these functions is known and
documented.

3. Additionally, type information can also be inferred from the instructions operating
on the value. For example, a signed comparison of two values indicates that the
values must be (signed) integers, whereas a value used as address in a load or store
instruction must be a pointer.

Approaches for Type Analysis Existing approaches for the problem of type analysis in
machine code can be mainly classified in constraint-based approaches and data-flow-based

31

4 Design

approaches. The idea of constraint-based approaches is to reduce the problem of type
analysis to a constraint satisfaction problem, where constraints are formulated for each
instruction [21,25,35]. A solution of the resulting constraint system can be solved using a
constraint solver. One problem with constraint-based analysis is that the constraint-system
can have multiple solutions, if not enough information is provided such that the resulting
types are not unique, or may be unsatisfiable, for instance if the code performs casts
which are not modeled in the constraints.

Beside constraint-based approaches, an iterative data flow based approach for type
analysis has been proposed by van Emmerik [35], focusing on finding a set of possible
types for a value. Here, each instruction restricts the set of possible types. If a value has
a type conflict, however, a type cast is inserted, contrary to a constraint-based system
which would be unsatisfiable in this case.

Type Analysis of Go Functions For the type analysis of compiled Go functions, we
decided to use a constraint-based approach. As Go has a strong but simple type system
with very few unsafe type casts, the main advantage of a data flow based approach seems
to be not really relevant. In general, we found that the type analysis can be performed in
a more straight-forward manner using constraints, as there is no need for complex analysis
passes since the analysis is performed implicitly when finding a feasible solution for the
constraint set. For example, the maximum dereference offset of a pointer can be simply
modeled as variable in the constraint-system.

Furthermore, the Go compiler uses the stack heavily for local variables, and also locates
variables or temporary values of different types in the same stack location. While in a
constraint-based setting this fact can be modeled by allowing stores to the stack to change
the type of the destination, an analysis of the stack frame would have to be performed
manually in a data flow based setting. This critical analysis step, however, has been left
as future work by van Emmerik [35].

Finally, a constraint system seems to be more flexible for analysis of multiple functions:
for inter-procedural type analysis, the constraints of each function can be put in a single
constraint system, whose solution may also infer information which could not be inferred
from the analysis of a single function.

It turned out that a constraint-based approach for type analysis of Go programs has
major deficiencies in terms of performance and in terms of modeling of arrays, slices and
other compound types. We will discuss these in Section 4.5.3 in more detail.

Implementation Remark: We formulate the constraints for the type analysis in the
SMT-LIB 2.6 language [3] with the addition of the proposal for sequence data types [5].
As solver we used Z3 [11] version 4.5 as it supports the used constraint formulations, most
notably the sequence types, sufficiently well and also has Python bindings available.6

6See: https://pypi.python.org/pypi/z3-solver, accessed 2017-07-22

32

https://pypi.python.org/pypi/z3-solver

4.5 Basic Type Analysis

4.5.1 Type Model

In our analysis, we distinguish between numeric types, pointer types and pseudo types.
Numeric types include integers with sizes of 8-bits, 16-bits, 32-bits and 64-bits as well as
floating-point numbers in 32-bit and 64-bit sizes. Note that we do not distinguish between
signed and unsigned types to simplify the resulting constraint system as this information
is not visible in machine code since hardware is agnostic of the sign. Integers can always
be casted between the corresponding signed and unsigned type.

For pointer types, we not only distinguish between the type of the target object, but
also the kind of the pointer:

• Data Pointers are pointers to a fixed-length sequence of types, where each type
in the sequence represents one byte of memory. Load and store operations can be
performed on the target object, but the type of the pointer cannot change.

• Function Pointers are pointers to the actual address of a function, contrary to
the Go type system, where a function pointer is actually a pointer to a structure
with the address being at the beginning. They can only occur in a load from an
interface table or on a closure call. We model function pointers as two fixed-length
sequences: one sequence stores the type of the arguments while the other sequence
stores the return types.

• Type Pointers and Interface Table Pointers (Itab Pointers) are either used as
argument to a runtime function, e.g. a map access, or as first part of an interface. If
they are used outside of the stack, they must be succeeded by an interface pointer.

• Interface Pointers are pointers to the value of an interface. In contrast to data
pointers, these cannot be dereferenced directly but must be converted to a data
pointer first using the associated type information.

The type of the FLAGS register is modeled as separate flag pseudo-type, which can
be the result of a numeric or pointer comparison. Finally, there exists a special dead
pseudo-type, which indicates that a memory location may not be accessed directly. For
example, the seven bytes which directly follows the first byte of a pointer will never be
accessed directly as it has no valid value in the Go type system.

To allow recursive type definitions, pointer and function pointer types do not store the
type sequences directly but only reference a type id, which is mapped to the actual type
sequence.

We note that compound types, i.e. interfaces, slices and complex numbers, are not
modeled directly but as their individual components, because the components are used
as different variables internally and can be stored arbitrarily in the stack frame of the
function. As we currently do not track relationships of compound types, we potentially
lose information, especially when interfaces are constructed without runtime calls. We
leave the analysis of interfaces and slices as future work.

33

4 Design

4.5.2 Constraints
In the following, we will describe the strategy for the generation of constraints for a
function. A complete example can be found in Figure 4.5.

Registers

We constrain registers to only contain types of the same size as the use of the register.
For example, a 64-bit general purpose register can contain 64-bit integers and all kinds
of pointers whereas a general purpose register accessed with a size of 32-bits can only
contain 32-bit integers. The flags type can only be used by the flags register and the
dead pseudo-type must not occur in used registers. If the value of a register has multiple
sources when it is accessed, we require all sources to have the same type, as there are
no implicit conversions between the basic types and all conversions between integers are
explicit in the HGA.

Floating-point Values

As described in Section 3.7.2, beside memory moves, floating-point values are only processed
using the SSE registers, which in turn only process floating-point values. This allows for a
straight-forward generation of constraints for these registers.

Assumption 1 Floating-point values are only stored in SSE registers and in memory,
except for memory moves. Additionally, SSE registers accessed in sizes of 4-bytes or
8-bytes are only used for floating-point values.

Assumption 2 Floating-point constants are always loaded from a section of the binary.

Immediate Operands

Non-zero immediate operands of instructions are always treated as integers. For a constant
zero, we cannot infer any type information, as the zero value is valid for all types. As a
consequence of Assumptions 3 and 2, the problem of typing constants described by van
Emmerik [35] does not occur when analyzing Go programs.

Assumption 3 All variables, constants and functions are always referenced via RIP-
relative addressing and not referenced by an immediate address, even for binaries linked to
a fixed position, cf. Section 3.7.2.

Memory

When a register is loaded from memory or stored to memory, the first byte is required to
be the type of the register while the remaining bytes must be dead. As an exception, we
need to allow implicitly truncating loads from integer types in memory. This is reasonable
as the Go compiler (currently) does not access higher bytes of a basic type. Additionally,
a pointer can be transformed implicitly into an interface pointer. As, however, the only
way for such a pointer to leave the scope of the function is a store to memory, we only

34

4.5 Basic Type Analysis

allow this conversion to happen on a store instruction. For storing non-zero immediate
operands we apply the same handling as for storing registers.

Assumption 4 When loading from memory, a type is either read completely or may be
truncated to a lower part if the type is an integer.

Assumption 5 Conversions of pointers to interface pointers can only occur on a store
to memory as this is the only way the implicitly converted value can leave the scope of the
function.

Assumption 6 If a type or interface table pointer is loaded from or stored in non-stack
memory, it must be immediately succeeded by an interface pointer. This does not apply
for stack memory, see below.

Stack Memory

A proper modeling of the stack frame in constraints is a difficult problem as the region of
local variables in the stack frame does not have a fixed type. Moreover, the components of
interfaces, slices and strings can be placed anywhere in the stack frame or may be partially
eliminated. For example, the arguments of called functions have different types, multiple
temporary variables of different types may be spilled to the same address and the capacity
of a function-local slice may not exist at all if it is never used. Therefore, we make some
assumptions on the usage of the stack frame before we can formulate constraints.

Assumption 7 Every direct store to the stack can change the type of the stack frame,
except for the argument region, which type is fixed.

Assumption 8 Every region of the local stack frame is initialized using a direct store
before it is used.

Whenever a pointer to the stack is taken (using a LEAQ instruction), the target of
the pointer is initialized with the correct type, e.g. using a move or zero instruction, as
memory is strongly typed and references to uninitialized memory cannot occur in Go. The
type of the stack region pointed to cannot change during the lifetime of the pointer.

Exceptions (Runtime Functions): Some runtime functions take a buffer of a fixed
size to store their result if the buffer is non-nil and large enough. If the compiler proves
that the result of such a function call does not escape the stack, it allocates such a buffer
on the stack and passes the pointer without initialization. These cases have to be handled
individually.7

Exceptions (Older Versions): Older versions of the Go compiler occasionally initial-
ize the stack region indirectly using the constructed pointer. These cases need a work-around
in the constraint system.

7Affected runtime functions are: intstring, slicebytetostring, stringtoslicebyte,
slicerunetostring, stringtoslicerune, concatstring, chanrecv2

35

4 Design

We will discuss Assumption 8 in Section 4.5.3 in more detail, but already note here
that this assumption holds in many cases, but does not hold in the general case.

In the resulting constraint system, we model the argument/return region as a single
sequence of types with byte granularity, in the same way we model the target of normal
pointers.

Implementation Remark: For the local variables, we cannot do this as the type can
change, contradicting the immutability of sequences. Therefore, starting from an initial
type sequence for the stack frame, we get a new type sequence on every direct store by
replacing the affected region with the type of the source operand. For all subsequent loads
or address-taking operations (i.e. LEAQ), we use the new sequence (per Assumption 8)
until another direct store occurs.

If a basic block has more than one predecessor, the stack frame types of these predecessors
may differ, e.g. by different temporary variables stored at the same location. Thus, as
the type sequence has byte granularity, we require for each byte that the type of all
predecessors is equal or that, if the type differs, the type of this byte in the merge block is
dead, i.e. unusable. We note that this construction leads to a massive amount of additional
constraints for functions with a more complex control flow.

A direct load from the stack frame is handled in the same way as a load from any other
memory is handled, that is, we add a constraint ensuring that the type of the loaded value
must be equal to the type of the last store to that offset in the stack frame.

A LEAQ from the stack frame extracts a sub-sequence from the current type sequence of
the stack with a variable length and uses this as sequence for the resulting pointer type.
We note that we lose type information as we do not track this information for subsequent
stores. We could do this since the type of the region in the stack frame cannot change
as long as the pointer is valid, this is left as future work. We additionally note that this
handling of LEAQ instructions is solely based on Assumption 8.

The work-around for the exception of Assumption 8 for older Go version consists in
allowing the stack frame to have an arbitrary type in the beginning instead of forcing all
bytes to be dead.

Instructions

For most instructions, the operand types are intrinsic to the instruction type. For example,
a sign-extension or multiplication will always operate on integers while a NilCheck
instruction will only operate on pointers. For move instructions, we can only require that
the types of source and destination are equal. Three instruction types, however, require
special handling: additions of pointer-sized values, zero-extensions of a constant zero and
function calls.

Pointer-sized Additions A pointer-sized addition can be either the addition of two
integers or the computation of a new pointer with an offset to an existing pointer, i.e. the
addition of a pointer and an integer. If one addend is a constant, it must be an integer
per Assumption 3 and the other addend can be either an integer or a pointer. In case of

36

4.5 Basic Type Analysis

1 func foo(a *int , b int) int {
2 return *a - b
3 }

(a) Source of the Go function foo

1 481 b50 <main.foo >:
2 481 b50: mov rax , [rsp +0x8]
3 481 b55: mov rax , [rax]
4 481 b58: mov rcx , [rsp +0 x10]
5 481 b5d: sub rax , rcx
6 481 b60: mov [rsp +0 x18], rax
7 481 b65: ret

(b) Disassembly of foo

1 Block @ 0x0
2 0: GetSP SP˜8
3 1: GetBP BP˜8
4 2: GetClosurePtr DX˜8
5 3: MOVQload AX˜8,[SP+$0x8]˜8
6 4: MOVQload AX˜8,[AX]˜8
7 5: MOVQload CX˜8,[SP+$0x10]˜8
8 6: SUBQ AX˜8,CX˜8
9 7: MOVQstore [SP+$0x18]˜8,AX˜8

10 8: RET

(c) HGA representation of foo, address
markers omitted

1 (declare -sort TyID 0)
2 (declare - datatypes () ((Ty (dead) (i8) (i16) (i32) (i64) (typeptr) (itabptr)
3 (ifaceptr) (ptr (pointee TyID)) ...)))
4 (declare -fun tyidfunc (TyID) (Seq Ty))
5 ; ... (Further declarations omitted)
6 (assert (= (seq.len fnargs) 24))
7 ; Block 0x0 , Instruction 3
8 (assert (= (seq. extract fnargs 0 8) [AX_0_3 7* dead]))
9 (assert (=> (or (is - typeptr AX_0_3) (is - itabptr AX_0_3))

10 (= (seq. extract fnargs 8 1) [ifaceptr])))
11 ; Block 0x0 , Instruction 4
12 (assert (is -ptr AX_0_3))
13 (assert (>= (seq.len (tyidfunc (pointee AX_0_3))) 8))
14 (assert (= (seq. extract (tyidfunc (pointee AX_0_3)) 0 8) [AX_0_4 7* dead]))
15 (assert (=> (or (is - typeptr AX_0_4) (is - itabptr AX_0_4))
16 (= (seq. extract (tyidfunc (pointee AX_0_3)) 8 1) [ifaceptr])))
17 ; Block 0x0 , Instruction 5 (omitted , similar to instruction 3)
18 ; Block 0x0 , Instruction 6
19 (assert (and (is -i64 AX_0_4) (is -i64 CX_0_5) (is -i64 AX_0_6)))
20 ; Block 0x0 , Instruction 7
21 (assert (or (= (seq. extract fnargs 16 8) [AX_0_6 7* dead])
22 (and (is -ptr AX_0_6)
23 (= (seq. extract fnargs 16 8) [ifaceptr 7* dead]))))
24 (assert (=> (or (is - typeptr AX_0_6) (is - itabptr AX_0_6))
25 (= (seq. extract fnargs 24 1) [ifaceptr])))

(d) Excerpt of the resulting constraint system. Sequences are represented in a pseudo-code notation
using square brackets for readability. Each load and store ensures that interfaces are always stored
as a compound of type or interface table pointer and the actual data pointer. A store allows an
implicit conversion of a pointer to an interface data pointer.

1 (define -fun tyidfunc ((x!0 TyID)) (Seq Ty)
2 (ite (= x!0 TyID!val !0) [i64 7* dead typeptr itabptr] []))
3 (define -fun fnargs () (Seq Ty) [(ptr TyID!val !0) 7* dead i64 7* dead i64 7* dead])
4 (define -fun AX_0_3 () Ty ptr(TyID!val !0))
5 (define -fun AX_0_4 () Ty i64)
6 (define -fun CX_0_5 () Ty i64)
7 (define -fun AX_0_6 () Ty i64)

(e) One solution of the constraint system. Note that the sequence for the pointer target TyID!val!0
is longer than required and contains two invalid type entries after the used bytes.

Figure 4.5: Example of constraint-based analysis of basic types on a simple function.

37

4 Design

a pointer, the target is also a pointer where the type sequence of the source pointer is
shifted by the number of bytes given by the constant.

When both operands are registers, there are three possibilities: either all sources
and destinations are integers, or exactly one source operand is a pointer, implying that
the destination is also a pointer [25]. For pointer additions, we currently do not infer
information about the types of the target object as we do not analyze the integral operand.
Further analysis could be performed using a Value Set Analysis [1, 21,28].

Assumption 9 Pointers are only modified using additions with a (bounded) positive
integer unless the unsafe package is used. Special cases of subtractions are handled during
the lifting into the canonical HGA.

Zero-Extension A special case is the constant value zero, which can be used as integer
and nil-pointer alike. Thus, it can also happen that a register containing the value zero
is zero-extended to the pointer size and used for a comparison with a pointer. Therefore,
we need to allow nil-pointers to have an origin in the MOVLQZX instruction.

Function Calls A function call in Go essentially behaves like a combined load and store
on the stack. The lowest part of the stack frame must be equal to the argument sequence
of the type of the function (load). The return part, which follows immediately after the
arguments, is replaced with the return types of the function, like a store to the stack
frame.

If the target of the call is known (i.e. a StaticCall), we know the size of the argument
region and also have information about the size of the argument and return parts of
that region per the analysis described in Section 4.4.2. In this case, we can also restrict
the sizes of the argument and return sequences of the function type, if the type is not
already known by other means. For indirect calls (InterCall, ClosureCall), the size of
the argument region is not directly known but left as variable in the constraint system.

Calls to Runtime Functions A special case of call targets are runtime functions. Not
because they have special calling conventions (these functions were already eliminated
when lifting to the HGA), but because the signature of the function is known, and, most
importantly, some runtime functions also have type information as arguments, as noted
in Section 3.7.6. For example, a call to the function runtime.newobject, which takes
the type of the object to create as its only argument and returns a pointer to a newly
allocated object of the given type, allows to correctly specify the type of the return value
as the address of the type is always known for compiler-generated calls to this function.8

In addition to this, the functions which might have special buffers as arguments require
a special handing (see Assumption 8).

Unhandled Cases

There are some cases and language constructs which are not properly handled by the
constraint generation procedure. Running pointers in a loop, as they can occur in a

8Non-compiler generated calls to such functions can only occur in the runtime or reflect package.

38

4.5 Basic Type Analysis

for-range loop, will currently lead to an unsatisfiable constraint system, because sequences
in Z3, which we use to model memory, can only have a finite length. A running pointer in
a for-range loop, however, would have to be an infinite repetition of the element type as
the iterable might be unbounded. This type of pointer arithmetic has to be detected by a
separate analysis. Type assertions and type switches are currently not supported as we
do not track the relation of the interface value and the corresponding type field.

Additionally, slices, arrays and, to a lesser extent, strings are only supported in a way
that the resulting constraint system is satisfiable, but excluding a significant amount of
available type information as pointer additions with non-constant values are not properly
handled (see the following section).

4.5.3 Problems

During the design and implementation of a constraint-based type analysis, we encountered
several problems and difficulties. While some of these problems can be solved by additional
analysis prior to the constraint formulation, other problems are inherent to a constraint-
based type analysis.

Pointers to Stack Memory We currently assume that a LEAQ into stack memory only
points to well-defined stack regions and that the type of the stack region cannot change
during the lifetime of the pointer (Assumption 8). As sequences are immutable in Z3, we
assign the type of the target region on the stack at the time of the LEAQ as target type of
the new pointer.

However, as a LEAQ instruction is only arithmetic and independent of the memory
operations, the compiler might also choose to emit the LEAQ instruction before the target
region is initialized. Moreover, the compiler is also allowed to use the same address of stack
memory for different types for the same reason. Although we have not observed these
optimizations so far, the compiler can (in theory) perform such optimizations, implying
that the assumption may not hold.

The problem can be solved by evaluating the result of LEAQ instructions lazily: instead
of evaluating the type of the new pointer at the time of the LEAQ instruction, the type
can be evaluated when the pointer is actually used. This, however, requires to store and
propagate the information along with the pointer. As the pointer, however, can also be
stored in the stack frame9, a complete analysis of the stack frame would be required before
the formulation of constraints.

Arrays and Slices The described approach is not able to model arrays, which have a
known length, and slices, which essentially are an array with a potentially non-constant
length, properly. In addition to an increased modeling complexity, support for arrays also
requires quantifiers to apply type information for all elements equally. Z3 currently does
not support quantifiers for general sequences10. Thus, to include arrays in the described
(simple) type systems, major changes are required. Distinguishing the address of single

9Pointers to the stack can only be stored on the stack or in registers.
10https://github.com/Z3Prover/z3/issues/1235, accessed 2017-08-28

39

https://github.com/Z3Prover/z3/issues/1235

4 Design

elements from sub-slices requires a special analysis tracing the individual components of
slices (or compound types in general) for an appropriate result. In addition, an array can
become the data pointer of a slice at any point, just as a pointer can become an interface
pointer. This has to be handled separately.

Ambiguity In cases where a value is not uniquely defined, the constraint solver can
choose any value which satisfies the constraint system. For example, if a member of
a structure is never dereferenced and the type cannot be inferred by other means, a
constraint solver can also choose invalid types including mis-aligned pointers. For indirect
function calls, where the size of the argument/return region is not known but left as open
variable, the constraint solver can easily choose to define the function type as function
with no arguments but a return region size filling the entire stack frame. While this
obviously does not make sense in most cases, we cannot disallow this entirely as it is
theoretically possible.

Experience shows that this kind of ambiguity is rather common in the constructed
constraint systems and is inherent to type analysis solely based on constraints. The
ambiguity of constraint systems can be reduced by performing an inter-procedural analysis
leading to more constraints, but not removed entirely for reasons explained earlier.

Unsafe Casts For the constraint formulation, we excluded unsafe casts between pointers
and integers. When the original program uses unsafe pointer arithmetic, the generation
strategy might yield an unsatisfiable constraint system. If we decided to model these
casts by allowing the conversion at any time, we would end up with almost no additional
information of the analysis with a very high probability: the constraint solver is likely use
these casts heavily as this greatly simplifies the solution – values are casted to pointers if
they are used as address right before the dereference and otherwise typed as integers.

Performance A major deficiency of the described constraint-based approach is the
required time to solve the constraint system. While performance is in general only a
secondary aspect in program analysis, the time required for analysis should be still in
reasonable limits. We found that for functions with a non-trivial control flow (i.e. multiple
basic blocks with more than one predecessor) and a larger stack frame size, which is rather
common for Go functions, the analysis requires multiple hours or even days to terminate.

One major reason for this are the constraints which are required to unify the stack
frame types at merge blocks, where we currently generate one constraint per byte of the
stack frame. As each of these constraints has two possibilities (either type equality or
dead), the size of the search space grows exponentially with the size of the stack frame
and the complexity of the function. Another source for the increasing complexity is the
implicit conversion of pointers to interface pointers, which can happen at every MOVQstore
instruction.

Debugging Another difficulty of a constraint-based approach is debugging. Due to the
performance problems described above, even testing minor changes can take a very long
time. More importantly, however, is the debugging of unsatisfiable constraint systems: if a

40

4.5 Basic Type Analysis

constraint system does not have a solution, it is possible to retrieve a subset of constraints
which proofs the unsatisfiability (the unsat core). Depending on the complexity of the
function, this might include hundreds of constraints, significantly increasing the difficulty
for a human analyst to understand the underlying problem.

41

5 Evaluation

In the previous chapter, we proposed a strategy to extract metadata from Go binaries,
an intermediate representation and an analysis to recover the types of functions. After
describing the sample binaries, we evaluate the presented techniques on these binaries
and depict our results. Finally, we will discuss our findings in the context of a practical
application.

5.1 Targets
For our evaluation, we will use four different binaries, namely the standard library where
the source is known and three unknown binaries. An overview of the size of specific
sections of the used binaries is shown in Table 5.1.

Standard Library As main target of the evaluation of the described lifting and analysis
procedure, we will use the Go standard library of Go 1.8 compiled for x86-64. The
standard library is well-suited for this purpose, because it contains functions from a variety
domains and with different complexity, including cryptographic functions, compression
algorithms, serialization, string formatting, basic image processing, a complete HTTP
stack and a parser for Go code.

In the following, when referring to the term standard library, we will exclude wrapper
functions and functions written in assembly. We additionally exclude special package
initialization functions and the runtime package, as some functions to which calls are
usually generated by the compiler are also called in other contexts. For example, calls
to write barrier functions can occur in other contexts than the usual compiler-generated
contexts. Consequently, we also exclude functions of the reflect package which are actually
defined in the runtime package and only named as functions of the reflection package.

Table 5.1: Sizes of the binaries used for the evaluation and the sizes of specific sections of these.
From the included metadata, the pclntab containing information about the functions as well as
the Runtime Type Information (RTTI) significantly contribute to the size of the binaries. As the
standard library is a shared object and therefore contains position-independent code, it additionally
includes relocations.

Total Code Pclntab RTTI Relocations DWARF

libstd 36.85 MB 6.22 MB 2.71 MB 4.06 MB 5.34 MB 12.86 MB
Goversing 1.96 MB 0.59 MB 0.30 MB 0.18 MB – 0.67 MB
lets go 1.85 MB 0.58 MB 0.30 MB 0.18 MB – 0.57 MB
Lady 8.24 MB 3.91 MB 1.41 MB 1.64 MB – –

43

5 Evaluation

For the purpose of this analysis, the standard library was compiled as a shared library
without inlining.1

Unknown Binaries In addition to the standard library, we apply our tools on three
binaries where the original source is not available. The first binary is the malware Lady
(also referred to as Golad) for Linux (x86-64), which can send information to a command-
and-control server, start programs to mine cryptocurrencies and also replicate itself on
other computers reachable via network2. The binary has does not contain ELF symbols
information or debug information.

The second binary is the Goversing task from the Capture-The-Flag competition
Codegate 2017 prequals3, which is also a Linux binary for the x86-64 architecture. This
binary basically asks for a user name and a password, checks both values using a special
routine, and prints a flag if the input is correct.

As third binary, we use the lets go task from the Capture-The-Flag competition Tokyo
Westerns CTF 2017 4. This binary is also a reverse engineering challenge for Linux (x86-64),
asking for a password and subsequently for the flag, which are both verified using custom
procedures. We used our developed tools to solve this challenge during the competition.

5.2 Setup
The analysis was performed on machine equipped with two Intel Xeon E5-2687W v3
processors clocked at 3.10 GHz and 500 GiB memory running Ubuntu 16.04 (64-bit)
with Python 3.5.2 and Z3 master, commit 799fb4a, dated 2017-08-24. We note that the
analysis was not performed on a dedicated system and only performed once, implying that
the running times only serve as indicators of magnitude. In addition, we limited the CPU
time to 5 hours and the usable memory to 8 GiB for the type analysis of each function.
These limits appear reasonable in order to provide a significant benefit compared to a
manual analysis.

To work around a bug5 in the Z3 constraint solver, we extracted the generated constraints
and solved them separately using the z3 command line tool. Furthermore, we disabled
the generation of unsatisfiability cores for performance reasons.

5.3 Results
5.3.1 Metadata Extraction
The extraction of the meta information about functions, the type information and the
module data structure using the described procedure turned out to work quite well on
all four binaries and the resulting data did not contain inconsistencies. We additionally
verified some random samples of the standard library manually.

1Compilation command: go install -buildmode=shared -gcflags -l std
2https://vms.drweb.com/virus/?_is=2&i=8400823, accessed 2017-09-04
3Website is not available as of 2016-08-20.
4https://score.ctf.westerns.tokyo/?locale=en, binary available after login, accessed 2017-09-02
5https://github.com/Z3Prover/z3/issues/1234, accessed 2017-08-26

44

https://vms.drweb.com/virus/?_is=2&i=8400823
https://score.ctf.westerns.tokyo/?locale=en
https://github.com/Z3Prover/z3/issues/1234

5.3 Results

For the standard library and the non-stripped Goversing and lets go binaries the
runtime symbol information and the address of the module data structure were found
using symbols. In the stripped Lady binary the runtime symbol information was found
using the signature-based approach. The information about function names, file names
and line numbers was still present and consistent for the three binaries.

We manually verified the compiler version identification by ensuring consistency of the
module data structure with the binary layout and additionally compared of some runtime
functions with a known binary. The compiler of the Goversing binary and the lets go
binary was correctly identified to be Go 1.7 and Go 1.8, respectively. For the Lady binary
the version was detected as Go 1.5–1.6 (is Go 1.6).

It was also possible to extract the type information from both binaries. During later
analysis, however, it turned out that for the Lady binary 165 types from the 7850 types
in total were not extracted automatically for reasons described in Section 4.1.3. The
addresses of these types had to be specified manually. From the Goversing and lets go
binaries all used type information were extracted successfully.

This extracted symbol information also reveals information about used third-party
libraries via the naming convention for Go functions: while the Goversing and lets go
binaries only use the standard library, the Lady binary makes use of seven external open
source libraries. The metadata indicates that the following external libraries are used:

• github.com/kardianos/service6, a package to install operating system services

• github.com/naoina/toml7, a package to parse and encode TOML8

• github.com/naoina/go-stringutil9, string utilities

• github.com/parnurzeal/gorequest10, an HTTP client

• github.com/shirou/gopsutil11, a library to get information about running pro-
cesses

• github.com/garyburd/redigo12, a client for Redis databases

• golang.org/x/crypto/ssh13, an SSH client

Using this information and the association of file names and functions, we were able to
reveal the functions and data types which provide the essential functionality of the binary.
For both unknown binaries, we will focus on the unknown functions (Goversing: 8, lets go:
8, Lady: 30) and data structures (Goversing: 1, lets go: 0, Lady: 6) in the following,
because the source of the other functions is publicly available.

6https://github.com/kardianos/service, accessed 2017-08-20
7https://github.com/naoina/toml, accessed 2017-08-20
8Tom’s Obvious, Minimal Language, https://github.com/toml-lang/toml, accessed 2017-08-20
9https://github.com/naoina/go-stringutil, accessed 2017-08-20

10https://github.com/parnurzeal/gorequest, accessed 2017-08-20
11https://github.com/shirou/gopsutil, accessed 2017-08-20
12https://github.com/garyburd/redigo, accessed 2017-08-20
13https://godoc.org/golang.org/x/crypto/ssh, accessed 2017-08-20

45

https://github.com/kardianos/service
https://github.com/naoina/toml
https://github.com/toml-lang/toml
https://github.com/naoina/go-stringutil
https://github.com/parnurzeal/gorequest
https://github.com/shirou/gopsutil
https://github.com/garyburd/redigo
https://godoc.org/golang.org/x/crypto/ssh

5 Evaluation

All relevant functionality of the Goversing binary is contained in the package main. In
addition to the functions, the package contains a single custom data structure User, which
has two string fields for the name (id) and password (pw). Also for the lets go binary all
notable functionality is included in the main package, but no custom structure types are
used. The remaining packages of the Lady binary are named main, attack, ipip, minerd,
redis and super. All six custom data structures are defined in a separate package st.
Reasoning from the names of the structures, they contain mostly configuration data, e.g.
a version and URL for updates and a list of rules for IP addresses.

5.3.2 Code Lifting

All Go functions of the standard library and all functions of the Goversing and lets go
binaries (excluding runtime functions) were lifted successfully into the canonical HGA
using the described procedure. An example for the result of the lifting procedure applied on
a function from the lets go binary can be found in Figure 5.1. This example demonstrates
the advantage of the HGA: the elimination of the stack frame setup, which contains
the conditional call to the stack enlargement routine, combined with the analysis and
simplification of memory operations involving Duff’s device as well as bounds checks not
only simplifies automated analysis, but also supports a human analyst in understanding
the relevant functionality.

From the Lady binary which uses Go 1.6, all unknown function were lifted successfully
and no artifacts from the code generation procedure of that version were observed. Some
other functions of external libraries, however, could not be lifted as they contain memory
moves involving the std, cld and movsq instructions. These instructions are currently
not handled, cf. Section 4.3.2.

5.3.3 Argument Region Analysis

Standard Library To verify the argument region analysis strategy described in Sec-
tion 4.4.2, we compare the results of our analysis with the signature of the original
function for all standard library functions. Therefore, we patched the compiler to ad-
ditionally emit the offsets and sizes of the parameters and results of the functions and
compared the results.

However, a simple comparison turned out to be insufficient for multiple reasons: first,
function parameters are not necessarily used, implying that our analysis is not capable to
find these arguments. Hence, we only require that the set of bytes identified as parameters
must be a subset of the actual parameter bytes. Second, structures may contain holes
as a consequence of alignment. These holes might not be written in return values; for
simplicity we resorted to a manual analysis of these cases. Third, if a function does not
return at all (e.g. by calling panic unconditionally), the return values are never written.
In this case, our analysis is obviously unable to find written return values. Thus, we
exclude the analysis of return regions for functions which do not return ordinarily.

With the described limitations, we found that the analysis of the argument region for
parameters and results of the function gives correct results, and note that these limitations
have no significant impact for further analysis of any kind.

46

5.3 Results

1 491 a80: mov rcx ,fs :[-8]
2 491 a89: lea rax ,[rsp -0 x88]
3 491 a91: cmp rax ,[rcx +0 x10]
4 491 a95: jbe 0 x491b86
5 491 a9b: sub rsp ,0 x108
6 491 aa2: mov [rsp +0 x100],rbp
7 491 aaa: lea rbp ,[rsp +0 x100]
8 491 ab2: lea rdi ,[rsp]
9 491 ab6: lea rsi ,[rip +0 x3ab83]

10 491 abd: mov [rsp -0 x10],rbp
11 491 ac2: lea rbp ,[rsp -0 x10]
12 491 ac7: call runtime . duffcopy +0 x2a0
13 491 acc: mov rbp ,[rbp +0x0]
14 491 ad0: mov rax ,[rsp +0 x110]
15 491 ad8: mov rcx ,[rax +0x8]
16 491 adc: mov rdx ,[rax]
17 491 adf: test rcx ,rcx
18 491 ae2: jbe 0 x491b7f
19 491 ae8: movzx ecx ,byte ptr[rdx]
20 491 aeb: mov rdx ,[rsp +0 x120]
21 491 af3: mov rbx ,[rsp +0 x118]
22 491 afb: xor esi ,esi
23 491 afd: cmp rsi ,0 x20
24 491 b01: jae 0 x491b5a
25 ...
26 491 b7f: call runtime . panicindex
27 491 b84: ud2
28 491 b86: call runtime . morestack_noctxt
29 491 b8b: jmp 0 x491a80

1 Block @ 0x0
2 0: GetBP BP˜8
3 1: MoreStack
4 --- 0 x491aa2 SP:0 x108
5 2: MOVQstore [SP+$-0x8]˜8, BP ˜8
6 3: MemMove [SP+$-0 x108]˜256 ,
7 [SB+ $0x4cc640]˜256
8 4: MOVQload AX˜8,[SP+$0x8]˜8
9 5: MOVQ TMP1 ˜8,AX˜8

10 6: ADDQ TMP1 ˜8, $0x8 ˜8
11 7: MOVQload CX˜8,[TMP1]˜8
12 8: MOVQload DX˜8,[AX]˜8
13 9: CheckIndex $0x0 ˜8,CX˜8
14 10: MOVBload CX˜1,[DX]˜1
15 11: MOVQload DX˜8,[SP+$0x18]˜8
16 12: MOVQload BX˜8,[SP+$0x10]˜8
17 13: MOVL SI˜4, $0x0 ˜4
18 14: MOVLQZX TMP2 ˜8,SI˜4
19 15: CMPQ TMP2 ˜8, $0x20 ˜8
20 16: JAE $0x11 ˜8, $0xb ˜8
21 ...

(a) (above): The first basic block of the
function lifted to the HGA. Note that SP
is no longer modified.

(b) (left): Excerpt of the original assem-
bly code.

Figure 5.1: Comparison of original assembly code and lifted HGA representation of the function
main.f1151e71905f3d94b49b0 of the binary lets go. The stack frame setup including the condi-
tional stack switch is removed, the memory move via Duff’s device is compressed into a single
instruction and the bounds check is explicit.

47

5 Evaluation

Table 5.2: Overview of the results of the constraint-based type analysis. Not all functions were
analyzed, the number of selected functions and functions in total is indicated next to the name
of the binary. Only Sat represents a successful analysis, the other cases are different reasons for
failures. For unhandled functions the type constraints could not be generated, e.g. by incomplete
handling of runtime type information.

Sat Unsat Unknown Time Memory Segfault Unhandled

libstd (4415/8950) 3925 90 32 200 3 44 121
Goversing (8/1831) 4 2 – 2 – – –
lets go (8/1810) 5 3 – – – – –
Lady (30/8468) 12 7 – 7 – 1 3

Unknown Binaries For the unknown binaries, this approach of verification is not feasible.
We resorted to a manual analysis and verified correctness.

5.3.4 Type Analysis

For the evaluation of the basic type analysis based on constraints, as described in Sec-
tion 4.5, we generate and solve type constraints on a per-function basis. We did not
perform an inter-procedural analysis as we do not expect meaningful results after a
reasonable amount of time given the issues raised in Section 4.5.3.

Standard Library Due to limitations of the constraint system and current implementation
(see Section 4.5.3), we perform the analysis only on a subset of the runtime functions.
Specifically, from the 8950 top-level functions in total, we excluded all functions employing
indexing and slicing operators, for-range loops, type assertions and type switches as well
as closure or interface calls. Moreover, we exclude variadic functions, which are basically
functions with a slice as parameter, and function which mostly (> 70%) consist of MOVQ
instructions, as we do not expect to infer any useful information. This leaves 4415 standard
library functions for our type analysis.

Unknown Binaries For the three unknown binaries, we apply our type analysis only on
the unknown functions.

An overview of the results can be found in Table 5.2. The segmentation faults in
the constraint solver are caused by an assertion failure, we reported this issue to the
Z3 developers.14 For functions marked as unhandled no constraint system could be
generated, the reason for all cases was a missing lowering of some types of the runtime
type information into flat types.

14https://github.com/Z3Prover/z3/issues/1233, accessed 2017-08-27

48

https://github.com/Z3Prover/z3/issues/1233

5.3 Results

Successful Analysis

Standard Library An proper analysis of the cases where a type assignment is found turned
out to be a rather difficult problem, especially as functions are analyzed independently
of each other. Automating the analysis was not possible because unused values or parts
of structures can have any value (cf. Section 4.5.3) and a detection of these cases would
either impose a huge analytical effort or based on weak heuristics. Given the other
structural problems of the described and implemented constraint-based approach we will
only perform a manual analysis of some selected functions with different complexity from
different packages. Examples for the results of the type analysis are shown in Table 5.3.

Trivial functions (see 5.3a) without parameters and results which only consist of a
return statement are analyzed correctly. Also functions having integers as parameters
and return values are analyzed correctly, if the value is actually used. For example, when
an argument is modified using a bitwise operation with a constant (Table 5.3b) or two
arguments are subtracted from each other (Table 5.3c), the result is correct.

However, whenever a structure or the argument and return region contains alignment
holes or unused entries, these parts are filled with arbitrary types. These are not necessarily
valid as no constraints are imposed on them. Thus, the resulting type sequences can
contain floating-point values or unaligned pointers with a size of one byte. A detection of
this cannot be automated in every case: an 8-bit integer, for example, is valid at every
position. This issue appears for almost all functions, examples are shown in Table 5.3b-e.

When a string is only compared byte-wise but never used otherwise as string (e.g. as
parameter to another function), the string data can also be classified as byte array instead
(Table 5.3d). This can be fixed by tracking the relationship of the string length with the
string data, see Section 4.5.3. Otherwise, strings are correctly identified as such using the
association of the type id with the runtime type information. In the case that entries of
memory sequences are only used with move instructions, it can happen for pointer-sized
types that the type is assigned wrongly, for example an integer instead of a regular pointer
(Table 5.3e) or a function pointer instead of an integer. Except for plain memory moves,
floating-point types are correctly classified (Table 5.3f), mainly because they employ
different instructions compared to integer and pointer types.

Beside the cases of insufficient information and the ambiguity of unused values, the
available type information is used and the resulting information is generally correct.

Unknown Binaries We observe that only simple functions could be analyzed successfully.
Package initialization functions, whose signature is known to have neither parameters nor
results, could be handled in all cases. In the Goversing binary, a byte-wise access to a
string was not identified as string, because indexing with non-constant values is currently
not handled yet (cf. Section 4.5.2). From the functions of the lets go binary, string
arguments were correctly identified as such. However, due to the lack of support for slice
index operations with a non-constant index, an arbitrary type is assigned to slice types.
From the unknown functions of the Lady binary, only simple functions wrapping functions
of the standard library could be analyzed in addition to the initialization functions. Beside
this, the analysis result of the functions was congruent with a manual analysis, subject to
the limitation of available information.

49

5 Evaluation

Table 5.3: Examples of successful results of the type analysis on selected standard library functions.
The description refers to the technical implementation but not to the actual semantics. Resulting
sequences for the argument region have byte granularity, apparently invalid type information is gray.
The pseudo-type dead is represented using the symbol ⊥. The original types have been replaced
with an idiomatic replacement for brevity.

(a) package net; func sysInit()
Description: Empty function
Metrics: LOC: 0, IC: 4, FS: 0 — Time: 0.1s, Memory: 18M
[] -> []

(b) package os; type FileMode uint32; func (FileMode) Perm() FileMode
Description: Mask of argument with constant integer
Metrics: LOC: 1, IC: 9, FS: 0 — Time: 0.1s, Memory: 19M
[i32 3*⊥ itabptr ifaceptr flags...] -> [i32 3*⊥ i8 f32 f64...]

Remark: Unused parts of structures are filled with arbitrary and likely invalid types in
byte granularity, here with interface pointers, status flags and floating-point values. It
is impossible to decide whether the i8 is a return value or invalid.

(c) package image; type Rectangle [4]int; func (Rectangle) Dy() int
Description: Subtraction of two fields of a structure
Metrics: LOC: 1, IC: 8, FS: 0 — Time: 0.1s, Memory: 20M
[i8 i16 i32... i64 7*⊥ ptr(Ty!4) ptr(Ty!5)... i64 7*⊥] -> [i64 7*⊥]

(d) package net; func http2authorityAddr(string, string) string
Description: Basic string comparison and calls to other functions
Metrics: LOC: 16, IC: 160, FS: 112 — Time: 1471.9s, Memory: 408M
[ptr(Ty!6) 7*⊥ i64 7*⊥ ptr(Ty!10) 7*⊥ i64 7*⊥] -> [ptr(Ty!10) 7*⊥ i64 7*⊥]
Ty!6 = [4*i8 ptr(Ty!353) ptr(Ty!347)] — Ty!10 = [i8] (string)
Remark: The first argument is only used for a byte-wise comparison and therefore not
classified as string but byte array.

(e) package fmt; func (*ss) scanUint(rune, int) uint64
Description: Conditionally calling other functions depending on first argument
Metrics: LOC: 25, IC: 168, FS: 112 — Time: 3613.7s, Memory: 647M
[i64 7*⊥ i32 3*⊥ ptr(Ty!199) ptr(Ty!200)... i64 7*⊥] -> [i64 7*⊥]

Remark: The receiver is never dereferenced and hence classified as single arbitrary type.

(f) package math; func Pow(x, y float64) float64
Description: Implementation of floating-point exponentiation
Metrics: LOC: 98, IC: 385, FS: 48 — Time: 12164.3s, Memory: 590M
[f64 7*⊥ f64 7*⊥] -> [f64 7*⊥]

Metrics — LOC: Lines of Code — IC: Instruction Count (HGA) — FS: Frame Size (bytes)

50

5.3 Results

Unsatisfiable Constraint Systems

For some functions, the produced constraint system was declared as unsatisfiable. We
identified two main reasons for this: first, the usage of casts between pointers and integers
using the unsafe package leads to contradictions in the constraint system as we did not
handle these casts during modeling, see Section 4.5.3. Second, memory moves using
registers only work if the type of the moved value has the same size as the register. The
possible case of moving an array of eight bytes using one 64-bit general purpose register
is not covered. This can be fixed by either allowing multiple types in registers or by
detecting and combining memory moves.

The cases of unsatisfiable constraint systems resulting from functions of the unknown
binaries also have other reasons: complex slicing operations, type assertions and for-range
loops are not supported due to the lack of additional analysis before generating the type
constraints, see Sections 4.5.2 and 4.5.3. These issues did not appear in our evaluation of
the standard library as we left out functions with these language constructs.

Unknown Result

For some functions, Z3 gave unknown as result instead of giving a solution or proving
unsatisfiability. We were not able to find compelling reasons for this behavior, simple as
well as complex functions are affected by this.

Memory Usage

In total, the memory limit of 8 GiB was exceeded for 3 functions. We identified a single
reason for this behavior: the concerned functions allocate larger structures, leading to long
sequences in the model due to byte granularity. Especially as long arrays are flattened,
functions allocating large buffers of a fixed size or access large indices of slices are affected
by this limitation. This problem is inherent to the byte-wise modeling and could be
circumvented by modeling arrays in a compact representation.

When enabling the generation of unsatisfiability cores, we observed that the memory
consumption increases significantly if a 64-bit addition with a large constant is present
and the Python API of Z3 is used. As described in Section 4.5.2, a pointer-sized addition
can be either an integer addition or a pointer offset computation. For the pointer offset
computation, a subsequence from the original pointer target starting at the value of
the constant operand is used as target of the new pointer. Since the generation of
unsatisfiability cores implies an increased complexity of constraints in Z3 (see Section 2.2),
the case of a large pointer addition will not be pruned, causing an allocation of a sequence
whose length is larger than the constant addition operand. Depending on the value of the
constant, the resulting sequence can have an any length, leading to an arbitrarily high
memory consumption.

51

5 Evaluation

10 100 1,000
0.01

1

100

10,000

#instructions

tim
e

[s
]

(a) Time required for solving the constraint sys-
tem by instruction count

10 100 1,000 10,000
0.01

1

100

10,000

frame size × #merge blocks

tim
e

[s
]

(b) Time required for solving the constraint
system by the product of the stack frame size and
the count of blocks with multiple predecessors.

Figure 5.2: Analysis time required for solving the system of type constraints for each function.
The time increases exponentially with the number of instructions, but also with the size of the stack
frame in combination with basic blocks having multiple predecessors.

Performance

For very simple functions with a small number of instructions, a small stack frame and a
low number of branches, we can observe that resulting constraint system is rather simple
and solved within less than a second. However, as soon as the number of instructions
or the complexity of the control flow increases, the required time grows significantly, see
Figure 5.2. In fact, the analysis of more involved functions required several minutes or
hours to complete, or was aborted due to the time limitation.

We note that several more complex functions from the standard library were excluded
because of the limitations of the constraint-based analysis approach and therefore expect
even higher running times for other functions.

5.4 Discussion
In the remainder of this chapter, we will discuss our findings, especially focusing on the
application of the proposed techniques in practice.

Metadata Extraction The described procedure the extract metadata works well and
can be a significant help for manual and automated analysis of unknown binaries. As the
function names typically include a full URL for packages hosted on common open source
platform, many external dependencies and functions from the standard library can be
easily identified. In addition, the available type information can help a human analyst in
understanding the semantics of the program.

We note that obfuscators may try to remove or modify this information. While we
do not know of any obfuscation efforts specialized for Go binaries, we expect such tools

52

5.4 Discussion

to appear with the increasing popularity of Go. However, the range of possibilities for
modification is rather limited as most parts of the metadata are required to actually run
the program.

Intermediate Representation The HGA intermediate representation had the goal to
model special constructs like bounds checking appropriately and concisely, easing manual
analysis and also reducing the complexity for automated analysis. Concluding from our
observations, we believe that this representation achieves this goal and also serves as
a foundation for further analysis of compiled Go code. First experiences in using the
intermediate representation for a manual analysis of unknown Go functions confirm this.
Especially in combination with a graphical representation of the control flow graph, we
found that the HGA provides a significant advantage compared to a linear disassembly or
a plain representation of the underlying machine code.

Unfortunately, the information gained by lifting machine code to this representation
cannot be used by existing tools easily. Exporting the HGA representation into other
commonly used representations would provide additional benefit for practical applications.

Type Analysis For the described type analysis based on constraints, we do not see
practical applications in its current form. In addition to the described performance
problems, the ambiguity for cases which are not uniquely defined prevents an automated
processing of the result, because these cases cannot be identified in general. Moreover,
the problem of modeling several language constructs properly, e.g. unsafe casts, pointers
to the stack and arrays (see Sections 4.5.2 and 4.5.3), prevents the application on general
real-world binaries.

We note that most of the described difficulties can be circumvented by implementing
further analysis passes, including an analysis of stack variables, pointer additions and
compound types. If this analysis has to be implemented separately even for a constraint-
based type analysis, however, there is not much benefit in using a constraint system
instead of a data flow based analysis even for a language with a rather simple type system.

On the contrary, a data flow based analysis does not have the problem of ambiguity and
would also support casts reasonably well. For an inter-procedural analysis, a constraint
system can still be constructed based on the results of the function analysis. This system
will, however, be much simpler as it does not involve instruction-level constraints but
only constraints to fill the types which could not be determined by an intra-procedural
analysis.

53

6 Summary
With the increasing popularity of the Go programming language, also the analysis of Go
binaries becomes increasingly important. Additionally to the generated machine code, the
compiler adds a variety of metadata in the binary, which cannot be removed easily. This
includes a table with information about functions along with the name of the function and
type information for the garbage collector as well as the runtime type information required
for garbage collection, reflection and dynamic typing. The included meta information can
significantly aid the analysis of binaries and typically allows to distinguish code from the
standard library from other source packages and therefore enables to identify important
code sections. To this end, we documented important metadata structures such as the
runtime symbol information table in addition to other language internals like the layout of
data structures and the calling convention. Moreover, we proposed a strategy to extract
the relevant metadata from stripped Go binaries, identifying and supporting different
compiler versions.

As the standard Go compiler is designed for efficient compilation, it uses a custom
code generation procedure together with unique calling conventions, causing problems
for existing code analysis tools. We presented the Higher-level Go Assembly (HGA), a
low-level intermediate representation based on assembly, to ease automated as well as
manual analysis of Go programs. During lifting, many code idioms introduced by the
compiler are compressed into explicit instructions or removed entirely. This results in a
representation that is significantly easier to understand for a human analyst, but also
simplifies automated analysis.

Based on this intermediate language, we explored the possibility of analyzing types
of functions by solving SMT formulas by generating type constraints derived from the
instruction stream and available type meta information. However, we found that due to
structural problems not all language features can be covered appropriately. Furthermore,
solving the generated constraint systems incurs major performance problems for complex
functions. From this we conclude that additional analysis prior to the formulation of type
constraints is required for an effective analysis.

Outlook
The presented approaches can be extended and improved in various directions.

The procedure to extract metadata can be extended to identify and support Go versions
prior to Go 1.5 as well. Additionally, new formats added by newer releases can be added.
Furthermore, it is possible to support for specific compiler idioms of older and upcoming
Go versions in the HGA lifting procedure.

The HGA intermediate representation can also be extended to be agnostic of the
underlying architecture to cover other architectures, e.g. ARM, as well.

55

6 Summary

An analysis of the variables stored in the stack frame combined with an explicit
representation of this information in the HGA can ease all kinds of analysis, especially
an analysis of the types of variables and function arguments. As a type analysis solely
based on type constraints turned out to be difficult, a data flow based analysis can be
implemented to reconstruct type information of a single function.

In addition, a control flow recovery algorithm can be implemented. Due to the simplicity
of the language and the code generation procedure, it should be possible to recover a
human-readable representation of the machine code.

56

A Usage Instructions

The developed tools consist of two parts: the first tool is named rego and implements
the extraction of metadata from a given Go binary (ELF or PE, x86-64). It is written
in Go and has to be compiled. The second tool is regopy, which provides the HGA
representation and the type analysis and is written in Python 31. The name rego is an
abbreviation for Reverse Engineering GO.

A.1 Metadata Extraction
The binary has to be compiled first using the Go compiler. It has been tested with Go 1.8.

1 $ cd rego
2 $ go build

After building, the general usage from the command line is the following, processing a
given binary with an optional list of additional type addresses (cf. Section 4.1.3):

1 $./ rego -file <binary > [-rtti -types <addr1 >[,<addr2 > ,...]] <command >

While processing the binary, some debug information is printed to stderr. The following
commands are implemented:

• dump-moduledata: Dump the module data structure, if found.
• dump-rtsi: Dump a list of function address and name.
• dump-rtti: Dump type information in human readable format.
• extract: Extract all information requires for further analysis into JSON format, a

redirection of stdout into a file is strongly recommended.

A.2 Lifting and Analysis
The code analysis tool operates on JSON files emitted by the extraction tool described
above. The basic usage to process one or more functions is the following:

1 $./ regopy /rego.py <json file > [-t] [-f <function > [<function > ...]]

This will lead to a lifting of the machine code of the specified functions into the canonical
HGA. When the option -t is given, a type analysis on the specified functions will be
performed. Otherwise, the canonical HGA will be printed.

If no functions are specified, all functions will be lifted into the canonical HGA, but no
further analysis is performed. This can be used to ensure that the lifting procedure works
on all functions.

1Tested with Python 3.5, earlier versions including Python 2 should also work.

57

B Implementation Remarks

Before giving an overview of the general structure of the code, we will briefly point out
some important aspects of the lifting and analysis procedure of the HGA.

B.1 HGA Passes
The HGA lifting and analysis process is organized in passes. Starting from the function
description extracted from the pclntab, passes usually modify the function (typically using
change sets) or perform analysis (typically storing the result in the analysis field of the
function or printing the result). There is a rough distinction between function passes
and basic block passes: the latter operates on the basic blocks of the function instead of
the function as a whole and must not add or remove blocks and should only change the
assigned block. This distinction simplifies code and allows for further optimizations in
future.

Functions are usually modified using change sets, which apply multiple changes to a
function at once. This has the advantage that the instruction indices, which are used to
refer individual instructions, do not change before the whole change set is applied. In
addition, when the terminating instruction (e.g. a conditional jump) is modified, the
predecessor links of other basic blocks are adjusted automatically.

B.2 Code Structure
The code is structured as follows:

• rego/ — Extraction of metadata, written in Go
– main.go — Command-line interface
– gobinary.go — Finding and identifying and structures in binary
– rtsi.go — Parsing of the pclntab
– rtti.go — Parsing of the type information for Go 1.6 and Go 1.7+
– structs.go — Definition of some structure layouts
– elfreader.go — Helper to read virtual address space of ELF files
– pereader.go — Helper to read virtual address space of PE files

• regopy/ — Handling of machine code, HGA and analysis
– rego.py — Command-line interface
– model/ — Implementation of the HGA
∗ hreg.py — Definition of registers
∗ hins.py — Definition of all instruction types

59

B Implementation Remarks

∗ hinstruction.py — Instruction and instruction operands
∗ structures.py — Basic blocks, functions and modules

– passes/ — Lifting, verification and analysis passes
∗ classes.py — Definition of the pass classes
∗ passmanager.py — Pass pipeline, contains default order of passes
∗ lift.py — Initial lifting of assembly into the HGA
∗ deadendblocks.py — Removal of Go specific basic blocks
∗ duffdevice.py — Lifting of calls to Duff’s device
∗ calls.py — Identification of different call types
∗ instructionsizes.py — Shrinking of widened instructions
∗ conversions.py — Insertion of explicit extensions and truncations
∗ simplify.py — Basic code simplification passes
∗ verify.py — Verification of function to match the canonical HGA
∗ argumentanalysis.py — Identification of argument and return bytes
∗ simpletypes.py — Z3-based type analysis
∗ . . . (only a selection of important passes is listed here)

– doc.py — Script to generate LATEX documentation HGA as in Section D.3
– . . . (some scripts only serve our evaluation and are left for reference)

60

C Instructions Used by Go Compiler

The Go compiler (as of version 1.8) only emits a small number of instruction types.

Memory Access Instructions
• Non-atomic: mov, movzx, movsx, movss, movsd, movups, rep stosq, rep movsq
• Atomic: xchg, lock cmpxchg, lock xadd, lock and, lock or
• Special Cases:

– mov rcx, fs:[-8] – used to get g pointer
– test al, [rax] – used for nil-checks
– cmp reg, [rcx+0x10] – used for small stack bounds checking
– cmp reg, [rcx+0x18] – used for large stack bounds checking
– cmp [rbx], rdi – used in prefix of wrapper functions

General-Purpose Instructions
• Moves: mov, movzx, movsx, cmoveq, setcc
• Control-flow: call, jmp, jcc , ud2, int3
• Arithmetic: add, inc, sub, dec, imul, mul, idiv, div, neg
• Bitwise: and, or, xor, not, shl, shr, sar, rol, bsf, bswap
• Comparison: cmp, test
• Address Generation/lea – local combination of additions and shifts created during

optimization (except for rip-relative addressing)
• Special Cases:

– rcr – used after add to compute average
– sbb – used after shifts for conditional masking
– cqo/cdq/cwd – used before division

Floating-point Instructions
• Conversions: cvttsd2si, cvttss2si, cvtsi2ss, cvtsi2sd, cvtsd2ss, cvtss2sd
• Arithmetic: addss, addsd, subss, subsd, mulss, mulsd, divss, divsd, sqrtsd
• Comparison: ucomiss, ucomisd
• Special Cases:

– pxor – used for negation
– xorps xmmn, xmmn – used to zero register

61

D Higher-level Go Assembly

D.1 Registers

Register Access Sizes Description

AX,CX,DX,. . . ,R14,R15 1,2,4,8 General purpose registers
X0,X1,X2,. . . ,X14,X15 4,8,16 SSE registers

SB 8 Base address of executable in memory

FLAGS – Flags pseudo-register, only used to mark
read and write operations on the flags

TMP1 1,2,4,8 Used to simplify x86-64 memory operands
TMP2,TMP3 1,2,4 Used to make register truncations explicit
TMP4 1,2,4,8 Used to eliminate test instructions
TMP5 1,2,4,8 Used to split out memory operand into

separate instructions

D.2 Operands
All immediate operands begin with a dollar sign ($) and are followed by the number,
usually written in prefixed hexadecimal form (e.g. $0xabcdef). An optional negation sign
is put immediately after the dollar sign. All immediates are signed and encoded in two’s
complement in the operand size.

Memory operands are enclosed in square brackets ([]), the components are separated
using a plus sign (+). The first component is the base register. The base register must not
be FLAGS or an SSE register. If the base register is SB, there can exist an immediate offset
as second component, written like other immediate operands (e.g. [SB+$0x401234]). If
the base register is SP, beside an immediate as last component there might also exist an
offset register as second component. The offset register must not be SB, SP, FLAGS or an
SSE register. For all other base registers, no other components are allowed.

Register operands consist of the register name, registers can only be accessed in the
allowed access sizes (see above). The registers SB and FLAGS are not allowed.

Every operand is immediately followed by a tilde (˜) and the size of the operand written
as a decimal number.

63

D Higher-level Go Assembly

D.3 Instruction List

Format S U B Description

Abbreviations: Sets Flags — Uses Flags — Breaks Control Flow
r/reg=general purpose register – x/xmm=SSE register – i/imm=immediate – mem=memory
If specified, number at the end of the operand indicates size in bits

MOVB reg8,ri8 reg8 = ri8
MOVW reg16,ri16 reg16 = ri16
MOVL reg32,ri32 reg32 = ri32
MOVQ reg64,ri64 reg64 = ri64
MOVO xmm128,xi128 xmm128 = xi128
MOVSS xmm32,xi32 xmm32 = xi32
MOVSD xmm64,xi64 xmm64 = xi64

Memory

MOVBload reg8,mem8 reg8 = load from mem8
MOVWload reg16,mem16 reg16 = load from mem16
MOVLload reg32,mem32 reg32 = load from mem32
MOVQload reg64,mem64 reg64 = load from mem64
MOVOload xmm128,mem128 xmm128 = load from mem128
MOVSSload xmm32,mem32 xmm32 = load from mem32
MOVSDload xmm64,mem64 xmm64 = load from mem64

MOVBstore mem8,ri8 store ri8 to mem8
MOVWstore mem16,ri16 store ri16 to mem16
MOVLstore mem32,ri32 store ri32 to mem32
MOVQstore mem64,ri64 store ri64 to mem64
MOVOstore mem128,xmm128 store xmm128 to mem128
MOVSSstore mem32,xmm32 store xmm32 to mem32
MOVSDstore mem64,xmm64 store xmm64 to mem64

REPSTOSQ† Zero 8·CX bytes at DI
REPMOVSQ† Move 8·CX bytes from SI to DI
DuffZero mem† Zero memory at mem
DuffCopy mem1,mem2

† Move memory from mem2 to mem1
MemZero mem Zero memory at mem
MemMove mem1,mem2 Move memory from mem2 to mem1

XCHGL mem32,reg32 swap mem32 and reg32 (atomic)
XCHGQ mem64,reg64 swap mem64 and reg64 (atomic)
XADDLlock mem32,reg32 cf. [19], instruction xadd
XADDQlock mem64,reg64 cf. [19], instruction xadd
CMPXCHGLlock mem32,reg32 x cf. [19], instr. cmpxchg, rax is ignored
CMPXCHGQlock mem64,reg64 x cf. [19], instr. cmpxchg, rax is ignored
ANDBlock mem8,reg8 mem8 = mem8 & reg8 (atomic)
ORBlock mem8,reg8 mem8 = mem8 | reg8 (atomic)

Integer Arithmetic

ADDB reg8,ri8 reg8 = reg8 + ri8
ADDW reg16,ri16 reg16 = reg16 + ri16

64

D.3 Instruction List

Format S U B Description

ADDL reg32,ri32 reg32 = reg32 + ri32
ADDQ reg64,ri64 reg64 = reg64 + ri64

SUBB reg8,ri8 reg8 = reg8 − ri8
SUBW reg16,ri16 reg16 = reg16 − ri16
SUBL reg32,ri32 reg32 = reg32 − ri32
SUBQ reg64,ri64 reg64 = reg64 − ri64

NEGB reg8 reg8 = −reg8
NEGW reg16 reg16 = −reg16
NEGL reg32 reg32 = −reg32
NEGQ reg64 reg64 = −reg64

MULB reg8,ri8 reg8 = reg8 · ri8
MULW reg16,ri16 reg16 = reg16 · ri16
MULL reg32,ri32 reg32 = reg32 · ri32
MULQ reg64,ri64 reg64 = reg64 · ri64
MULQU2 reg641,reg642,reg643 reg641:‡reg642 = reg642 · reg643

HMULB reg81,reg82,reg83 reg81 = (reg82 · reg83) � 8 (signed)
HMULW reg161,reg162,reg163 reg161 = (reg162 · reg163) � 16 (signed)
HMULL reg321,reg322,reg323 reg321 = (reg322 · reg323) � 32 (signed)
HMULQ reg641,reg642,reg643 reg641 = (reg642 · reg643) � 64 (signed)
HMULBU reg81,reg82,reg83 reg81 = (reg82 · reg83) � 8 (unsigned)
HMULWU reg161,reg162,reg163 reg161 = (reg162 · reg163) � 16 (unsigned)
HMULLU reg321,reg322,reg323 reg321 = (reg322 · reg323) � 32 (unsigned)
HMULQU reg641,reg642,reg643 reg641 = (reg642 · reg643) � 64 (unsigned)

DIVW reg161,reg162,reg163 reg161 = reg162 % reg163 (signed)
reg162 = reg162 / reg163 (signed)

DIVL reg321,reg322,reg323 reg321 = reg322 % reg323 (signed)
reg322 = reg322 / reg323 (signed)

DIVQ reg641,reg642,reg643 reg641 = reg642 % reg643 (signed)
reg642 = reg642 / reg643 (signed)

DIVWU reg161,reg162,reg163 reg161 = reg162 % reg163 (unsigned)
reg162 = reg162 / reg163 (unsigned)

DIVLU reg321,reg322,reg323 reg321 = reg322 % reg323 (unsigned)
reg322 = reg322 / reg323 (unsigned)

DIVQU reg641,reg642,reg643 reg641 = reg642 % reg643 (unsigned)
reg642 = reg642 / reg643 (unsigned)

DIVQU2 reg641,reg642,reg643 reg641 = reg641:‡reg642 % reg643 (unsigned)
reg642 = reg641:‡reg642 / reg643 (unsigned)

SARB reg8,ri8 reg8 = reg8 � ri8 (arithmetic)
SARW reg16,ri8 reg16 = reg16 � ri8 (arithmetic)
SARL reg32,ri8 reg32 = reg32 � ri8 (arithmetic)
SARQ reg64,ri8 reg64 = reg64 � ri8 (arithmetic)

SHRB reg8,ri8 reg8 = reg8 � ri8
SHRW reg16,ri8 reg16 = reg16 � ri8
SHRL reg32,ri8 reg32 = reg32 � ri8
SHRQ reg64,ri8 reg64 = reg64 � ri8

65

D Higher-level Go Assembly

Format S U B Description

SHLB reg8,ri8 reg8 = reg8 � ri8
SHLW reg16,ri8 reg16 = reg16 � ri8
SHLL reg32,ri8 reg32 = reg32 � ri8
SHLQ reg64,ri8 reg64 = reg64 � ri8

ROLB reg8,ri8 reg8 = reg8 ≪ ri8
ROLW reg16,ri8 reg16 = reg16 ≪ ri8
ROLL reg32,ri8 reg32 = reg32 ≪ ri8
ROLQ reg64,ri8 reg64 = reg64 ≪ ri8

CMPB reg8,ri8 x flags = flags of operation reg8 − ri8
CMPW reg16,ri16 x flags = flags of operation reg16 − ri16
CMPL reg32,ri32 x flags = flags of operation reg32 − ri32
CMPQ reg64,ri64 x flags = flags of operation reg64 − ri64

TESTB reg8,ri8† x flags = flags of operation reg8 & ri8
TESTW reg16,ri16† x flags = flags of operation reg16 & ri16
TESTL reg32,ri32† x flags = flags of operation reg32 & ri32
TESTQ reg64,ri64† x flags = flags of operation reg64 & ri64

ANDB reg8,ri8 reg8 = reg8 & ri8
ANDW reg16,ri16 reg16 = reg16 & ri16
ANDL reg32,ri32 reg32 = reg32 & ri32
ANDQ reg64,ri64 reg64 = reg64 & ri64

ORB reg8,ri8 reg8 = reg8 | ri8
ORW reg16,ri16 reg16 = reg16 | ri16
ORL reg32,ri32 reg32 = reg32 | ri32
ORQ reg64,ri64 reg64 = reg64 | ri64

XORB reg8,ri8 reg8 = reg8 ⊕ ri8
XORW reg16,ri16 reg16 = reg16 ⊕ ri16
XORL reg32,ri32 reg32 = reg32 ⊕ ri32
XORQ reg64,ri64 reg64 = reg64 ⊕ ri64

NOTB reg8 reg8 = bitwise not of reg8
NOTW reg16 reg16 = bitwise not of reg16
NOTL reg32 reg32 = bitwise not of reg32
NOTQ reg64 reg64 = bitwise not of reg64

Extensions and Truncations

CWD reg161,reg162 reg161 = sign-extension of reg162
CDQ reg321,reg322 reg321 = sign-extension of reg322
CQO reg641,reg642 reg641 = sign-extension of reg642

MOVBWSX reg16,reg8 reg16 = sign-extended value of reg8
MOVBLSX reg32,reg8 reg32 = sign-extended value of reg8
MOVBQSX reg64,reg8 reg64 = sign-extended value of reg8
MOVWLSX reg32,reg16 reg32 = sign-extended value of reg16
MOVWQSX reg64,reg16 reg64 = sign-extended value of reg16
MOVLQSX reg64,reg32 reg64 = sign-extended value of reg32
MOVBWZX reg16,reg8 reg16 = zero-extended value of reg8
MOVBLZX reg32,reg8 reg32 = zero-extended value of reg8

66

D.3 Instruction List

Format S U B Description

MOVBQZX reg64,reg8 reg64 = zero-extended value of reg8
MOVWLZX reg32,reg16 reg32 = zero-extended value of reg16
MOVWQZX reg64,reg16 reg64 = zero-extended value of reg16
MOVLQZX reg64,reg32 reg64 = zero-extended value of reg32

Trunc16to8 reg8,reg16 reg8 = truncation of reg16
Trunc32to8 reg8,reg32 reg8 = truncation of reg32
Trunc32to16 reg16,reg32 reg16 = truncation of reg32
Trunc64to8 reg8,reg64 reg8 = truncation of reg64
Trunc64to16 reg16,reg64 reg16 = truncation of reg64
Trunc64to32 reg32,reg64 reg32 = truncation of reg64

Miscellaneous

NOP no operation
LEAQ reg64,mem reg64 = address of mem (stack and global only)
RCRQ reg64,imm64† reg64 = carry:‡reg64 ≫ imm64
AVGQU reg641,reg642 reg641 = average of reg641 and reg642
BSFL reg321,reg322 reg321 = index of least sign. set bit in reg322
BSFQ reg641,reg642 reg641 = index of least sign. set bit in reg642
BSWAPL reg32 reg32 = reverse bytes of reg32
BSWAPQ reg64 reg64 = reverse bytes of reg64

SETcc § reg8 x reg8 = 1 if cc else 0
SBBBcarrymask reg8 x reg8 = −1 if carry flag set else 0
SBBWcarrymask reg16 x reg16 = −1 if carry flag set else 0
SBBLcarrymask reg32 x reg32 = −1 if carry flag set else 0
SBBQcarrymask reg64 x reg64 = −1 if carry flag set else 0

GetG reg64 reg64 = pointer to g in thread-local storage
GetSP reg64 reg64 = stack pointer
GetBP reg64 reg64 = callee-save frame pointer
GetClosurePtr reg64 reg64 = closure pointer

NilCheck reg64 segfault if reg64 is not dereferencable
CheckIndex ri1,ri2 panic unless ri1 < ri2
CheckSlice ri1,ri2 panic unless ri1 ≤ ri2

Floating-Point Arithmetic

Cvt32to32F xmm32,reg32 xmm32 = type-conversion of reg32
Cvt32to64F xmm64,reg32 xmm64 = type-conversion of reg32
Cvt64to32F xmm32,reg64 xmm32 = type-conversion of reg64
Cvt64to64F xmm64,reg64 xmm64 = type-conversion of reg64
Cvt32Fto32 reg32,xmm32 reg32 = type-conversion of xmm32
Cvt32Fto64 reg64,xmm32 reg64 = type-conversion of xmm32
Cvt64Fto32 reg32,xmm64 reg32 = type-conversion of xmm64
Cvt64Fto64 reg64,xmm64 reg64 = type-conversion of xmm64
Cvt32Fto64F xmm64,xmm32 xmm64 = type-conversion of xmm32
Cvt64Fto32F xmm32,xmm64 xmm32 = type-conversion of xmm64

UCOMISS xmm321,xmm322 x flags = float32 compare xmm321 and xmm322
UCOMISD xmm641,xmm642 x flags = float64 compare xmm641 and xmm642

67

D Higher-level Go Assembly

Format S U B Description

ADDSS xmm321,xmm322 xmm321 = xmm321 + xmm322 (float32)
ADDSD xmm641,xmm642 xmm641 = xmm641 + xmm642 (float64)
SUBSS xmm321,xmm322 xmm321 = xmm321 − xmm322 (float32)
SUBSD xmm641,xmm642 xmm641 = xmm641 − xmm642 (float64)
MULSS xmm321,xmm322 xmm321 = xmm321 · xmm322 (float32)
MULSD xmm641,xmm642 xmm641 = xmm641 · xmm642 (float64)
DIVSS xmm321,xmm322 xmm321 = xmm321 / xmm322 (float32)
DIVSD xmm641,xmm642 xmm641 = xmm641 / xmm642 (float64)
SQRTSD xmm641,xmm642 xmm641 =

√
xmm642

PXOR xmm1281,xmm1282 xmm1281 = xmm1281 ⊕ xmm1282
PXORSS xmm321,xmm322 xmm321 = xmm321 ⊕ xmm322
PXORSD xmm641,xmm642 xmm641 = xmm641 ⊕ xmm642

Control Flow

Jcc § imm641,imm642 x x if cc jump to block imm641 else imm642
JMP imm64 x jump to block imm64
RET x return
Unreachable x unreachable

CALL ri64† call function at ri64
StaticCall imm64 call function at imm64
ClosureCall reg64 call closure reg64
InterCall reg64 call interface function at reg64
GoCall reg64,mem start goroutine with closure reg64 with argu-

ments mem (stack only)
DeferCall reg64,mem defer call to closure reg64 with arguments mem

(stack only)

Pseudo Instructions

CmpStackLimit x flags = comparison of SP with stack limit
MoreStack enlarge stack if required and set DX=0
MoreStackCtxt enlarge stack if required
SizeAssert reg† enforce a register size, cf. Sec. 4.3.8
--- imm641,imm642 marker for address and frame size, ignored

† non-canonical HGA only
‡ high:low denotes the concatenation of two registers
§ condition codes are the same as on x86-64, refer to [19] for a description

D.4 Basic Blocks
A basic block has a number unique within function scope and is a sequence of at least one
instruction, control flow breaking instructions must be last. Instructions are zero-indexed,
address markers (---) do not count, cannot be indexed directly, and are merely treated as
comments. Each block should have an address marker before the instruction with index
zero to correctly indicate the stack frame size.

Basic blocks are referred to by their number. The basic block with number zero must
not have predecessors and is the entry point of the function.

68

E Vulnerable Safe Go Program

A proof-of-concept of a vulnerable Go binary without using the unsafe or reflection package
and without using allowing data races.

1 package main
2
3 import (
4 "fmt"
5 "os"
6 " strconv "
7 " syscall "
8)
9

10 // Source for trick to retrieve address (accessed 2017 -08 -18):
11 // https :// blog. stalkr .net /2013/06/ golang -heap -corruption -during - garbage .html
12
13 func main () {
14 // This defer places a structure containing a function pointer on the heap
15 // right before the buffer allocated below.
16 defer fmt. Println ("pwn harder ")
17
18 var buf *[96] byte = new ([96] byte)
19 addr , _ := strconv . ParseUint (fmt. Sprintf ("%p", &buf), 0, 0)
20 fmt. Printf (" Address is %p\n", buf)
21
22 // Overwrite pointer to buffer and read to the new address
23 syscall . RawSyscall (0, 0, uintptr (addr), 8)
24 os.Stdin.Read(buf [:])
25 }

69

Acronyms

API Application Programming Interface.

ASLR Address Space Layout Randomization.

CFG Control Flow Graph.

DDoS Distributed Denial of Service.

ELF Executable and Linkable Format.

GC Garbage Collector.

HGA Higher-level Go Assembly.

HTML Hypertext Markup Language.

HTTP Hypertext Transfer Protocol.

IP Internet Protocol.

IR Intermediate Representation.

ISA Instruction Set Architecture.

JSON JavaScript Object Notation.

PC Program Counter.

PE Portable Executable.

PIC Position-Independent Code.

RELRO Relocation Read-Only.

RIP Instruction Pointer.

RTTI Runtime Type Information.

SAT Boolean Satisfiability.

SMT Satisfiable Modulo Theories.

71

Acronyms

SSA Single-Static Assignment.

SSE Streaming SIMD Extension.

SSH Secure Shell.

TLS Thread-local Storage.

URL Uniform Resource Locator.

72

List of Figures

3.1 Stackframe of a Go function. 9

4.1 Layout of different versions of the module data structure. 19
4.2 Examples for lifting of x86-64 memory operands into the HGA 22
4.3 Removal of calls to special runtime functions. 26
4.4 Elimination of critical edges. 26
4.5 Example of constraint-based analysis of basic types on a simple function. 37

5.1 Comparison of original assembly code and lifted HGA representation. . . 47
5.2 Analysis time required for solving type constraints. 52

73

List of Tables

3.1 Overview of the Go type system and the internal representations. 8

4.1 Overview of instruction types of the HGA 23
4.2 Special cases while lifting to the HGA . 25

5.1 Sizes of binaries used for the evaluation 43
5.2 Overview of the results of the constraint-based type analysis. 48
5.3 Examples of successful results of the type analysis. 50

75

Listings

3.1 Example of a simple Defer Statement . 6
3.2 Example for a Defer Statement with recover 6
3.3 Example of a type assertion . 6
3.4 Example of a type switch . 6

4.1 Original Assembly code for a call to the Duffzero function 28
4.2 Lifted HGA code for Listing 4.1 . 28
4.3 Example for widened instructions . 28
4.4 Example for indirect arguments . 30
4.5 Example for spilled registers to prevent garbage collection, preventing

identification of arguments on the caller-site 30
4.6 Example for local variable preventing the identification of return values on

the caller-site . 30

77

Bibliography

[1] Gogul Balakrishnan and Thomas Reps. Analyzing Memory Accesses in x86 Executa-
bles. In Compiler Construction. Springer, 2004.

[2] Clark Barrett, Leonardo de Moura, and Pascal Fontaine. Proofs in Satisfiability
Modulo Theories. All about Proofs, Proofs for All, 2015.

[3] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Standard: Version
2.6. Technical report, Department of Computer Science, The University of Iowa,
2017.

[4] Clark Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Satisfiability
Modulo Theories. In Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby
Walsh, editors, Handbook of Satisfiability, chapter 26, pages 825–885. IOS Press,
February 2009.

[5] Nikolaj Bjørner, Vijay Ganesh, Raphaël Michel, and Margus Veanes. An SMT-LIB
Format for Sequences and Regular Expressions. 2012.

[6] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J Schwartz. BAP: A
binary analysis platform. In International Conference on Computer Aided Verification,
pages 463–469. Springer, 2011.

[7] Russ Cox. Go Data Structures: Interfaces. https://research.swtch.com/
interfaces, accessed 2017-03-25, December 2009.

[8] Russ Cox. Off to the Races. https://research.swtch.com/gorace, accessed 2017-
05-10, February 2010.

[9] Russ Cox. Go 1.1 Function Calls. https://docs.google.com/document/
d/1bMwCey-gmqZVTpRax-ESeVuZGmjwbocYs1iHplK-cjo/pub, accessed 2017-08-28,
February 2013.

[10] Russ Cox. Go 1.2 Runtime Symbol Information. http://golang.org/s/go12symtab,
accessed 2017-03-25, July 2013.

[11] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. Tools and
Algorithms for the Construction and Analysis of Systems, pages 337–340, 2008.

[12] Nick Diakopoulos and Stephen Cass. IEEE Spectrum: The Top Program-
ming Languages 2017. http://spectrum.ieee.org/static/interactive-the-
top-programming-languages-2017, accessed 2017-08-23, July 2017.

79

https://research.swtch.com/interfaces
https://research.swtch.com/interfaces
https://research.swtch.com/gorace
https://docs.google.com/document/d/1bMwCey-gmqZVTpRax-ESeVuZGmjwbocYs1iHplK-cjo/pub
https://docs.google.com/document/d/1bMwCey-gmqZVTpRax-ESeVuZGmjwbocYs1iHplK-cjo/pub
http://golang.org/s/go12symtab
http://spectrum.ieee.org/static/interactive-the-top-programming-languages-2017
http://spectrum.ieee.org/static/interactive-the-top-programming-languages-2017

Bibliography

[13] Ecma International. Standard ECMA-404: The JSON Data Interchange Format,
October 2013.

[14] A. Fokin, K. Troshina, and A. Chernov. Reconstruction of Class Hierarchies for
Decompilation of C++ Programs. In 14th European Conference on Software Mainte-
nance and Reengineering (CSMR), pages 240–243, March 2010.

[15] Andrew Gerrand. The Go Blog: Go Slices: usage and internals. https://blog.
golang.org/go-slices-usage-and-internals, accessed 2017-04-01, January 2011.

[16] Andrew Gerrand. The Go Blog: Go 2016 Survey Results. https://blog.golang.
org/survey2016-results, accessed 2017-08-23, March 2016.

[17] Hex-Rays SA. Hex-Rays Decompiler. https://hex-rays.com/products/
decompiler/, accessed 2017-08-25.

[18] Hex-Rays SA. Interactive Disassembler (IDA). https://hex-rays.com/products/
ida/, accessed 2017-08-22.

[19] Intel Corporation. Intel R© 64 and IA-32 Architectures Software Developer’s Manual.
Intel Corporation, 2200 Mission College Blvd. Santa Clara, CA 95054-1549 USA, April
2016. http://www.intel.com/content/www/us/en/processors/architectures-
software-developer-manuals.html, visited 2017-08-19.

[20] Emily R. Jacobson, Nathan Rosenblum, and Barton P. Miller. Labeling Library
Functions in Stripped Binaries. In Proceedings of the 10th ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools, 2011.

[21] JongHyup Lee, Thanassis Avgerinos, and David Brumley. TIE: Principled Reverse
Engineering of Types in Binary Programs. In Proceedings of the Network and
Distributed System Security Symposium. The Internet Society, 2011.

[22] LLVM Project. The LLVM Compiler Infrastructure. http://llvm.org, accessed
2017-08-25.

[23] Michael Matz, Jan Hubička, Andreas Jaeger, and Mark Mitchell. System V
Application Binary Interface, AMD64 Architecture Processor Supplement, Draft
Version 0.99.7. http://web.archive.org/web/20160315222117/http://www.x86-
64.org/documentation_folder/abi.pdf, accessed 2017-08-18, November 2014.

[24] Daniel Morsing. How Stacks are Handled in Go. https://blog.cloudflare.com/
how-stacks-are-handled-in-go/, accessed 2017-04-05, September 2014.

[25] Alan Mycroft. Type-Based Decompilation. In Proceedings of the 8th European
Symposium on Programming Languages and Systems, pages 208–223. Springer-Verlag,
1999.

[26] Andre Pawlowski, Moritz Contag, Victor van der Veen, Chris Ouwehand, Thorsten
Holz, Herbert Bos, Elias Athanasopoulos, and Cristiano Giuffrida. MARX: Uncovering
class hierarchies in C++ programs. In NDSS, 2017.

80

https://blog.golang.org/go-slices-usage-and-internals
https://blog.golang.org/go-slices-usage-and-internals
https://blog.golang.org/survey2016-results
https://blog.golang.org/survey2016-results
https://hex-rays.com/products/decompiler/
https://hex-rays.com/products/decompiler/
https://hex-rays.com/products/ida/
https://hex-rays.com/products/ida/
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://llvm.org
http://web.archive.org/web/20160315222117/http://www.x86-64.org/documentation_folder/abi.pdf
http://web.archive.org/web/20160315222117/http://www.x86-64.org/documentation_folder/abi.pdf
https://blog.cloudflare.com/how-stacks-are-handled-in-go/
https://blog.cloudflare.com/how-stacks-are-handled-in-go/

Bibliography

[27] Rob Pike. The Go Blog: Strings, bytes, runes and characters in Go. https:
//blog.golang.org/strings, accessed 2017-08-18, October 2013.

[28] Thomas Reps, Gogul Balakrishnan, and Junghee Lim. Intermediate-representation
Recovery from Low-level Code. In Proceedings of the 2006 ACM SIGPLAN Symposium
on Partial Evaluation and Semantics-based Program Manipulation, pages 100–111.
ACM, 2006.

[29] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino,
Andrew Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
and Giovanni Vigna. SoK: (State of) The Art of War: Offensive Techniques in Binary
Analysis. In IEEE Symposium on Security and Privacy, 2016.

[30] Ian Lance Taylor. The Go Blog: Gccgo in GCC 4.7.1. https://blog.golang.org/
gccgo-in-gcc-471, accessed 2017-08-25, July 2012.

[31] The Go Authors. Frequently Asked Questions (FAQ). https://golang.org/doc/faq,
accessed 2017-04-06.

[32] The Go Authors. The Go Programming Language Specification. https://golang.
org/ref/spec, accessed 2017-03-25, November 2016.

[33] The Go Authors. Release History. https://golang.org/doc/devel/release.html,
accessed 2017-07-29, 2017.

[34] Michael James van Emmerik. Signatures for Library Functions in Executable Files.
Technical report, Queensland University of Technology, 1994.

[35] Michael James van Emmerik. Single Static Assigment for Decompolation. PhD thesis,
University of Queensland, May 2007.

[36] Dmitry Vyukov and Andrew Gerrand. The Go Blog: Introducing the Go Race
Detector. https://blog.golang.org/race-detector, accessed 2017-05-10, June
2013.

81

https://blog.golang.org/strings
https://blog.golang.org/strings
https://blog.golang.org/gccgo-in-gcc-471
https://blog.golang.org/gccgo-in-gcc-471
https://golang.org/doc/faq
https://golang.org/ref/spec
https://golang.org/ref/spec
https://golang.org/doc/devel/release.html
https://blog.golang.org/race-detector

	Introduction
	Background
	Related Work
	SMT Solvers

	The Go Language
	Core Language Concepts
	Data Type Representation
	Calling Convention
	Static Metadata
	Runtime Memory Layout
	Safety
	Compiler

	Design
	Extracting Metadata
	Intermediate Code Representation
	Code Lifting
	Argument Region Analysis
	Basic Type Analysis

	Evaluation
	Targets
	Setup
	Results
	Discussion

	Summary
	Usage Instructions
	Metadata Extraction
	Lifting and Analysis

	Implementation Remarks
	HGA Passes
	Code Structure

	Instructions Used by Go Compiler
	Higher-level Go Assembly
	Registers
	Operands
	Instruction List
	Basic Blocks

	Vulnerable Safe Go Program
	Acronyms
	List of Figures
	List of Tables
	Listings
	Bibliography

