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Introduction

Ï In the interactive theorem prover

Isabelle

Ï Verified two case studies

Ï ZeroConf protocol (IPv4 address allocation)
Ï Crowds protocol (anonymizing service)

Ï Built on Isabelle’s probability theory and Markov chains
Hölzl & Heller (ITP 2011), Hölzl & Nipkow (TACAS 2012)
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Interactive theorem proving
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Interactive theorem proving

Ï Mathematics, but checked by a computer

Ï Powerful logics (e.g. ZF, CoC, HOL):

Ï Can deal with infinite-state systems
Ï User-extensible

Ï Too powerful to be fully automatic:

user needs to write proofs

Ï Proof language and proof methods
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Isabelle/HOL

Ï Logic is HOL: functional programming + quantifiers

Ï Declarative proof language Isar
Ï Small kernel: each proof is reduced to primitive proof steps
Ï Powerful proof methods
(rewrite engine, Sledgehammer, ...)

Ï Important theories: datatypes, real analysis, measure theory,
probability theory, Markov chains, ...
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Case study: ZeroConf protocol
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ZeroConf protocol

Ï Protocol to allocate an address in a link-local network,
without central authority (RFC 3927)

Ï We formalized the analysis of Bohnenkamp et al. (2003)

Ï Address allocation when only one computer is added
Ï Probability that two hosts end up with the same address
Ï Expected time until an address is allocated

Ï Model checking analysis of Kwiatkowska et al. (2006) and
Andova et al. (2003)
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Ï Fix parameters:

fixes N ::N and p q r E ::R

assumes 0< p and p < 1 and 0< q and q < 1
assumes 0≤E and 0≤ r

Ï Define state space:

datatype zc-state= S |P N |Ok |Err

Ω=
{
S,Ok,Err

}
∪

{
Pn

∣∣∣ n≤N
}

Ï Define the transition function τ:

τ S Ok = 1−q
τ S (P 0) = q
τ (Pn) (P (n+1)) = if n<N then p else 0

...
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Ï Defines a Markov chain:

lemma markov-chain Ω τ

Ï Probability theory gives us:

Prs(ω. P ω) – the probability that a trace ω fulfills P ω

Ï Define probability that an error is reached:

Perr s =Prs(ω. ∃n. ω n=Err)

Ï Analyse: Perr S=?
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lemma
n≤N =⇒ Perr (P (N −n))= pn+1+ (1−pn+1) ·Perr S

proof (induct n)
case (n+1)
have Perr (P (N − (n+1)))

= p · (pn+1+ (1−pn+1) ·Perr S)+ (1−p) ·Perr S
by (simp · · ·)

also have . . . = p(n+1)+1+ (1−p(n+1)+1) ·Perr S
by (simp · · ·)

finally show Perr (P (N − (n+1)))
= p(n+1)+1+ (1−p(n+1)+1) ·Perr S .

next
case 0
show Perr (P (N −0))= p0+1+ (1−p0+1) ·Perr S
by simp

qed
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Ï General result:

theorem Perr S= q ·pN+1

1−q · (1−pN+1)

Ï 16 hosts (q = 16/65024), 3 probe runs (N = 2), p = 0.01:

corollary Perr S≤ 10−13
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Ï How do we model the expected running time?

Ï Similar to τ define the cost function ρ:

ρ S Ok = r · (N +1)
ρ S (P 0) = r
ρ (Pn) (P (n+1)) = if n<N then r else 0

...

Ï Define expected cost until Err or Ok is reached:

Cfin s =
∫
ω
cost-until

{
Err,Ok

}
(s ·ω) dPr s

Ï 16 hosts, 3 probe runs, p = 0.01, r = 2ms, E = 3600s:

theorem Cfin S≤ 0.007
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Case study: Crowds protocol

14 / 24



Crowds protocol

Ï Anonymizing protocol
introduced and analysed by Reiter & Rubin (1998)

Ï Group of nodes establishes a connection by randomly chosing
another node or the final server

Ï Analysis:

Ï Probability that original sender contacts a collaborating node
is small

Ï Information a contacted collaborating node gains is small
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Ï Fix parameters

fixes N C :: node set and pf ::R and pi :: node→R

assumes 0< pf and pf < 1
assumes N 6= ; and finite N
assumes ∀n ∈N. 0≤ pi n and ∑

n∈Npi j = 1
assumes C 6= ; and C⊂N and ∀c ∈C. pi c = 0

Ï Define state space

datatype α c-state= S | I α |M α |E

Ω=
{
S
}
∪

{
I n

∣∣∣ n ∈N\C
}
∪

{
M n

∣∣∣ n ∈N
}
∪

{
E
}
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Ï Define transition function

τ S (I n) = pi n
τ (I n) (M n′) = 1/|N|
τ (M n) (M n′) = pf /|N|
τ (M n) E = 1−pf
τ E E = 1
τ _ _ = 0

Ï Prove Markov chain property

theorem markov-chain Ω τ
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Ï We introduce some random variables:

init the initiating node
last-ncoll the first node contacting a collaborating node
hit true if a collaborating node is contacted

Ï Probability that initiating node contacts a collaborating node

theorem PrS(ω. init ω= last-ncoll ω | hit ω)= 1− |N\C|−1
|N| ·pf

Ï Information the collaborating nodes gain when contacted

theorem Ihit(init; last-ncoll)≤
(
1− |N\C|−1

|N| ·pf
)
· log2 |N\C|
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Related Work: probability theory in ITPs

Ï Probability space of boolean sequences: N→ {0,1}
Hurd (2002), Hasan et al. (2009), Liu et al. (2011)

Ï Expectation and information theory (discrete, finite spaces)
Coble (2009)

Ï Formalization of pGCL (prob. & non-det. language)
Hurd et al. (2005), Audebaud & Paulin-Mohring (2009)
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Summary & Future Work

Ï Markov chains with probability, expectation, and information

Ï ZeroConf protocol: a few days; ≈ 300 lines of theory
Ï Crowds anonymity: a few weeks; ≈ 1,100 lines of theory
Ï Compare: ≈ 20,600 lines of theory for probability theory

Future Work:
Ï More Markov models (MDPs, CTMCs, CTMDPs, PTAs)
Ï Certification of probabilistic model checker results
Ï Specification language

Slides available at: http://www.in.tum.de/~hoelzl
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