
Technische Universität München
Institut für Informatik

Construction and Stochastic Applications of
Measure Spaces in Higher-Order Logic

Johannes Hölzl

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen

Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Thomas Huckle

Prüfer der Dissertation:

1. Univ.-Prof. Tobias Nipkow, Ph.D.

2. Univ.-Prof. Dr. Dr. h.c. Javier Esparza

Die Dissertation wurde am 10.10.2012 bei der Technischen Universität München

eingereicht und durch die Fakultät für Informatik am 31.01.2013 angenommen.

Abstract

A rich formalization of measure and probability theory is a prerequisite to ana-
lyzing probabilistic program behaviour in interactive theorem provers.

When using probability theory it is important to have the necessary tools (def-
initions and theorems) to construct measure spaces with the desired properties.
This thesis presents the formalization of a rich set of constructions. We start with
discrete measures, distributions, densities and products. Then, we introduce the
Lebesgue measure and products of probability spaces with an infinite index. The
latter is used to construct the stochastic processes of discrete-time Markov chains
on discrete state spaces.

For applications like randomized algorithms discrete probability spaces are
enough. Here single elements have nonzero measures assigned. More advanced
constructions are needed when we measure infinite traces, since sets of traces are
not discrete. Important models for such trace spaces are discrete-time Markov
chains. Here a trace is a sequence of states and the probability which state to
choose next only depends on the previous state. We construct the trace measure of
a Markov chain, based on the transition probabilities between states. With the for-
malization of Markov chains we verify probabilistic model checking, anonymity in
the Crowds protocol, and the probability to allocate a free address in the ZeroConf
protocol.

This development is done in the interactive theorem prover Isabelle/HOL.

Acknowledgment

I am deeply grateful to Tobias Nipkow for giving me the opportunity to work
in his group. Already in my undergraduate studies, his “Perlen der Informatik”
lectures introduced me to logic and interactive theorem proving. Later, he guided
me toward this fruitful and interesting intersection between interactive theorem
proving, mathematical analysis, and software verification. This happened with
the help of Andrei Popescu, who suggested to formalize Markov chains, and of
Marta Kwiatkowska, whose Marktoberdorf 2011 lecture inspired the formalization
of pCTL model checking. I am also grateful to Javier Esparza for agreeing to act
as a referee and examiner.

I want to thank all my (ex-)colleagues for the nice atmosphere in the Isabelle
group: Stefan Berghofer, Jasmin Blanchette, Sascha Böhme, Lukas Bulwahn, Amine
Chaieb, Brian Huffman, Dongchen Jiang, Cezary Kaliszyk, Alexander Krauss,
Ondřej Kunčar, Peter Lammich, Lars Noschinski, Steven Obua, Andrei Popescu,
Dmitriy Traytel, Thomas Türk, Christian Urban, and Makarius Wenzel. Thanks are
also due to Armin Heller, Robert Himmelmann, and Fabian Immler, who helped
to develop Isabelle’s multivariate analysis and measure theory. Andrei, Ondřej,
and Fabian deserve special thanks for reading drafts of this thesis and for giving
me valuable suggestions.

This research was financially supported by the DFG RTG 1480 (PUMA).

iii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Related Work . 2

1.2.1 Measure Theory in the Mizar Mathematical Library 2
1.2.2 Probability Space on N→ B by Hurd (hol98) 3
1.2.3 Lebesgue Integration by Richter (Isabelle/HOL) 3
1.2.4 Liveness Reasoning by Wang et al. (Isabelle/HOL) 4
1.2.5 Information Theory by Coble (HOL4) 4
1.2.6 Entropy Measures by Mhamdi et al. (HOL4) 4
1.2.7 Measure and Probability Theory by Lester et al. (PVS) 4
1.2.8 Multivariate Analysis by Harrison (HOL Light) 5
1.2.9 Analysis of Random Variables by Hasan et al. (HOL4) 5
1.2.10 Markov Chain Analysis by Liu et al. (HOL4) 5
1.2.11 Formalizations of Discrete Probability Spaces 6

1.3 Contributions . 6
1.4 Publications . 7
1.5 Preliminaries . 8

2 Measure and Integration 11
2.1 Measure Type and σ-Algebras . 12

2.1.1 Families of Sets . 12
2.1.2 Dynkin Systems . 16
2.1.3 Measure Type . 17
2.1.4 Measurable Functions . 20
2.1.5 Borel Sets . 21

2.2 Extending Premeasures . 24
2.3 Properties of Measure Spaces . 25

2.3.1 Finite and σ-Finite Measures 27
2.3.2 Uniqueness of Measures . 27
2.3.3 Null Sets and AE-Quantifier . 28

2.4 Lebesgue Integral . 29
2.4.1 Simple Functions . 30
2.4.2 Integral of Positive R-Functions 31
2.4.3 Induction on Borel-Measurable Functions 33
2.4.4 Integral of R-Functions . 34

v

CONTENTS

3 Concrete Measures 37
3.1 Counting Measure . 38

3.1.1 Integration over a Count Measure 39
3.2 Push-Forward Measure . 39
3.3 Density Measure . 41

3.3.1 Point Measure . 42
3.3.2 Radon-Nikodým Derivative . 43

3.4 Products of Measures . 44
3.4.1 Binary Product Measure . 44
3.4.2 Fubini’s Theorem . 46
3.4.3 Product σ-Algebra on Dependent Function Space 48
3.4.4 Finite Product Measures . 51

3.5 Lebesgue Measure . 52
3.5.1 Lebesgue-Borel Measure . 54
3.5.2 Lebesgue Integral and Gauge Integral 55
3.5.3 Euclidean Spaces and Product Measures 56

4 Probability 57
4.1 Probability Measures . 58

4.1.1 Random Variables . 58
4.1.2 Conditional Probability . 58
4.1.3 Jensen’s Inequality . 59

4.2 Families of Independent Sets and Functions 60
4.2.1 Independent Sets of Sets . 60
4.2.2 Independent Random Variables 61
4.2.3 Sequences of Independent Sets and 0-1-Laws 62

4.3 Distributions of Random Variables . 63
4.3.1 Joint Distribution . 64
4.3.2 Uniform Distribution . 65
4.3.3 Exponential Distribution . 66

4.4 Information . 66
4.4.1 Entropy . 67
4.4.2 Conditional Entropy . 68
4.4.3 Kullback-Leibler Divergence 69
4.4.4 Mutual Information . 70
4.4.5 Conditional Mutual Information 71

4.5 Infinite Product of Probability Spaces 72
4.6 Markov Chains . 74

4.6.1 Construction . 75
4.6.2 Iterative Equations . 77
4.6.3 Reachability . 77
4.6.4 Hitting Time . 78

vi

CONTENTS

5 Applications 79
5.1 pCTL Model Checking . 80

5.1.1 pCTL Formulas . 80
5.1.2 Computable HOL Fragment 81
5.1.3 Verifying the Algorithm . 81
5.1.4 Discussion . 85

5.2 ZeroConf Protocol . 86
5.2.1 Description of Address Allocation 87
5.2.2 Formal Model of ZeroConf Address Allocation 88
5.2.3 Probability of an Erroneous Allocation 89
5.2.4 Expected Running Time of an Allocation Run 90

5.3 Crowds Protocol . 91
5.3.1 Formal Model of Route Establishment 92
5.3.2 Independence of Initiating Jondo and Contacting Jondo . . . 94
5.3.3 Probability that Initiating Jondo Contacts a Collaborator . . . 95
5.3.4 Information Gained by Collaborators 96

5.4 Köpf-Dürmuth Countermeasure . 96

6 Conclusion 99
6.1 Summary . 99
6.2 Future Work . 100

A Extended Real Numbers 103

vii

Chapter 1

Introduction

This thesis describes the formalization of measure, probability and information
theory in the interactive theorem prover Isabelle/HOL.

1.1 Motivation

Probability theory is an important tool used in computer science. Probabilities
come either from outside of a computer system, such as physical characteristics,
probabilistic behaviour of external components or human behaviour. Or they are
internal to the computer system, such as the use of a random number generator
for probabilistic choice for symmetry breaking or by employing randomized al-
gorithms. Stochastic processes allow us to model such s system together with its
timing behaviour. Discrete-time or continuous-time Markov chains are instances
of stochastic processes often used to model the behaviour of probabilistic com-
puter systems.

The modelling of probabilistic systems requires a toolbox of probability mea-
sures: beginning with discrete measures, products of infinitely many independent
random variables, the Lebesgue measure (important to construct uniform, expo-
nential, normal, etc. distributed random variables), and finally Markov chains.
The probabilistic analysis requires the following concepts: the Lebesgue integral
to handle expectation, independence of random variables, and mutual information
and entropy to quantify the information stored in random variables. Since Kol-
mogorov’s seminal work on probability theory [46, 47], we know that probability
theory can be formally based on measure theory.

The goal of this thesis is to formalize these concepts and the necessary measure
theory in the interactive theorem prover Isabelle/HOL. Here with formalization
we mean to define a concept in terms of HOL, to prove its basic properties, to
prove its relations to other concepts, and to apply it in concrete applications. The
last two steps are very important: the relations to other concepts show the validity
of the definition and the concrete applications show the value of the formalization.

An alternative method to verify probabilistic properties of computer systems
is probabilistic model checking, as implemented by PRISM [51] or MRMC [45].
They interpret Markov chains and analyze quantitative properties, specified as
probabilistic CTL (pCTL) [30] or CSL [7] formulas. While model checking works

1

CHAPTER 1. INTRODUCTION

R BT Ω 6= Uα Integral λRn Product Dynkin

Hurd {0 .. 1}
Richter X
Coble X X
Mhamdi ITP ’10 X X X
Mhamdi ITP ’11 X X X X
Lester X X X X

PVS X X X X X X
Mizar X X X X X
HOL Light X X Rn+m

Isabelle X X X X X X X

Table 1.1: Overview of the current formalizations of measure theory.

automatic, it is restricted to fixed finite models. Newer work in this area tries to
mitigate these problems by applying a CEGAR-like approach [34], finding invari-
ants [44], or introducing parametric Markov chains [29]. While these techniques
move the boundary of what is possible in probabilistic model checking, there is
still the point where automation fails. With the development in this thesis we hope
to provide the basis for a method powerful enough to verify probabilistic models
not fitted for model checking.

1.2 Related Work

Table 1.1 gives an overview of the current formalizations of measure theory we
are aware of. The rows list first the work of Hurd [39], Richter [68], Coble [17],
Mhamdi et al. [57, 58], and Lester [52]. The second part of the rows list the cur-
rent state of theorem provers or libraries formalizing measure theory: beginning
with the PVS-NASA library,1 the Mizar Mathematical Library (MML), the multi-
variate analysis found in HOL Light and finally the work presented in this thesis.
Mhamdi et al. [58] represents the current state of HOL4, hence HOL4 is not listed.
The columns correspond to different measure theoretic concepts and features: us-
ing extended reals R for measure values, using topological spaces to define the
Borel sets BT , measure spaces Ω are independent of the type universe Uα, the
Lebesgue integral, the Lebesgue measure λRn , product measures, and formaliza-
tion of Dynkin systems.

1.2.1 Measure Theory in the Mizar Mathematical Library

Unlike all other theorem provers mentioned in this section Mizar is based on set
theory. The Mizar Mathematical Library (MML) is a rich mathematical library
with the intention to formalize mathematics. There is already a big collection
of formalized measure and probability theorems. Here a small excerpt of the
available theories:

1http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html

2

http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html

1.2. RELATED WORK

• Nędzusiak [60, 61] has been the first one who formalized measures in an ITP.
He defines probability measures on σ-algebras and the Borel sets generated
by right-bounded intervals in R.

• Białas extends these measures to the extended real numbers, introduces com-
pletion of measures [10], proves Caratheodory’s extension theorem [11], and
constructs the Lebesgue measure on real numbers [12].

• Endou et al. [24] introduce measurable functions and the Lebesgue integral.
They close with proving its monotone convergence.

• Merkl [56] formalizes Dynkin systems and Dynkin’s lemma.

• Doll [22] formalizes the independence of a family of events and uses it for
Kolmogorov’s 0-1-law.

All of these formalizations were published in Formalized Mathematics (FM), a jour-
nal publishing annotated Mizar theories.

With these formalizations the MML contains already the foundations of mea-
sure and probability theory. Unfortunately, while the MML contains formaliza-
tions of mathematics, it does not contains applications onto problems in computer
science. For example there is no formalization of Markov chains or trace spaces
which could be used to formalize algorithms.

1.2.2 Probability Space on N→ B by Hurd (hol98)

The formalization of probability theory in HOL starts with Hurd’s thesis [39]. He
introduces σ-algebras and measures, proves Caratheodory’s extension theorem
and uses it to introduce a probability space on infinite boolean sequences N→ B,
isomorphic to the Lebesgue measure on the unit interval {0 .. 1}. The space of
σ-algebras is type bound Ω = Uα.

He models the execution with a random number generator as a monad oper-
ating on traces in the probability space N → B. An atomic operation returns the
first element, and passes the rest of the stream to further operations. This monad
also provides a while-combinator with a rule for almost sure termination. Based
on this he provides methods to generate discrete random variables with uniform,
geometric, or Bernoulli distribution. Thus it allows him to model countably many
independent random variables with these discrete distributions.

1.2.3 Lebesgue Integration by Richter (Isabelle/HOL)

Richter [68] formalizes the Lebesgue integral in Isabelle/HOL and uses it together
with Hurd’s probability space. Richter introduces the Borel sets, but only on
right-bounded intervals in R. He does not formalize extended real numbers,
hence his positive integral is only defined if the result is a real number. Also the
space of σ-algebras is fixed to the type universe Ω = Uα. He does not formalize
Caratheodory’s theorem in Isabelle/HOL, instead he imports Hurd’s probability
space by using Obua’s and Skalberg’s HOL-import tool [64, 72].

3

CHAPTER 1. INTRODUCTION

1.2.4 Liveness Reasoning by Wang et al. (Isabelle/HOL)

Wang et al. [73] introduce measure spaces defined on arbitrary spaces Ω 6= Uα.
They prove Caratheodory’s extension theorem and use it to construct a probabil-
ity measure for execution traces of concurrent systems. They introduce parametric
fairness on these concurrent systems and prove that the probability of all paramet-
ric fair traces is 1.

The formalization in this thesis was developed independent of Wang et al. [73].
First, while developing the theories presented in this thesis the author was not
aware of their work. And second, the work described by Wang et al. [73] is unfor-
tunately not publicly available.

1.2.5 Information Theory by Coble (HOL4)

Coble [17] ports Richter’s formalization of the Lebesgue integral to HOL4 and gen-
eralizes the definition of σ-algebras, which are now defined on arbitrary spaces
Ω 6= Uα. For his goal of formalizing quantitative information flow analysis he re-
quires product spaces and the Radon-Nikodým derivative to define mutual infor-
mation. While his version of the Lebesgue integral works on continuous measure
spaces, his other theorems about the binary product measure, the Radon-Nikodým
theorem, and mutual information only work for discrete finite distributions.

1.2.6 Entropy Measures by Mhamdi et al. (HOL4)

Mhamdi et al. [57] extend Coble’s [17] work. They define Borel sets as the σ-
algebra generated by open sets comparable to the definition in this thesis. How-
ever, they do not formalize measure values as extended real numbers but only as
plain reals. They define a more restricted version of the almost everywhere predi-
cate, and do not give rules for the interaction with logical connectives. They prove
Markov’s inequality and the weak law of large numbers.

Later Mhamdi et al. [58] introduce extended real numbers, and use them for
measures and the Lebesgue integral. Based on this they formalize the Radon-
Nikodým theorem and relative entropy.

The work by Mhamdi et al. [57, 58] was done in parallel to the work presented
in this thesis.

1.2.7 Measure and Probability Theory by Lester et al. (PVS)

There is also the PVS formalization of topology by Lester [52]. He gives a short
overview of the measure theory based on his formalization of topology. This
includes measures using extended real numbers, a definition of almost every-
where, Borel sets on topological spaces, and the Lebesgue integral. Daumas and
Lester [20] and Daumas et al. [21] use this development to bound the probabil-
ity that the rounding error of big sums exceeds a limit. For this Daumas and
Lester [20] introduce martingales and apply Doob-Kolmogorov’s inequality. Later
Daumas et al. [21] prove Markov’s and Levy’s inequalities for this application.
They need binary product spaces, finite families of independent random variables,

4

1.2. RELATED WORK

and martingales. In recent development the PVS-NASA library also contains the
proof that the Lebesgue integral extends the Riemann integral. In PVS, abstract
reasoning is performed using parametrized theories, similar to our usage of lo-
cales.

1.2.8 Multivariate Analysis by Harrison (HOL Light)

The gauge integral (an extension of the Lebesgue integral) in HOL Light is based
on Harrison’s work on Euclidean spaces [31]. It is used to define a subset of the
Lebesgue measure, missing infinite measure values. Euclidean spaces are defined
as functions α → R, where α is a type with a finite type universe. The product
of two Euclidean spaces α → R and β → R is α× β → R. His theories are now
ported to Isabelle/HOL and we use them to introduce the Lebesgue measure and
to show that Lebesgue integrability implies gauge integrability and that in this
case both integrals are equal.

1.2.9 Analysis of Random Variables by Hasan et al. (HOL4)

Hasan [32] formalizes continuous random variables on Hurd’s probability space
of boolean sequences N→ B. First, he constructs a uniformly distributed random
variable (N → B) → {0 .. 1}. Then, by using the inverse transform method, he
constructs random variables with an exponential, uniform, Rayleigh, and triangu-
lar distribution. Finally, the cumulative distribution function is verified for each
random variable.

Hasan et al. [33] verify the expectations of these random variables. They use
Coble’s Lebesgue integral [17] on Hurd’s probability space. Abbasi [1] builds on
this and verifies the second moment and the variance of exponentially, uniformly,
and triangularly distributed random variables.

The random variables are directly constructed on the probability space, and
the distributions are not axiomatically introduced. As no product space is avail-
able in HOL4, this restricts the analysis to only one continuous random variable.
While Abbasi [1] introduces independence of finite lists of random variables, he
has no product spaces to construct a probability space with independent random
variables.

1.2.10 Markov Chain Analysis by Liu et al. (HOL4)

Based on Hurd’s and Hasan’s work Liu et al. [54] formalize the concept of Markov
chains. They do not construct a probability measure for the traces, and their
Markov chain property

Pr(Xn+1 = s|Xn = tn, . . . , X1 = t1) = Pr(Xn+1 = s|Xn = tn)

does not assume that Pr(Xn = tn, . . . , X1 = t1) is nonzero. For this, they only
support Markov chains where each state is always reachable.

5

CHAPTER 1. INTRODUCTION

1.2.11 Formalizations of Discrete Probability Spaces

Continuous measure spaces are not always necessary in program verification or
information theory. Usually, the cardinality of the result values is countable and
in many cases even finite. This simplifies the necessary formalizations as measure
theory is not necessary: measures are easily constructed, they are just discrete
sums, each function with a finite range is measurable and hence also integrable.

• Hurd et al. [40] formalize weakest precondition semantics of the probabilis-
tic guarded command language (pGCL) in HOL4. They introduce positive
extended reals to formalize expectations on a discrete probability space. The
programming language is deeply embedded allowing them to give an ax-
iomatization of weakest precondition.

• Audebaud and Paulin-Mohring [5] formalize randomized algorithms in Coq.
The programs are shallow embedded into Coq by representing them as ex-
pectations. For example, coin flip is represented as: flip p = (λ f . p · f True+
(1− p) · f False). The probability that a program p returns a value v is simply
expressed as p (χ {v}). The formalization does not restrict the integrand to
be measurable, so it only works for discrete measure spaces.

• Coble [17] formalizes the Lebesgue integral on arbitrary measure spaces,
hence also on continuous measures. However, his formalization of product
spaces, the Radon-Nikodým derivative, entropy, and mutual information is
limited to discrete finite measure spaces. For definitions, he uses general
measure theory, but for theorems he assumes a discrete finite measure space:
finite Ω and all sets are measurable A = P(Ω).

• Affeld and Hagiwara [2] introduce discrete finite probability spaces in Coq
to formalize Shannon’s source and channel coding theorems. They formal-
ize entropy only for discrete finite distributions, with this they avoid the
formalization of Lebesgue integration.

1.3 Contributions

Our work started as an Isabelle/HOL port of the formalizations done by Hurd [39],
Richter [68], and Coble [17]. Later, we reworked most of it to introduce a type for
measures, use the extended reals as measure and integral values, and define the
Borel sets to be generated by the open sets. Richter and Coble define the Lebesgue
integral as the limit of simple integrals of simple functions converging to f . Also,
their integral needs to be finite. Our definition of the Lebesgue integral is the one
found in Schilling’s textbook [69]. It defines the integral of f as the supremum
of all simple integrals of simple functions bounded by f . With this definition the
integrand is not required to be Borel-measurable, e.g. for monotony measurability
is not required.

The first main contribution is the formalization of a generic version of mea-
sure, probability and information theory. As we saw in the previous section, most
formalizations stick to one fixed measure space. They are restricted to sequences

6

1.4. PUBLICATIONS

of boolean values, the Lebesgue measure, or to discrete finite measure spaces.
In contrast we construct multiple different measure spaces and use a generalized
concept of random variables and their distributions. The range of random vari-
ables is not restricted to be discrete, finite, or real valued. We only assume that
they map into a σ-algebra.

Compared to Coble [17] and Affeld and Hagiwara [2] we support concepts
like entropy and mutual information also on continuous random variables. While
Mhamdi et al. [58] introduce Radon-Nikodým on generic measure spaces, their
information theoretic concepts are still limited to discrete random variables.

The second main contribution is the formalization of important probability
spaces for stochastic processes. Often the analysis of probabilistic properties as-
sumes probability spaces with random variables of a fixed distribution and with
additional assumptions like independence, memorylessness, etc. As the prob-
ability spaces get more and more complicated, it gets more likely to introduce
inconsistencies by just assuming their existence. The explicit construction of such
probability spaces allows us to get rid of these assumptions. To support such con-
structions we provide the product of infinitely many independent random vari-
ables and the trace space for Markov chains. For Markov chains we also include
important properties like state fairness and finite hitting time. These formaliza-
tions allow us to model and verify applications in computer science, like pCTL
model checking or randomized network protocols.

1.4 Publications

Most parts of this thesis are based on the following publications. They are incor-
porated with the permissions of the coauthors.

1. Johannes Hölzl and Armin Heller. Three Chapters of Measure Theory in
Isabelle/HOL. In M. C. J. D. van Eekelen, H. Geuvers, J. Schmaltz, and
F. Wiedijk, editors, Interactive Theorem Proving (ITP 2011), volume 6898 of
LNCS, pages 135–151, 2011.

2. Johannes Hölzl and Tobias Nipkow. Verifying pCTL Model Checking. In
C. Flanagan and B. König, editors, Tools and Algorithms for the Construction
and Analysis of Systems (TACAS 2012), volume 7214 of LNCS, pages 347–361,
2012.

3. Johannes Hölzl and Tobias Nipkow. Interactive Verification of Markov Chains:
Two Distributed Protocol Case Studies. In U. Fahrenberg, A. Legay, and C.
Thrane: Quantities in Formal Methods (QFM 2012), EPTCS, 2012.

The formalizations described in this thesis can be found in the Isabelle repos-
itory,2 the formalization of Markov chains and its applications in the AFP en-
try Markov_Models3 [36].

The following publications were written as part of the Ph.D. but do not fit
thematically in this thesis.

2http://isabelle.in.tum.de/repos/isabelle
3http://afp.sf.net/entries/Markov_Models.shtml

7

http://isabelle.in.tum.de/repos/isabelle
http://afp.sf.net/entries/Markov_Models.shtml

CHAPTER 1. INTRODUCTION

4. Andrei Popescu, Johannes Hölzl and Tobias Nipkow. Proving Concurrent
Noninterference. Accepted for Certified Programs and Proofs (CPP 2012).

5. Fabian Immler and Johannes Hölzl Numerical Analysis of Ordinary Differ-
ential Equations in Isabelle/HOL. In L. Beringer and A. Felty, editors, In-
teractive Theorem Proving (ITP 2012), volume 7406 of LNCS, pages 377–392,
2012.

6. Gilad Arnold, Johannes Hölzl, Ali Sinan Köksal, Rastislav Bodík, and Mooly
Sagiv. Specifying and Verifying Sparse Matrix Codes. In ACM SIGPLAN
International Conference on Functional Progamming (ICFP 2010), pages 249–260,
2010.

7. Johannes Hölzl Proving Inequalities over Reals with Computation in Is-
abelle/HOL, In G. Dos Reis and L. Théry, editors, ACM SIGSAM Interna-
tional Workshop on Programming Languages for Mechanized Mathematics Systems
(PLMMS’09), pages 38–45, 2009.

1.5 Preliminaries

The formalizations presented in this thesis are done in the interactive theorem
prover Isabelle/HOL. In this section we give an overview of our syntactic conven-
tions.

The term syntax follows the λ-calculus, i.e. function application is juxtaposition
as in f t. The notation t :: τ means that t has type τ. Types are built from the base
types B (booleans), N (natural numbers), R (reals), type variables (α, β, etc), via
the function type constructor α → β, via the set type constructor α set, and via
Cartesian products α× β. We also use extended real numbers R, see Appendix A.

When defining a new constant we first declare the type of the constant. If the
constant has a special syntax, i.e. if it uses sub- or super-script for arguments, or
if it has a mixfix syntax, then we use � to mark the positions in the constant for
these special arguments.

Similar to functional programming, Isabelle/HOL provides an if-expression
and a let-expression. The if-expression has the following mixfix syntax:

if � then � else � :: B→ α→ α→ α

The expression let x1 = t1; · · · ; xn = tn in t x1 · · · xn is translated into t t1 · · · tn.
For further syntax conventions see Fig. 1.1.

Isabelle/HOL supports type classes allowing us to define constants and to state
theorems about type variables with additional constraints. We use α :: T to an-
notate that the type variable α is in the type class T . Isabelle/HOL provides type
classes for linear orders, complete lattices, monoids, groups, fields, etc. The type
classes explicitly appearing in this thesis are topological spaces T , types with a
countable universe C and Euclidean spaces E . For Euclidean spaces we also use a
different annotation: we write Rn, like a regular type. For example we write t :: Rn

instead of writing t :: α :: E and assuming that the dimensionality of the Euclidean
space α is n.

8

1.5. PRELIMINARIES

For our development we heavily build on locales [28], a mechanism in Is-
abelle/HOL to introduce concepts combining variables with assumptions about
these variables. For example we will introduce algebras as a space Ω and a set of
sets A and the assumption that A is closed under the Ω-complement, union and
intersection. The locale is then a context of constants (e.g. Ω and A) and axioms
(e.g. closure properties).

The locale-command introduces a new locale

locale loc = par+ fixes x ::α assumes P1 x and . . . and Pn x

This introduces the locale loc with a variable x and the assumptions P1 x, . . . , Pn x.
It inherits the context such as variables and assumptions, but also theorems, abbre-
viations, definitions, setup for the proof methods and more from its parent locale
par. This command also introduces a predicate loc x = P1 x ∧ . . . Pn x. We get the
theorems for a specific instantiation x = C by proving loc C. When we prove a
theorem in the locale loc, we also have access to the theorems of par, i.e. a lemma
in algebra is immediately available in the σ-algebra locale.

Of course we can use the locale predicate loc just as a regular predicate. In this
thesis, when we work inside a locale loc with the variables x we write in italics “In
this section we assume x is a loc”. This is the same as adding loc x to all following
theorems and x as parameter to all definitions.

9

CHAPTER 1. INTRODUCTION

SOME x. P x Hilbert choice, chooses an arbitrary element x for which P x
holds:

(∃x. P x) −→ P (SOME x. P x)

LEAST x. P x The least element x fulfilling P x:

P i∧
(
∀k < i. ¬P k

)
=⇒

(
LEAST x. P x

)
= i

supi∈I f i,
infi∈I f i

The supremum and infimum of { f i | i ∈ I}. We use it not only
for complete lattices but also as minimum and maximum when
I is finite.

xi The i-th component of the vector x.

a < b, a ≤ b The usual order relations, this is also defined for functions:
f ≤ g⇔ (∀x. f x ≤ g x) and for vectors x ≤ y⇔ (∀i. xi ≤ yi)

{a <..< b} The open and closed interval ranging from a to b. For infinite
intervals we just drop the infinite side before or after the dots,
e.g. {a <..} = {x | a < x}. When a side is closed the <-symbol
is omitted, e.g. {a .. b} = {x | a ≤ x ∧ x ≤ b}.

P(A) The power set P(A) = {B | B ⊆ A}.
Uα The universe for type α: Uα :: α set = {x | True}
f [A] The image of A under f : f [A] = { f x | x ∈ A}.
f−1[B] The inverse image of B under f : f−1[B] = {x | f x ∈ B}
A× B The Cartesian set product: A× B = {(a, b) | a ∈ A, b ∈ B}
undefined :: α An arbitrary element of type α.
�

i∈I A i The dependent function space (which is a set, not a type):
¡

i∈I

A i = {ω | (∀i ∈ I. ω i ∈ A i)∧ (∀i /∈ I. ω i = undefined)}

We require each function to have the undefined value outside
of I, otherwise there is more than one function with the same
values on I.

I → A The dependent function space when A is constant. This should
not be confused with the function type annotation α→ β.

ω�I The restriction of x to the domain J: ω�I i = x i if i ∈ I other-
wise ω�I I = undefined.

x·ω Prepending an element x to a sequence ω :: N → α is written
as x·ω, i.e. (x·ω) 0 = x and (x·ω) (n + 1) = ω n.

χ A x The indicator function: χ A x = 1 if x ∈ A otherwise χ A x = 0.

incseq A The sequence A is increasing: A 0 ≤ A 1 ≤ A 2 ≤ · · ·
decseq A The sequence A is decreasing: A 0 ≥ A 1 ≥ A 2 ≥ · · ·

Figure 1.1: Syntax conventions used in this thesis.
10

Chapter 2

Measure and Integration

Before we construct measures in the next chapter, we want to formalize them from
an abstract point of view. This chapter starts with measurability, characterizing
valid sets and functions we want to use on measure spaces. Then, we formalize
uniqueness and Caratheodory’s extension theorem to show that a unique measure
exists when the measure values for easily characterizable sets are fixed. Finally,
the Lebesgue integral is formalized.

The formalizations described in this chapter have quite some history in HOL
theorem provers. It starts with Hurd’s formalization [39] in hol98, which al-
ready covers an abstract description of measure spaces and Caratheodory’s ex-
tension theorem. Parts of the measure space formalization was then ported to
Isabelle/HOL and used by Richter [68] to formalize the Lebesgue integral. The
Lebesgue integration was than ported back and generalized to HOL4 by Coble [17].
Finally, this theory was ported again to Isabelle/HOL, this time containing Cara-
theodory’s extension theorem, started by L. C. Paulson and later continued by
Hölzl and Heller.

These ported theories were then extended and generalized in multiple ways:

• The introduction of extended real numbers R allows a generalization of mea-
sure values. This enables us to define measures with infinite measure val-
ues, like the Lebesgue measure. Lebesgue integration is defined for arbitrary
nonnegative functions, also for functions with infinite integrals.

• We introduce Dynkin’s lemma used to show that equality on measures can
be reduced to equality on the generating sets. Dynkin’s lemma is later also
used to construct product measures and for the σ-closure of independent
sets.

• Rings and semirings are introduced. Caratheodory’s extension theorem is
generalized to semirings. We formalize the proofs about premeasures on
semirings found in Elstrodt [23].

• Isabelle/HOL specific concepts like type classes and locales are employed
all throughout the development. Type classes allow us to define Borel sets
on topological spaces. Locales help to describe the hierarchies of set systems
and measure spaces.

11

CHAPTER 2. MEASURE AND INTEGRATION

• The concept of a measure space is not introduced as predicate, but cast into
its own type. This improves the support for automation as there are no
assumptions necessary when a σ-algebra or a measure space is needed.

The first three generalizations and extensions are based on the measure theory
books from Bauer [9] and from Schilling [69].

The work described in this chapter is based on joint work with Armin Heller [35].

2.1 Measure Type and σ-Algebras

A central element in measure theory is the concept of measurable sets. A mea-
sure is not defined on all subsets of the space. The sets for which it is defined
are the measurable sets. One obviously wants that as many sets as possible are
measurable and that as many operations as possible result in measurable sets. Un-
fortunately, the downside is that the more sets are measurable the more difficult it
gets to construct a measure with the desired properties.

A famous result in measure theory is Vitali’s theorem1, stating that for each
translation invariant measure with µ {a .. b} = b− a, there exists a non-measurable
set. As we want a translation invariant Lebesgue measure λ we know due to Vi-
tali’s theorem that it cannot be defined for all subsets of R. This does not only ap-
ply to the Lebesgue measure, but we can use it to construct similar counterexam-
ples for infinite products and the trace measure of Markov chains. So we can even
strengthen the last sentence in the previous paragraph: sometimes it is plainly
impossible to construct a measure with the wanted properties where all sets are
measurable.

The problem is solved in measure theory by introducing σ-algebras, which are
families of sets closed under complement and countable intersection and union.
For example, we can define the Lebesgue measure on Borel sets, the smallest σ-
algebra containing all intervals {a .. b}. To now accommodate both sides the
measurable sets are chosen to be the smallest σ-algebra containing sets for which
the measure can be easily defined. The measurable sets are said to be generated
by the aforementioned intervals. The goal of this section is now to provide tools
to handle σ-algebras, and to reduce statements about σ-algebras to statements on
their generating sets.

2.1.1 Families of Sets

We first introduce a couple of set systems we want to use as generators for σ-
algebras: semirings, rings, and algebras. All these set systems can be organized
in a hierarchy, each of them requires closure under a set of operations. We cast
this hierarchy into a locale hierarchy: σ-algebra ⊆ algebra ⊆ ring ⊆ semiring ⊆
family of sets. A family of sets is a set of sets A where each set A ∈ A is a subset of

1A proof of Vitali’s theorem is found in Appendix D in Schilling [69]. There are formalizations
in interactive theorem provers, like Cowles and Gamboa [19] in ACL2, or in HOL Light (http:
//hol-light.googlecode.com/svn/trunk/Examples/vitali.ml).

12

http://hol-light.googlecode.com/svn/trunk/Examples/vitali.ml
http://hol-light.googlecode.com/svn/trunk/Examples/vitali.ml

2.1. MEASURE TYPE AND σ-ALGEBRAS

the space Ω:

locale family-of-sets =
fixes Ω :: α set and A :: α set set
assumes A ⊆ P(Ω)

This is necessary as in many cases we are not interested in the type universe Uα,
but only a subset of it, e.g. α can be the type of natural numbers N and we want
to have a distribution on the finite subset Ω = {0 .. N}.

Notation: For set comprehensions {x ∈ Ω | P x} where we can infer the space
Ω we usually drop Ω and write just {x | P x}. This typically occurs when the set
comprehension is used together with a family of sets, {x | P x} ∈ A = {x ∈ Ω |
P x} ∈ A, or with the measure type, µM {x | P x} = µM {x ∈ ΩM | P x}.

A semiring of sets2 contains the empty set, is closed under intersection, and
the result of set difference is the union of finitely many, disjoint elements of the
semiring.

disjoint-family� :: ι set→
(
ι→ α set

)
→ B

disjoint-familyI F ⇔ ∀i, j ∈ I .
(

i 6= j =⇒ F i∩ F j = ∅
)

disjoint :: α set set→ B

disjoint A ⇔ disjoint-familyA id

locale semiring-of-sets = family-of-sets +

assumes ∅ ∈ A
and ∀A, B ∈ A. A∩ B ∈ A
and ∀A, B ∈ A. ∃D ⊆ A. finite D ∧ disjoint D ∧ A \ B =

⋃D
An example for a semiring is the set of all intervals {a ..< b} on a linear ordered
type.

A ring of sets3 is a family of sets containing the empty set and is closed un-
der union, intersection and difference or, alternatively, a semiring closed under
union. By introducing rings as a sub-locale of semirings we automatically enable
all theorems about semirings for rings.

locale ring-of-sets = semiring-of-sets +

assumes ∀A, B ∈ A. A∪ B ∈ A

But, we also want to show that a ring is defined by its closure properties:

lemma ring-of-sets-iff:
ring-of-sets Ω A ⇔
A ⊆ P(Ω) ∧∅ ∈ A ∧ (∀A, B ∈ A. A∪ B ∈ A ∧ A \ B ∈ A)

We will see for Caratheodory’s extension theorem that it is important to have
a ring on which a premeasure is defined. However, it is easier to define a semiring
and then extend it to a ring. We generate a ring out of a semiring A:

generated-ring :: α set set→ α set set
generated-ring A =

{⋃
G | G ⊆ A∧ finite G ∧ disjoint G

}
2When not otherwise specified, semiring refers to a semiring of sets.
3When not otherwise specified, ring refers to a ring of sets.

13

CHAPTER 2. MEASURE AND INTEGRATION

This generates a ring:

lemma generated-ring:
semiring-of-sets Ω A =⇒ ring-of-sets Ω (generated-ring A)

An algebra contains the empty set, the entire space and is closed under set
difference, union and intersection. Again, we express this as an extension of a
ring:

locale algebra = ring-of-sets +

assumes Ω ∈ A

It is enough to show that an algebra contains the empty space and is closed
under union and complement:

lemma algebra-iff:
algebra Ω A ⇔
A ⊆ P(Ω) ∧∅ ∈ A ∧ (∀A, B ∈ A. A∪ B ∈ A ∧Ω \ A ∈ A)

Finally, our goal is to define σ-algebras: algebras closed under countable union.
They are important for the definition of measures: the measurable sets form a
σ-algebra. We can incorporate σ-algebras in our locale hierarchy:

locale σ-algebra = algebra +

assumes ∀F ∈N→ A. (
⋃

i F i) ∈ A

By this definition σ-algebras are also algebras. To show that a family of sets is a
σ-algebra it is not required to prove all the assumptions for a semiring, ring and
algebra. It is enough to show that it contains the empty set and is closed under
complement and countable union.

lemma σ-algebra-iff:

σ-algebra Ω A ⇔
(
A ⊆ P(Ω) ∧ ∅ ∈ A ∧ (∀A ∈ A. Ω \ A ∈ A) ∧

(∀F ∈N→ A. (
⋃

i F i) ∈ A)
)

From the definition of σ-algebra we easily derive that it also contains countable,
finite and binary union and intersection, as well as set difference. The following
rules assume that we are in a σ-algebra A over a set Ω.

lemmas
A, B ∈ A =⇒ A∪ B, A∩ B, A− B ∈ A
A ⊆ A ∧ finite A =⇒ ⋃

A ∈ A
A ⊆ A ∧ finite A ∧ A 6= ∅ =⇒ ⋂

A ∈ A
F ∈ Uι::C → A =⇒ (

⋃
i F i) , (

⋂
i F i) ∈ A

∅, Ω ∈ A

An alternative characterization of these rules uses set comprehension. As a re-
minder, the set comprehension syntax implicitly restricts the set on the space Ω,

14

2.1. MEASURE TYPE AND σ-ALGEBRAS

i.e. {x | P x} = {x ∈ Ω | P x}. This allows more generic rules for measurability:
finite intersection is not restricted to an empty index set and we can match on
negation. implication, and constant predicates.

lemmas
{x | P x}, {x | Q x} ∈ A =⇒
{x | P x =⇒ Q x}, {x | P x⇔ Q x}, {x | P x ∧ Q x}, {x | P x ∨ Q x} ∈ A

finite I ∧ (∀i ∈ I. {x | P i x} ∈ A) =⇒
{x | ∀i ∈ I. P i x}, {x | ∃i ∈ I. P i x} ∈ A

(∀i :: ι :: C. {x | P i x} ∈ A) =⇒ {x | ∀i. P i x}, {x | ∃i. P i x} ∈ A

{x | P x} ∈ A =⇒ {x | ¬P x} ∈ A

{x | k} ∈ A

These alternative characterizations are handy if the measurable set can be ex-
pressed as set comprehension of a first-order logic formulae. For example, con-
sider the proof of the fact that the LEAST operator on N is measurable:

lemma Collect-LEAST-N:
(∀i :: N. {x | P i x} ∈ A) =⇒ {x | Q (LEAST i. P i x)} ∈ A

Proof. The least natural number i fulfilling a predicate P i x is easy to represent:
either an i exists such that P i x holds, then the least element can be characterized,
otherwise P i x is always false:

Q (LEAST i. P i x)⇔(
(∃i. P i x) =⇒ ∀i.

(
P i x =⇒ (∀ j. P j x =⇒ i ≤ j) =⇒ Q i

))
∧(

¬(∃i. P i x) =⇒ Q (LEAST i. False)
)

By rewriting the set {x | Q (LEAST i. P i x)} with this equation it is easy to prove
measurability by using the set-comprehension lemmas. 2

We define the σ-algebra generated by G (also called σ-closure of G) as an inductive
set. This set contains the generator G and is closed under the defining properties
of σ-algebras:

inductive σ-sets :: α set→ α set set→ α set set
where G ⊆ σ-sets Ω G
and ∅ ∈ σ-sets Ω G
and ∀A ∈ σ-sets Ω G. Ω \ A ∈ σ-sets Ω G
and ∀F ∈N→ σ-sets Ω G. (

⋃
i F i) ∈ σ-sets Ω G

The inductive command provides us with an induction rule for sets in σ-sets:

lemma σ-sets.induct:
A ∈ σ-sets Ω G ∧
(∀A ∈ G. P A) ∧ P ∅ ∧ (∀A ∈ σ-sets Ω G. P A =⇒ P (Ω \ A)) ∧
(∀F ∈N→ σ-sets Ω G. (∀i. P (F i)) =⇒ P (

⋃
i F i)) =⇒

P A

15

CHAPTER 2. MEASURE AND INTEGRATION

We show that for each family of sets G, σ-sets generates a σ-algebra:

lemma σ-algebra-σ-sets:
G ⊆ P(Ω) =⇒ σ-algebra Ω (σ-sets Ω G)

To be usable as a generating operator, we also show that the σ-algebra defined by
σ-sets is the smallest one:

lemma σ-algebra-σ-sets-least:
σ-algebra Ω A =⇒ ∀G ⊆ A. σ-sets Ω G ⊆ A

Also, by the definition of σ-sets it follows that it is a superset of the generator
G. Generators need to be families of sets, no further restriction is required on
generators when used with σ-sets. Later, when we show uniqueness of measures or
when we construct measures, the generators will be ∩-stable families, semirings,
rings, or even algebras.

The σ-closure operation is compatible with the closure operations for rings:

lemma σ-sets-generated-ring-eq:
semiring-of-sets Ω G =⇒ σ-sets Ω (generated-ring G) = σ-sets Ω G

2.1.2 Dynkin Systems

The inductive definition of σ-sets gives us a nice induction rule to prove properties
about sets from the σ-algebra generated by G. However, this induction rule has
one problem: the sets in the countable union case are not disjoint. This is prob-
lematic when we want to prove properties about measures, as it only commutes
with sums and unions if the sets are disjoint. We will provide an induction rule for
σ-algebras generated by ∩-stable sets where the countable union case is weakened
to the countable union of disjoint sets.

First, we introduce Dynkin systems as a family of sets containing the space and
closed under complement and countable unions of disjoint sets.

locale dynkin-system = family-of-sets +

assumes Ω ∈ A
and ∀A ∈ A. Ω \ A ∈ A
and ∀F ∈N→ A. disjoint-familyN F =⇒ (

⋃
i F i) ∈ A

Second, we introduce the smallest Dynkin system generated by G (also called the
Dynkin closure of G). The inductive command would introduce the same definition,
but we do not need an induction rule so we do not use that command.

dynkin-sets :: α set→ α set set→ α set set
dynkin-sets Ω G =

⋂ {A | G ⊆ A ∧ dynkin-system Ω A
}

The generated set is a Dynkin system:

lemma dynkin-system-dynkin-sets:
G ⊆ P(Ω) =⇒ dynkin-system Ω (dynkin-sets Ω G)

16

2.1. MEASURE TYPE AND σ-ALGEBRAS

Third, when the generator set G is ∩-stable, we know that the Dynkin closure
is equal to the σ-closure:

∩-stable :: α set set→ B

∩-stable A ⇔ ∀A, B ∈ A. A∩ B ∈ A

theorem σ-sets-eq-dynkin-sets:
G ⊆ P(Ω) ∧ ∩-stable G =⇒ dynkin-sets Ω G = σ-sets Ω G

Finally, Dynkin systems are now used to prove Dynkin’s lemma, which helps
to generalize statements about all sets of a ∩-stable set to the σ-closure of that set.

lemma dynkin-lemma:
dynkin-system Ω A ∧ ∩-stable G ∧ G ⊆ A =⇒ σ-sets Ω G ⊆ A

When we instantiate A = {A ∈ σ-sets Ω G | P A} we gain a nice introduction rule
for sets in the σ-closure of G. Compared to Lemma σ-sets.induct, it assumes a
∩-stable generator G but the union case of this induction rule is now weakened to
a disjoint union:

corollary σ-sets-induct-disjoint:
∩-stable G ∧ G ⊆ P(Ω) ∧ A ∈ σ-sets Ω G ∧
(∀A ∈ G. P A) ∧ P ∅ ∧
(∀A ∈ σ-sets Ω G. P A =⇒ P (Ω \ A)) ∧
(∀F ∈N→ σ-sets Ω G.
disjoint-familyN F ∧ (∀i. P (F i)) =⇒ P (

⋃
i F i)) =⇒

P A

The format of this rule allows us to apply Isabelle’s induct proof method [74]
resulting in nice structural proofs.

2.1.3 Measure Type

Before we continue with σ-algebras we define the concept of measure spaces. Up
to now we used locales to work with σ-algebras, hence we would be inclined to
use locales to introduce measure spaces. However this is a disadvantage if more
than one measure space is used in a proof. Either we introduce a new locale having
multiple measure space sublocales, or we instantiate multiple measure spaces in
the proof itself. Both usages produce a lot of instantiated theorems and hence do
not work very well with automation, especially the simplifier.

As an alternative we introduce a type representing measure spaces. First we
introduce the concept of a positive and countably additive function µ on a set of
sets A:

positive :: α set set→
(
α set→ R

)
→ B

positive A µ ⇔ µ ∅ = 0∧ (∀A ∈ A. 0 ≤ µ A)

countably-additive :: α set set→
(
α set→ R

)
→ B

countably-additive A µ ⇔
∀F ∈N→ A.

(
disjoint-familyN F ∧ (

⋃
i F i) ∈ A =⇒

µ (
⋃

i F i) = ∑i µ (F i)
)

17

CHAPTER 2. MEASURE AND INTEGRATION

Note that countable additivity implies commutativity of the measure w.r.t. sum
and union only if the union of the sequence F is in A. We do not yet require
that A is a σ-algebra. This is important for Caratheodory’s extension theorem in
Section 2.2, where we extend premeasures to measures.

A measure space is a σ-algebra A with an associated measure, i.e. a positive,
countably additive function µ:

measure-space :: α set→ α set set→
(
α set→ R

)
→ B

measure-space Ω A µ ⇔
σ-algebra Ω A∧ positive A µ∧ countably-additive A µ

Now, we introduce the measure type. This puts together the space Ω, the mea-
surable sets A, the measure function µ, and the assumption that they form a mea-
sure space. The typedef command introduces the type αmeasure where the type
universe is isomorphic to the set of all triples (Ω,A, µ) forming a measure space:

typedef αmeasure ={
(Ω,A, µ) | (∀A /∈ A. µ A = 0) ∧measure-space Ω A µ

}
We fix the measure µ A for non-measurable sets A to zero. As a result, we have for
each measure space a unique element in αmeasure. We need to show that such a
measure space exists, which is easy: we choose the power set A = P(Ω), and the
constant zero function as measure. Then, the typedef command introduces the
abstraction morphism

Absmeasure :: (α set× α set set× (α set→ R))→ αmeasure

and the representation morphism

Repmeasure :: αmeasure→ (α set× α set set× (α set→ R)) .

The typedef command provides us also the following law: when (Ω,A, µ) forms
a measure space then Repmeasure (Absmeasure (Ω,A, µ)) = (Ω,A, µ).

First we introduce access functions to get the space, the measurable sets and
the measure function of a measure:

Ω� :: αmeasure→ α set
ΩM = let (Ω,A, µ) = RepmeasureM in Ω

A� :: αmeasure→ α set set
AM = let (Ω,A, µ) = RepmeasureM in A
µ� :: αmeasure→ α set→ R

µM = let (Ω,A, µ) = RepmeasureM in µ

The access function for measures µM is called the extended measure, returning
extended real values. Later we will introduce the finite measure µ

f
M, returning

real values.
With the type definition of αmeasure two measuresM and N are equal iff the

measurable sets are equal and the measure functions are equal on these sets:

lemma measure-eqI:
AM = AN ∧ (∀A ∈ AM. µM A = µN A) =⇒ M = N

18

2.1. MEASURE TYPE AND σ-ALGEBRAS

In Section 2.3.2 we will see a variant of this lemma which assumes equality only
on an ∩-stable generator.

We use the abstraction morphism to define measures by providing the space
Ω, the generating sets G and the measure function µ:

measure-of Ω G µ =

let A = σ-sets Ω G
in if measure-space Ω A µ then Absmeasure (Ω,A, λA. if A ∈ A then µ A else 0)

else Absmeasure (Ω,A, λA. 0)

We force the measure function to be zero if we do not have a measure space. This
allows us to reason separately about the σ-algebra and the associated measure
function. With this trick we have the following rules:

lemma space-measure-of:
G ⊆ P(Ω) =⇒ Ωmeasure-of Ω G µ = Ω

lemma sets-measure-of:
G ⊆ P(Ω) =⇒ Ameasure-of Ω G µ = σ-sets Ω G

lemma µ-measure-of-σ:
σ-algebra Ω A ∧ positive A µ ∧ countably-additive A µ =⇒
∀A ∈ A. µmeasure-of Ω A µ A = µ A

Sometimes only the σ-algebra of a measure space is of interest. In this case we use
the abbreviation σ-of Ω A for measure-of Ω A (λx. 0).

The usage of the type αmeasure results in a different proof structure. If we used
a predicate on the triple (Ω,σ-sets Ω G, µ) we would not need a proof to show the
measure values for elements in G. But we need to prove explicitly that it forms
a measure space when applying theorems about measure spaces. In contrast, by
using the measure type we know that the result of measure-of Ω G µ is a measure.
When we apply a theorem about measure spaces this assumption is fulfilled by
the type. Only when we want to show properties about the measure values for
the elements in G, we need to prove that that (Ω,σ-sets Ω G, µ) forms a measure
space.

When constructing a measure with measure-of the measure function needs to
be defined on all measurable sets. But often the measure function is more easily
defined on the generating sets. Also, the generating sets are often the range of a
function G over some index set I. It then is easier to define the measure value based
on the index than on the set G[I]. For example, to define the Lebesgue measure the
index set is {(a, b) | a ≤ b}, the generating sets are all {a ..< b}, and the measure
values are b− a. For this we introduce the helper function extend-measure:

extend-measure :: α set→ ι set→
(
ι→ α set

)
→
(
ι→ R

)
→ αmeasure

extend-measure Ω I G µ =

let P µ′ = (∀i ∈ I. µ′ (G i) = µ i) ∧measure-space Ω (σ-sets Ω G[I]) µ′

in if (∃µ′. P µ′) ∧ ¬(∀i ∈ I. µ i = 0) then measure-of Ω G[I] (SOME µ′. P µ′)

else measure-of Ω G[I] (λA. 0)

19

CHAPTER 2. MEASURE AND INTEGRATION

With the left conjunct in the if expression we guarantee that the resulting measure
is a zero measure even when the measure is not uniquely defined on G[I] and µ is
a zero premeasure. Similarly to measure-of we guarantee that the measurable sets
are the sets generated by G[I] even when µ does not generate a measure space:

lemma space-extend-measure:
G[I] ⊆ P(Ω) =⇒ Ωextend-measure Ω I G µ = Ω

lemma sets-extend-measure:
G[I] ⊆ P(Ω) =⇒ Aextend-measure Ω I G µ = σ-sets Ω G[I]

To extend a premeasure µ to the measure extend-measure Ω I G µ we need to give
a witness measure function µ′ extending µ:

lemma µ-extend-measure:
M = extend-measure Ω I G µ ∧
G[I] ⊆ P(Ω) ∧

(
∀i ∈ I. µ′ (G i) = µ i

)
∧

positive AM µ′ ∧ countably-additive AM µ′ ∧ i ∈ I =⇒
µM (G i) = µ i

In Section 2.2 we will see how to construct such a measure function. In Sec-
tion 2.3.2 we will see that when the generating set is ∩-stable, then the extended
measure is uniquely defined.

2.1.4 Measurable Functions

In measure theory a function f is called N -measurable if for all A ∈ AN the inverse
image {x | f x ∈ A} = f−1[A] ∩ ΩM is measurable in M. The intersection of
f−1[A] with ΩM is necessary in HOL: the function f is a total function and hence
also defined outside of ΩM. To ensure that the inverse image is still measurable
we need to cut it with ΩM. We also add the assumption f ∈ ΩM → ΩN , forcing
f to map elements from ΩM into ΩN . These are two concession we need to make
by not working type based, i.e. our measure spaces ΩM and ΩN are not restricted
to the type universe.

measurable :: αmeasure→ βmeasure→
(
α→ β

)
set

measurableMN =
{

f ∈ ΩM → ΩN
∣∣∣ ∀A ∈ AN . f−1[A] ∩ΩM ∈ AM

}
This definition looks similar to continuity on topological spaces, just replace mea-
surable sets by open sets. However, while it is easy to construct and analyze non-
continuous functions this is not the case with measurability. Similar to measurable
sets, the goal is to have measurable as many functions as possible. For example,
most theorems about the Lebesgue integral require measurable functions.

Without knowing more about the concrete σ-algebras of M and N we only
provide a couple of generic statements about the composition of measurable func-

20

2.1. MEASURE TYPE AND σ-ALGEBRAS

tions:

lemma measurable-id:
(λx. x) ∈ measurableMM

lemma measurable-const:
c ∈ ΩN =⇒ (λx. c) ∈ measurableMN

lemma measurable-comp:
f ∈ measurableM1 M2 ∧ g ∈ measurableM2 M3 =⇒
(g ◦ f) ∈ measurableM1 M3

lemma measurable-If:
f ∈ measurableMN ∧ g ∈ measurableMN ∧ A ∈ AM =⇒
(λx. if x ∈ A then f x else g x) ∈ measurableMN

When the σ-algebra of N is generated by G we can reduce N -measurability to
measurability on the generator G:

theorem measurable-σ:
AN = σ-sets Ω G ∧ G ⊆ P(Ω) ∧ f ∈ ΩM → Ω ∧
(∀A ∈ G. f−1[A] ∩ΩM ∈ AM) =⇒
f ∈ measurableMN

This simplifies the task of showing that a function is measurable, as the generating
sets are often very easy to characterize.

2.1.5 Borel Sets

In general, the Borel sets form the canonical σ-algebra on the real numbers. They
will be later crucially used for the Lebesgue measure and integral. For exam-
ple, on the Lebesgue measure at least all bounded intervals {a ..< b} should be
measurable. For the Lebesgue integral all half open intervals {..< a} should be
measurable. It is easy to see that they generate the same σ-algebra: {a ..< b} =

{..< b} − {..< a} and {..< a} = (
⋃

n{−n ..< a}). Actually, we can even go one step
further: this σ-algebra contains also all open sets.

The Borel sets are the σ-algebra generated by the open sets of a topological
space. In Isabelle/HOL topological spaces form the type class T . For each type
α in the type class T , open A holds when A :: α set is open in the topology of
α :: T . Types in T include Euclidean spaces (hence R), pairs of topological spaces
α :: T × β :: T and R.

Bα :: (α :: T)measure
Bα = σ-of Uα {G | open G}

In the introduction of Section 2.1 we learned about Vitali’s theorem, stating the
existence of a non Lebesgue-measurable set. As each Borel set is Lebesgue mea-
surable there also exists a non-Borel set of real numbers, so the Borel σ-algebra is
not the power set of the real numbers.

From the definition of Bα it immediately follows that open, closed, and com-
pact sets are Bα-measurable. On BRn the intervals, like {a ..< b} or {a <..}, are

21

CHAPTER 2. MEASURE AND INTEGRATION

also measurable including the singleton set. Is the other direction also true, is
BRn generated by intervals? As each open set can be covered with intervals with
rational endpoints, the Borel sets are alternatively generated by intervals:

theorem borel-eq-greaterThanLessThan:
BRn = σ-of URn {{a <..< b} | a, b}

corollary borel-eq-lessThan, -greaterThan, -atMost, -atLeast:
BRn = σ-of URn {{..< a} | a},
BRn = σ-of URn {{a <..} | a},
BRn = σ-of URn {{.. a} | a},
BRn = σ-of URn {{a ..} | a}

A continuous function maps open sets to open sets, hence from the definition
of the Borel sets and Theorem measurable-σ it immediately follows that a con-
tinuous function is Bα-measurable. continuous-on A f holds when the function
f :: α→ β, for two topological spaces α :: T and β :: T , is continuous on A :: α set.
The real analysis and the multivariate analysis in Isabelle/HOL already provide
continuity results for arithmetic and trigonometric operations. By reducing Borel-
measurability to continuity we can reuse these results.

lemma Bα-measurable-cont:
continuous-on A f ∧ open A =⇒
(λx. if x ∈ A then f x else c) ∈ measurable Bα Bβ

With this lemma we immediately show that unary minus (everywhere continuous:
A = Uα), the inverse operation 1/x (continuous on A = Uα − {0}) and the loga-
rithm logb x (continuous on A = {0 <..}) are Borel-measurable. The logarithm is
a little problematic, as it is unspecified for nonpositive values. However, while it
is unspecified there from its definition follows that it is constant for nonpositive
values, enough to prove measurability.

lemma BR-measurable-uminus, -inverse, -log:
f ∈ measurableM BR =⇒
(λx. − f x), (λx. 1/ f x), (λx. logb(f x)) ∈ measurableM BR

Lemma Bα-measurable-cont is not enough to show the measurability for bi-
nary operators like addition and multiplication. For these we employ the product
topology. It allows us to specify continuity of binary operators.

lemma Bα-measurable-cont-Pair:
f ∈ measurableM BRn ∧ g ∈ measurableM BRm ∧
continuous-on URn×Rm (λx. H (fst x) (snd x)) =⇒
(λx. H (f x) (g x)) ∈ measurableM Bα

This is the result of the Lemmas measurable-comp and Bα-measurable-cont and
the fact that the pairing operation (λx. (f x, g x)) is BRn×Rm-measurable. Finally,
for addition, subtraction, and multiplication follows with this lemma and together

22

2.1. MEASURE TYPE AND σ-ALGEBRAS

with their continuity that they are also BR-measurable:

lemma BR-measurable, -add, -minus, -times:
f ∈ measurableM BR ∧ g ∈ measurableM BR =⇒
(λx. f x + g x), (λx. f x− g x), (λx. f x · g x) ∈ measurableM BR

lemma BR-measurable-setsum, -setprod:
(∀i ∈ I. f i ∈ measurableM BR) =⇒(
λx. ∑i∈I f i x

)
,
(
λx. ∏i∈I f i x

)
∈ measurableM BR

We know that BRn is also generated by intervals. We show for each semi-open
interval an alternative characterization for BRn-measurable functions, again using
Theorem measurable-σ:

lemma BRn-measurable-iff-less, -le, -greater, -ge:
f ∈ measurableM BRn ⇔ (∀a. {x | f x < a} ∈ AM),
f ∈ measurableM BRn ⇔ (∀a. {x | f x ≤ a} ∈ AM),
f ∈ measurableM BRn ⇔ (∀a. {x | a < f x} ∈ AM),
f ∈ measurableM BRn ⇔ (∀a. {x | a ≤ f x} ∈ AM)

While helpful to show measurability of functions, these equalities are not very
helpful to prove the measurability of sets. Similar to the set comprehension lem-
mas in Section 2.1.1, we provide the following introduction rules:

lemma BR-measurable-less, -le, -eq:
f ∈ measurableM BR ∧ g ∈ measurableM BR =⇒
{x | f x < g x}, {x | f x ≤ g x}, {x | f x = g x} ∈ AM

All these rules about BRn-measurable functions can be translated to rules about
BR-measurable functions: the coercion functions (·)R and (·)R are continuous and
hence also measurable. The arithmetic operations can be represented as a case
distinction on the input value, and using the coercion functions.

And finally we show that a function is measurable whenever it is the supre-
mum, infimum, or limit of BR-measurable functions:

lemma BR-measurable-SUP, -INF, -limsup, -liminf, -lim:
(∀i :: ι :: C ∈ A. f i ∈ measurableM BR) =⇒
(λx. supi∈A f i x), (λx. infi∈A f i x) ∈ measurableM BR

(∀i :: N. f i ∈ measurableM BR) =⇒
(λx. lim supi f i x), (λx. lim infi f i x) ∈ measurableM BR

(∀i :: N. f i ∈ measurableM BR) ∧ (∀x ∈ ΩM. limi f i x = u x) =⇒
u ∈ measurableM BR

With this we show the measurability of the limit of BR-measurable functions:

lemma BR-measurable-lim:
(∀i :: N. f i ∈ measurableM BR) ∧ (∀x ∈ ΩM. limi f i x = u x) =⇒

u ∈ measurableM BR

23

CHAPTER 2. MEASURE AND INTEGRATION

2.2 Extending Premeasures

In this section we describe the formalization of Caratheodory’s extension theorem,
which extends a premeasure to a measure. A premeasure is a countably-additive and
positive function on a family of sets.

The formalization of Caratheodory’s theorem in Isabelle/HOL was originally
ported from Hurd’s thesis [39]. Later it was adapted to support measures on the
extended reals and assumes the premeasure is defined on a ring of sets instead
of an algebra. These extensions of the proofs are based on Bauer’s [9] and El-
strodt’s [23] book. The proof still uses the outer measure of µ, and shows that its
λ-system contains the σ-algebra σ-sets Ω G.

theorem caratheodory’:
ring-of-sets Ω G ∧ positive G µ ∧ countably-additive G µ =⇒
∃µ′. measure-space Ω (σ-sets Ω G) µ′ ∧ (∀G ∈ G. µ G = µ′ G)

This theorem greatly simplifies the construction of a measure space. But we still
need to show that the premeasure is countably additive. Luckily, for this there are
helpful alternative characterizations, if we know that the function is additive on the
ring A:

additive :: α set set→
(
α set→ R

)
→ B

additive A µ ⇔
(
∀A, B ∈ A. A∪ B ∈ A =⇒ µ A + µ B = µ (A∪ B)

)
First, countable additivity can be replaced by commutation with the limit of

increasing sequences. We say the premeasure is continuous from below.4

lemma countably-additive-iff-continuous-from-below:
ring-of-sets Ω A ∧ positive A µ ∧ additive A µ =⇒
countably-additive A µ⇔
(∀F ∈N→ A. incseq F ∧ (

⋃
i F i) ∈ A ∧ µ (F i) −−→

i→∞
µ (
⋃

i F i)

corollary caratheodory-continuous-from-below:
ring-of-sets Ω G ∧ positive G µ ∧ additive G µ ∧
(∀F ∈N→ G. incseq F ∧ (

⋃
i F i) ∈ A ∧ µ (F i) −−→

i→∞
µ (
⋃

i F i)) =⇒
∃µ′. measure-space Ω (σ-sets Ω G) µ′ ∧ (∀G ∈ G. µ G = µ′ G)

Second, when the measure values of the generating sets are finite, we can
replace countable additivity by the commutativity with the limit of decreasing
sequences converging to ∅. This enables a nice proof principle: we assume that
the limit of the measure values µ (F i) is nonzero and show from this that

⋂
i F i

is not empty. Then the premeasure is ∅-continuous:

lemma ∅-continuous-imp-countably-additive:
ring-of-sets Ω A ∧ positive A µ ∧ additive A µ ∧ (∀A ∈ A. µ A < ∞) ∧(
∀F ∈N→ A. decseq F ∧ (

⋂
i F i) = ∅ ∧ µ (F i) −−→

i→∞
0
)

=⇒
countably-additive A µ

4This is similar to left continuity of a function f on metric spaces, stating that for each increasing
sequence xi converging to x, the sequence f xi converges to f x.

24

2.3. PROPERTIES OF MEASURE SPACES

corollary caratheodory-∅-continuous:
ring-of-sets Ω G ∧ positive G µ ∧ additive G µ ∧ (∀G ∈ G. µ G < ∞) ∧
(∀F ∈N→ G. decseq F ∧ (

⋂
i F i) = ∅ ∧ µ (F i) −−→

i→∞
0) =⇒

∃µ′. measure-space Ω (σ-sets Ω G) µ′ ∧ (∀G ∈ G. µ G = µ′ G)

Sometimes, it is easier to define the premeasure on a semiring. In this case
we need to extend the premeasure to a premeasure on the ring generated by the
semiring. As the semiring is not closed under union, additive cannot be used to
show finite additivity. For this we introduce volumes: positive and finitely additive
functions.

volume :: α set set→
(
α set→ R

)
→ B

volume A µ ⇔
positive A µ ∧
(∀G ⊆ A. finite G ∧ disjoint G ∧⋃G ∈ A =⇒ (∑A∈G µ A) = µ (

⋃
G))

We can extend a volume on a semiring to a volume on the generated ring:

lemma extend-volume:
semiring-of-sets Ω G ∧ volume G µ =⇒
∃µ′. volume (generated-ring A) µ′ ∧ (∀G ∈ G. µ G = µ′ G)

Each set in the generated ring is a union of disjoint sets in the semiring. With this
it is obvious how to define the extended volume. However, we need to show that
the sum is independent of the representation of the union.

Finally, we can generalize Caratheodory’s extension theorem from rings to
semirings:

theorem caratheodory:
semiring-of-sets Ω G ∧ positive G µ ∧ countably-additive G µ =⇒
∃µ′. measure-space Ω (σ-sets Ω G) µ′ ∧ (∀G ∈ G. µ G = µ′ G)

First we show that the positive, countably additive function µ is also a volume. The
extended volume is also countably additive, as each sum of volumes of the ring
can be “flattened” to a single sum of elements of the semiring. As the last step
we apply Caratheodory’s extension theorem and by Lemma σ-sets-generated-
ring-eq we know that the σ-closures of the generated ring and the semiring are
equal.

2.3 Properties of Measure Spaces

In Section 2.1.3 the measure type was introduced. We now explore the behaviour
of the measure function µM :: α set → R for a measure M :: αmeasure. From the
definition of the measure type we already know that M forms a measure space,
hence countably-additive AM µM and positive AM µM hold. So we immediately

25

CHAPTER 2. MEASURE AND INTEGRATION

derive:
lemma µ-empty: µM ∅ = 0

lemma µ-positive: 0 ≤ µM A

lemma suminf-µ:
disjoint-familyN F ∧ F ∈N→ AM =⇒ (∑i µM (F i)) = µM (

⋃
i F i)

We also know that µM A = 0 for a non-measurable A /∈ AM, so no assumption
about the measurability of A is necessary in Lemma µ-positive.

From these basic laws about measures, we easily derive that it is additive,
monotone, finite additive and commutes with set difference. Again, it is monotone
even if the smaller set is not measurable:5

lemma plus-µ:
A, B ∈ AM ∧ A∩ B = ∅ =⇒ µM A + µM B = µM (A∪ B)

lemma µ-mono:
A ⊆ B ∧ B ∈ AM =⇒ µM A ≤ µM B

lemma setsum-µ:
disjoint-familyI F ∧ F ∈ I → AM ∧ finite I =⇒
(∑i∈I µM (F i)) = µM (

⋃
i∈I F i)

lemma minus-µ:
µM B < ∞ ∧ A, B ∈ AM ∧ B ⊆ A =⇒ µM A− µM B = µM (A \ B)

Based on countable additivity we show the limit of increasing or decreasing
sequences of measure values. On the extended reals these limits are equal to the
supremum respective infimum.

lemma Lim-µ-incseq, SUP-µ-incseq:
F ∈N→ AM ∧ incseq F =⇒
µM (F i) −−→

i→∞
µM (

⋃
i F i), (supi µM (F i)) = µM (

⋃
i F i)

lemma Lim-µ-decseq, INF-µ-decseq:
F ∈N→ AM ∧ decseq F ∧ (∀i. µM (F i) < ∞) =⇒
µM (F i) −−→

i→∞
µM (

⋃
i F i), (infi µM (F i)) = µM (

⋂
i F i)

The decreasing case requires that the elements in the sequence have a finite mea-
sure. A famous counterexample is F i = {i <..} on the counting measure on the
natural numbers:

⋂
i F i = ∅ but the limit of the measures is still infinity.

For estimations it is often helpful to have inequalities between the sums of
measure values and the measure of their union. For these cases we do not assume
disjoint sets.

lemma µ-subadditive:
A, B ∈ AM =⇒ µM (A∪ B) ≤ µM A + µM B

lemma µ-subadditive-finite:
F ∈ I → AM ∧ finite I =⇒ µM (

⋃
i∈I F i) ≤ (∑i∈I µM (F i))

lemma µ-subadditive-countably:
F ∈N→ AM =⇒ µM (

⋃
i F i) ≤ (∑i µM (F i))

5Often one needs to prove measurability anyway, but this avoids to show measurability twice.

26

2.3. PROPERTIES OF MEASURE SPACES

All rules in this section were about the extended measure, i.e. µM :: α set →
R. The extended real numbers have nice limit properties, as the infimum and
supremum always exists. However, their arithmetic properties often require a case
distinction on the finiteness of the involved extended real numbers. For this we
introduce the finite measure µ f

M:

µ
f
� :: αmeasure→ α set→ R

µ
f
M A = (µM A)R

The conversion function (·)R is the inverse of (·)R for finite values. So we can
directly represent the extended measure as a finite measure:

lemma µ-eq-ereal-µ f : µM A < ∞ =⇒ µM A = (µ f
M A)R

With this property we easily transfer all the rules about µM to rules about µ f
M

assuming that all involved measures are finite.

2.3.1 Finite and σ-Finite Measures

The generic measure space does not restrict the measure of the entire space. We ex-
plicitly allow infinite measure. As mentioned, often properties can only be shown
when the measure of ΩM is finite. But sometimes we can show that the property
holds when the measure is σ-finite, i.e. has a countable cover of sets with finite
measure. In this case the property is first shown on each of these finite sub-spaces,
and then by a limit argument on the entire space.

locale σ-finite-measure = fixesM :: αmeasure
assumes ∃C ∈N→ AM. (

⋃
i C i) = ΩM ∧ (∀i. µM (C i) < ∞)

Prominent σ-finite measures are the Lebesgue measure, the counting space on the
natural numbers, and each finite measure.

We introduce finite measures as a specialization of σ-finite measures:

locale finite-measure = σ-finite-measure +

assumes µM ΩM < ∞

Here we know that each set has a finite measure:
lemma µ-finite: finite-measureM =⇒ µM A < ∞

lemma µ-eq-µ f : finite-measureM =⇒ µM A =
(
µ

f
M A

)
R

With these lemmas we copy all lemmas about µ f
M with finiteness assumptions into

the finite-measure-locale, removing the finiteness assumptions.

2.3.2 Uniqueness of Measures

We want to reduce the equality of two measures to the equality on the generator of
their σ-algebra. This is possible if the measure has an ∩-stable, σ-finite generator:

theorem measure-eqI-generator-eq:
∩-stable G ∧ G ⊆ P(Ω) ∧
C ∈N→ G ∧ (

⋃
i C i) = Ω ∧ (∀i. µM (C i) < ∞) ∧

(∀G ∈ G. µM G = µN G) ∧ AN = AM = σ-sets Ω G =⇒
M = N

27

CHAPTER 2. MEASURE AND INTEGRATION

We first show that for each i the measuresM and N restricted to C i are equal. We
prove equality by induction with Corollary σ-sets-induct-disjoint. The genera-
tor is ∩-stable and equality of two finite measures is closed under disjoint union
and complement. Each measurable set A is then expressed as the union of all
C i∩ A, for which the two measure are equal.

2.3.3 Null Sets and AE-Quantifier

Null sets are the measurable sets in a measure space with zero measure:

null-sets� :: αmeasure→ α set set
null-setsM = {A ∈ AM | µM A = 0}

We know that the empty set is a null set, and the union and intersection of null
sets is again a null set. So, they form a ring:

lemma ring-of-sets-null-sets: ring-of-sets ΩM null-setsM

The null sets are closed under countable union and also closed under intersec-
tion or set difference with arbitrary measurable sets:

lemma null-sets-UN:
N ∈ Uι::C → null-setsM =⇒ (

⋃
i N i) ∈ null-setsM

lemma null-sets-Int1, -Int2, -Diff:
N ∈ null-setsM ∧ A ∈ AM =⇒ N ∩ A, A∩ N, N − A ∈ null-setsM

Also, the measure µM is invariant under adding or removing null sets:

lemma µ-Diff-null-set, -Un-null-set:
N ∈ null-setsM ∧ A ∈ AM =⇒
µM (A− N) = µM A,
µM (A∪ N) = µM A

An important class of predicates in measure theory are predicates which are
only false on a null set. The almost everywhere quantifier (AE-quantifier) is true on
such a predicate. We use filters to introduce this quantifier.

Filters are a concept originally introduced to represent limits [14], like the limit
of a sequence or of a function at an input value. However, they can also be used
to introduced generalized quantifiers [42]. Usually, filters are represented as sets
of sets, but in Isabelle/HOL they get their own type α filter, similar to the type of
measures. Here, Absfilter is the abstraction morphism, and eventually is the repre-
sentation morphism, i.e. eventually P (Absfilter F) = F P holds for each filter F.

Now we define a filter for the AE-quantifier:

AE-filter� :: αmeasure→ α filter
AE-filterM = Absfilter (λP. ∃N ∈ null-setsM. {x | ¬P x} ⊆ N)

In textbooks the AE-quantifier is often written without an explicitly quantified
variable but rather with an appended “a.e.”. We use a syntax with an explicit
binder:

AEM x. P x⇔ eventually (λx. P x) AE-filterM

28

2.4. LEBESGUE INTEGRAL

By using eventually we profit from the rules about filters, like modus ponens, and
the commutativity of filters with logic connectives. More importantly, we obtain
for free the automation setup and the proof method for filters. Before we can
apply this AE-quantifier to measure theoretic properties, we need to show that it
actually is a filter. This needs to be done when we equate the quantifier with its
defining equation:

lemma AE-iff:
(AEM x. P x)⇔ (∃N ∈ null-setsM. {x | ¬P x} ⊆ N)

With AE-filterM we actually defined a filter: the predicate which is always true
is accepted, when we add values to an accepted predicate it is accepted, and the
intersection of two accepted predicates is accepted. For this to work we need
the completion of the null sets. Hence we accept all subsets of a null set. Our
solution is different to the definition of almost everywhere in [39] and [57], where
a predicate P only then holds almost everywhere when it is measurable.

As the AE-quantifier is a filter, we know that it commutes with finitely bounded
universal quantification. Moreover, as null sets are closed under countable union,
the AE-quantifier also commutes with countable universal quantification:

lemma AE-all-countable:
(AEM x. ∀i :: ι :: C. P i x)⇔ (∀i. AEM x. P i x)

We can write more flexible congruence rules for the equality and monotony of
measure functions in terms of the the AE-quantifier:

lemma AE-µ:
(AEM x. x ∈ A) ∧ A ∈ AM =⇒ µM A = µM ΩM

lemma AE-µ-mono:
(AEM x. x ∈ A =⇒ x ∈ B) ∧ B ∈ AM =⇒ µM A ≤ µM B

lemma AE-µ-eq:
(AEM x. x ∈ A⇔ x ∈ B) ∧ A, B ∈ AM =⇒ µM A = µM B

As an example for the application of the AE-quantifier, we use that singletons are
null sets in the Lebesgue measure, i.e. λR {y} = 0 and hence AEλR

x. x 6= y. Now
with these rules we show λR {a .. b} = λR {a <..< b}, simply applying Lemma AE-
µ-eq, since AEλR

x. x 6= a∧ x 6= b =⇒
(

x ∈ {a .. b} ⇔ x ∈ {a <..< b}
)
.

2.4 Lebesgue Integral

The Lebesgue integral is a generalization of finite and countable sums, yielding
them as particular cases when the measure space is discrete. On the Lebesgue
measure, it is a generalization of the Riemann integral. In comparison to the
Riemann integral, it fulfills monotone convergence: for each rising sequence of
integrable functions, the integral of their suprema exists and equals the supremum
of the integrals. This makes the Lebesgue integral useful not only for calculus, but

29

CHAPTER 2. MEASURE AND INTEGRATION

also for measure theory itself: we will use it to add a density to a measure and to
define products of measure spaces.

We will introduce the Lebesgue integral in the usual manner, by first intro-
ducing integration for step functions, then for positive functions and finally for
arbitrary real-valued functions.

Notation: Textbooks usually write
∫

f x dµ(x), where µ as a partial function also
carries the σ-algebra of measurable sets. In HOL the measure function µM is not enough.
So we use the entire measure space M in our notation, and optionally bind the variable
x following the integral symbol:

∫
x. f x dM. If no variable is needed we write

∫
f dM.

The same holds for the simple integral
∫ S f dM and the positive integral

∫ P f dM.

2.4.1 Simple Functions

The definition of the Lebesgue integral requires the concept of simple function.
A simple function is a Borel-measurable step function (i.e. its range is a finite
set), or for R-functions equivalently: a step function where each inverse image is
measurable. The second formulation has the advantage that the definition does
not require the notion of Borel sets and is thus more general, as it allows arbitrary
ranges. The predicate simple-fn is defined as follows:

simple-fn :: αmeasure→ (α→ β)→ B

simple-fnM f ⇔ finite f [ΩM] ∧ ∀x ∈ f [ΩM]. f−1[{x}] ∩ΩM ∈ AM

While we use this definition only for functions f :: α→ R, this is a nice charac-
terization for finite random variables in probability theory. The simple functions
have also nice closure properties. Each composition where the input goes through
a simple function, is again a simple function:

lemma simple-fn-compose1:
simple-fnM f =⇒ simple-fnM (λx. g (f x))

lemma simple-fn-compose2:
simple-fnM f ∧ simple-fnM g =⇒ simple-fnM (λx. h (f x) (g x))

Alternatively, we can express simple functions as Borel-measurable functions
with a finite range. From this we immediately show that the constant function
and the indicator function are simple functions:

lemma simple-fn-eq-BR-measurable:
simple-fnM f ⇔ finite f [ΩM] ∧ f ∈ measurableM BR

lemma simple-fn-const: simple-fnM (λx. c)

lemma simple-fn-χ: A ∈ AM =⇒ simple-fnM (χ A)

A simple function obviously is Borel-measurable, but can we express Borel-
measurable functions in terms of simple functions? The answer is: yes, we can
express each positive Borel-measurable function as the supremum of a sequence

30

2.4. LEBESGUE INTEGRAL

of simple functions:

theorem BR-measurable-simple-fns:
u ∈ measurableM BR =⇒
∃F.

(
∀x. supi F i x = max 0 (u x)

)
∧(

∀i. simple-fnM (F i) ∧ ∀x. 0 ≤ F i x < ∞
)

Instead of assuming a nonnegative function u, we return a sequence converging to
the positive half of u. The sequence F i is constructed by first stepping up to the
integer component bu xc and then, when this is reached, by approximating bu x ·
2ic · 2−i. This theorem is helpful in proofs to replace a Borel-measurable function
into a sequence of simple functions and then using monotone convergence.

A similar approach is used to define the Lebesgue integral. We begin by defin-
ing the integral on simple functions. We know that, as the range of f is finite, it is
also representable as a sum:

lemma simple-fn-χ-representation:
simple-fnM f =⇒ ∀x ∈ ΩM. f x = ∑y∈ f [ΩM] y · χ (f−1[{y}] ∩ΩM) x

This already suggests the definition of the integral
∫ S of a simple function f with

respect to the measure spaceM:∫ S
� d� :: αmeasure→

(
α→ R

)
→ R∫ S

f dM = ∑y∈ f [ΩM] y · µM(f−1[{y}] ∩ΩM)

When a simple functions are a.e.-equal (a.e.-less than or equal) to another sim-
ple function then the two integrals are equal (less than or equal):

lemma
∫ S -mono-AE:

simple-fnM f ∧ simple-fnM g ∧ AEM x. f x ≤ g x =⇒∫ S
f dM≤

∫ S
g dM

lemma
∫ S -cong-AE:

simple-fnM f ∧ simple-fnM g ∧ AEM x. f x = g x =⇒∫ S
f dM =

∫ S
g dM

2.4.2 Integral of Positive R-Functions

To state the definition of the positive integral of nonnegative functions f :: α→ R,
simple functions have to be used as approximations of f from below. Then the
integral is defined as the supremum of all the simple integrals of the approxima-
tions.∫ P

� d� :: αmeasure→
(
α→ R

)
→ R∫ P

f dM = sup
{∫ S

g dM
∣∣∣ (∀x. g x ≤ max 0 (f x)

)
∧ simple-fnM g

}
31

CHAPTER 2. MEASURE AND INTEGRATION

The function λx. max 0 (f x) is the nonnegative part of f, i.e. it is zero when f
is negative, otherwise it is equal to f . From the monotony of the simple integral
follows the monotony of the positive integral, i.e. it is equal (less than or equal)
when the integrands are a.e.-equal (a.e.-less than or equal).

lemma
∫ P-mono-AE:

AEM x. f x ≤ g x =⇒
∫ P

f dM≤
∫ P

g dM

lemma
∫ P-cong-AE:

AEM x. f x = g x =⇒
∫ P

f dM =
∫ P

g dM

From the definition of the integral it immediately follows that for simple func-
tions the positive and simple integral are equal:

lemma
∫ P-eq-

∫ S -AE:

simple-fnM f ∧ (AEM x. 0 ≤ f x) =⇒
∫ P

f dM =
∫ S

f dM

From the definition of the simple integral we know immediately that the indicator
function over A maps to the measure of A:

lemma
∫ P-χ:

A ∈ AM =⇒
∫ P

χ A dM = µM A

One way of constructing proofs about integrals of Borel-measurable functions
u :: α → R is: first prove the desired property about finite simple functions, then
prove that the property is preserved under the pointwise monotone limit of func-
tions. For this to work, we can use Theorem BR-measurable-simple-fns. To use
this with the Lebesgue integral, there is a compatibility theorem, called the mono-
tone convergence theorem, which allows commuting the supremum operator and
the positive integral:

theorem
∫ P-monotone-convergence:

(∀i. f i ∈ measurableM BR ∧ AEM x. 0 ≤ f i x ∧ f i x ≤ f (i + 1) x) =⇒∫ P
(sup

i
f i) dM = sup

i

∫ P
f i dM

The monotone convergence theorem is now used to prove linearity of the pos-
itive integral. This is done in the aforementioned way: we obtain the sequences of
simple functions to f , g, and f + g. By monotone convergence we replace the pos-
itive integrals with the suprema of the simple integrals of these sequences. Now it
is simply a matter of linearity of the simple integral and of the suprema, that both
sides are equal:

lemma
∫ P-add:

f ∈ measurableM BR ∧ g ∈ measurableM BR ∧
(AEM x. 0 ≤ f x) ∧ (AEM x. 0 ≤ g x) =⇒∫ P

x. f x + g x dM =
∫ P

f dM+
∫ P

g dM

32

2.4. LEBESGUE INTEGRAL

lemma
∫ P-cmult:

f ∈ measurableM BR ∧ 0 ≤ c =⇒
∫ P

x. c · f x dM = c ·
∫ P

f dM

corollary
∫ P-setsum:

(∀i ∈ I. f i ∈ measurableM BR) ∧ (∀i ∈ I. AEM x. 0 ≤ f i x) =⇒∫ P
x. ∑

i∈I
f i x dM = ∑

i∈I

∫ P
f i dM

corollary
∫ P-suminf:

(∀i. f i ∈ measurableM BR) ∧ (∀i. AEM x. 0 ≤ f i x) =⇒∫ P
x. ∑

i
f i x dM = ∑

i

∫ P
f i dM

The last two corollaries immediately follow from Lemma
∫ P-add and monotone

convergence. Note that the infinite sum in Corollary
∫ P-suminf is the sum on

extended reals, hence it is always defined for sums of positive values.
From the linearity of the positive integral, we derive the Markov inequality:

lemma
∫ P-Markov-inequality:

f ∈ measurableM BR ∧
(

AEM x. 0 ≤ f x
)
∧ A ∈ AM ∧ 0 ≤ c =⇒

µM
{

x ∈ A
∣∣∣ 1 ≤ c · f x

}
≤ c ·

∫ P
x. f x · χ A x dM

Utilizing this inequality we find an easy characterization to show that the positive
integral of a function is zero:

lemma
∫ P-0-iff-AE:

f ∈ measurableM BR =⇒
(∫ P

f dM = 0
)
⇔
(

AEM x. f x ≤ 0
)

On the right side, we can only show that u is a.e.-nonpositive, as the positive
integral maps negative values to zero.

2.4.3 Induction on Borel-Measurable Functions

We know that the Lebesgue integral is linear (Lemmas
∫ P-add and

∫ P-cmult), ad-
mits the indicator function (Lemma

∫ P-χ) and is monotone convergent (Lemma
∫ P-

monotone-convergence). Is the integral uniquely defined by these rules? Yes, at
least when the integrand is a Borel-measurable function: each Borel-measurable
function can be represented as a sequence of simple functions (Theorem BR-
measurable-simple-fns) and simple functions can be represented as sums of rect-
angle functions (Lemma simple-fn-χ-representation).

In Chapter 3 we will often show an alternative representation of the Lebesgue
integral for a specific measure space. For this it is helpful to have an induction
rule on positive Borel-measurable functions. We provide such an induction rule
constructing Borel-measurable functions out of indicator functions on measurable
sets, linear multiplication, addition, and the limit of an increasing sequence.

33

CHAPTER 2. MEASURE AND INTEGRATION

An alternative way to construct Borel-measurable functions would be just sim-
ple functions and the limit of an increasing sequence. However, this would re-
quire a second induction principle for simple functions. Also the proofs would
require two steps, first prove the statement for simple functions and then for Borel-
measurable functions.

We now give the induction rule:

corollary BR-measurable-induct:

f ∈ measurableM BR ∧
(
∀x. 0 ≤ f x

)
∧(

∀ f , g ∈ measurableM BR. (∀x ∈ ΩM. f x = g x) ∧ P f =⇒ P g
)
∧(

∀A ∈ AM. P (χ A)
)
∧(

∀ f ∈ measurableM BR, c ≥ 0. (∀x. 0 ≤ f x) ∧ P f =⇒ P (λx. c · f x)
)
∧(

∀ f , g ∈ measurableM BR.

(∀x. 0 ≤ f x) ∧ P f ∧ (∀x. 0 ≤ g x) ∧ P g =⇒ P (λx. f x + g x)
)
∧(

∀F ∈N→ measurableM BR.(
∀i. (∀x. 0 ≤ F i x ≤ (F (i + 1) x)) ∧ P (F i)

)
=⇒ P (supi F i)

)
=⇒

P f

The third conjunct of this induction rule is not used to construct the Borel-meas-
urable function, but it shows that the predicate P does not care about function
values outside the space ΩM. Note also that the linearity is split into two cases
for f x + g x and c · f x instead of merging them into one c · f x + g x. This is
done deliberately as automation works better when only one operation is involved.
This rule enables us to show equality between different representations of the
Lebesgue integral, provided we have linearity and monotone convergence for both
representations.

2.4.4 Integral of R-Functions

The positive integral on R has the ideal properties for an integral: linearity and
monotone convergence. However, it cannot handle functions with negative values.
For this we define integration for functions f :: α → R as the difference between
the integral of the positive and the negative part of f . For this to be defined
sensibly, we restrict integrable functions to Borel-measurable functions where the
positive integrals of the positive and the negative parts are finite:

integrable :: αmeasure→
(
α→ R

)
→ B

integrableM f ⇔
(

f ∈ measurableM BR ∧∫ P
x. f x dM < ∞ ∧

∫ P
x. − f x dM < ∞

)
∫
�d� :: αmeasure→

(
α→ R

)
→ R∫

f dM =

(∫ P
x. f x dM

)
R

−
(∫ P

x. − f x dM
)

R

34

2.4. LEBESGUE INTEGRAL

(Note that explicit type conversions from R to R have been omitted for the sake
of readability.)

Many proofs of properties about the integral follow the scheme of the defini-
tions and first establish the desired property for

∫ S , then for
∫ P, and eventually

for
∫

. Congruence rules for a.e.-equality and a.e.-monotony follow this way:

lemma
∫

-cong-AE:

AEM x. f x = g x =⇒
∫

f dM =
∫

g dM
lemma integrable-cong-AE:

f ∈ measurableM BR ∧ g ∈ measurableM BR ∧ AEM x. f x = g x =⇒
integrableM f ⇔ integrableM g

lemma
∫

-mono-AE:
integrableM f ∧ integrableM g ∧ AEM x. f x ≤ g x =⇒∫

f dM≤
∫

g dM

The integral equality follows directly from the equality of the positive integral,
hence no integrability assumption is needed. For integrability the almost every-
where assumption does not imply measurability of the functions itself, hence there
it is required. And for monotony of the integral we need to at least restrict g to a
finite positive part and f to a finite negative part.

Linearity also follows directly from the properties of the positive integral.
Borel-measurable is replaced by integrable:

lemma
∫

-add:
integrableM f ∧ integrableM g =⇒
integrableM (λx. f x + g x),

∫
x. f x + g x dM =

∫
f dM+

∫
g dM

lemma
∫

-setsum:
(∀i ∈ I. integrableM (f i) =⇒
integrableM (λx. ∑

i∈I
f i x),

∫
x. ∑

i∈I
f i x dM = ∑

i∈I

∫
f i dM

lemma
∫

-minus:
integrableM f ∧ integrableM g =⇒
integrableM (λx. f x− g x),

∫
x. f x− g x dM =

∫
f dM−

∫
g dM

lemma
∫

-cmult:
integrableM f =⇒
integrableM (λx. a · f x),

∫
x. a · f x dM = a ·

∫
f dM

Monotone convergence follows also from the monotone convergence of the
positive integral. Instead of using the supremum of a sequence we assume a
sequence of functions converging from below. Also the integrals of these functions

35

CHAPTER 2. MEASURE AND INTEGRATION

need to converge:

theorem
∫

-monotone-convergence:

(∀i. integrableM (f i)) ∧
(∫

x. f i x
)
−−→
i→∞

I ∧ u ∈ measurableM BR ∧

(AEM x. incseq (λi. f i x)) ∧ (AEM x. f i x −−→
i→∞

u x) =⇒

integrableM u,
∫

u dM = I

Instead of requiring an increasing sequence, we provide a relaxed version
where the function sequence is absolutely bounded by an integrable function,
i.e. dominated convergence. It can be used when the monotony of the function
sequence does not hold.

theorem
∫

-dominated-convergence:
(∀i. integrableM (u i)) ∧ integrableM w ∧ u′ ∈ measurableM BR ∧
(∀i. AEM x. |u i x| ≤ w x) ∧ AEM x. u i x −−→

i→∞
u′ x =⇒

integrableM u′,
∫

u i dM−−→
i→∞

∫
u′ dM

One advantage the Lebesgue integral gains by splitting integrability and mea-
surability into two different concepts, is that we only need to find an upper bound-
ing function to show integrability. This does not require dominated convergence,
but we can easily show integrability by bounding a measurable function:

lemma integrable-bound:
integrableM f ∧ g ∈ measurableM BR ∧ (AEM x. |g x| ≤ f x) =⇒
integrableM g

It follows also directly that integrability is invariant under the absolute value func-
tion, as long as the inner integrand is measurable. From this we can then deduce
the integrability of the minimum and maximum of functions.

lemma integrable-abs-iff:
f ∈ measurableM BR =⇒ integrableM (λx. | f x|)⇔ integrableM f

lemma integrable-min, -max:
integrableM f ∧ integrableM g =⇒
integrableM (λx. min (f x) (g x)), integrableM (λx. max (f x) (g x))

With Lemma
∫

-mono-AE we cannot show strict inequality. However, on a
finite measure we know that the integral of a function is strictly monotone, if the
functions are strictly monotone on a set with nonzero measure:

lemma
∫

-less-AE:
finite-measureM ∧ integrableM f ∧ integrableM g ∧ A ∈ AM ∧
µM A 6= 0 ∧ (AEM x ∈ A. f x 6= g x) ∧ (AEM x. f x ≤ g x) =⇒∫

f dM <
∫

g dM
Further formalized properties of Lebesgue integration described later on in this

thesis, when we have developed the necessary mathematical machinery: it is used
to construct weighted measures in Section 3.3, to introduce Fubini’s theorem after
product measures are introduced in Section 3.4.2, and, to relate it to the gauge
integral after the Lebesgue measure is introduced in Section 3.5.

36

Chapter 3

Concrete Measures

The concept of measure spaces is generic and can be instantiated with a couple
of different structures. Unfortunately, to show that a σ-algebra together with a
premeasure raises a measure space can be complicated. We provide a couple of
basic measure spaces which can be used to construct more complicated ones.

The counting measure ε assigns a set A its cardinality ε A = |A| if A is finite
and otherwise infinity: ε A = ∞. This measure maps concepts from mea-
sure theory to discrete concepts: measure equals cardinality and Lebesgue
integration equals summation. This allows us to translate theorems about
abstract measure spaces into theorems about discrete concepts.

The push-forward measure µX uses theN -measurable function X to assign a mea-
sure to N : µX A = µ {x | X x ∈ A}. For example X computes the time until
a Markov chain τ terminates. Then the probability that the Markov chain
terminates in n steps is µX {.. n} = τ {ω | X ω ≤ n}. So it defines a measure
on the natural numbers by associating to each number n the probability of
the traces terminating at time n.

The density measure µ∫ f weights the measure µ with the density f : µ∫ f A =∫
A f dµ. Here f is an extended real valued function on Ω. The intuitive

understanding is that f weighs to each point in Ω. When we use the count-
ing measure this is exactly what happens. Together with the push-forward
measure density measures are often used to describe the distribution of a
random variable. For example, X is an exponentially distributed random
variable when

µX A =
∫

A
x. λ · exp−λ·x dλ = µ∫

xλ exp−λx A .

The binary product of measures π = µ1 ⊗ µ2 maps Cartesian set products to the
multiplication of their measure values: π (A1 × A2) = µ1 A1 · µ2 A2. With the
product measure we show Fubini’s theorem which allows us to commute
integrals:∫

x.
(∫

y. f x y dµ2

)
dµ1 =

∫
y.
(∫

x. f x y dµ1

)
dµ2

37

CHAPTER 3. CONCRETE MEASURES

The finite product of measure π =
⊗

i∈I µi iterates the product construction over
a finite index I. The elements in this product space are functions from the
index set I into the space Ωi. The measure π maps dependent function
spaces to multiplication: π (

�
i∈I Ai) = ∏i∈I µi Ai. This allows us to define

the Lebesgue measure on Euclidean spaces Rn.

The Lebesgue measure λ assigns a measure to subsets of the real line R. The
Lebesgue measure is uniquely defined by assigning each interval its length:
λ {a .. b} = b− a. A famous result is that not all sets are Lebesgue measur-
able. We show that at least the Borel sets are measurable and that subsets of
null sets are also measurable. The Lebesgue measure is important for real
analysis: the Lebesgue integral on the Lebesgue measure is an extension of
the Riemann integral.

In this chapter we will construct measures with the desired properties. But for a
complete formalization we also look at the AE-quantifier and the Lebesgue integral
on these measure spaces.

3.1 Counting Measure

The first concrete measure we introduce is the counting measure. It simply assigns
the cardinality of a set as its measure. If the set is infinite the measure is ∞. The
σ-algebra is discrete, i.e. all subsets of Ω are measurable.

count :: α set→ αmeasure
count Ω = measure-of Ω P(Ω) (λA. if finite A then card A else ∞)

The count measure maps measure theory concepts like measurable sets and func-
tions, measure, and the Lebesgue integral to their discrete counterparts: measur-
able sets are just subsets, each function into the space Ω is measurable, the mea-
sure is the cardinal of the set, and, as we will show later, the integral becomes sum.
To show these results, we begin by defining the measure space. The power set is
a σ-algebra and the count measure is countably additive, easy to show with the
Lemma countably-additive-iff-continuous-from-below. From this we derive:

lemma space-count: Ωcount Ω = Ω

lemma sets-count: Acount Ω = P(Ω)

lemma measurable-count: f ∈ measurable (count Ω)M⇔ f ∈ Ω→ ΩM

lemma µ-count-finite: A ⊆ Ω ∧ finite A =⇒ µcount Ω A = card A

lemma µ-count-infinite: A ⊆ Ω ∧ ¬finite A =⇒ µcount Ω A = ∞

The counting measure assigns every element the measure value of 1: the only
null set is the empty set. Hence the AE-quantifier is equal to the bounded universal
quantifier:

lemma null-sets-count: null-setscount Ω = {∅}
lemma AE-count: (AEcount Ω x. P x)⇔ (∀x ∈ Ω. P x)

38

3.2. PUSH-FORWARD MEASURE

The counting measure is only σ-finite if the space Ω is countable, otherwise
we cannot find a σ-finite cover:

lemma σ-finite-count: σ-finite-measure (count (Ω :: α :: C set))
lemma finite-measure-count: finite Ω =⇒ finite-measure (count Ω)

We could use a similar definition to introduce the point measure of p, where
each element x has the weight p x. Instead of the cardinality of A, we would sum
up over all p x: ∑x∈A p x. However, it gets cumbersome to define the measure
on infinite, countable sets, and it is even more cumbersome to prove that this is
a measure space. In Section 3.3 we will use density measures to define the point
measure.

3.1.1 Integration over a Count Measure

For the count measure the integral of f should be equal to the sum of f over all
elements in Ω. First we notice that each function is Borel-measurable. Moreover,
for a finite space each function is simple and integrable:

lemma simple-fn-count: simple-fn (count Ω) f ⇔ finite f [Ω]

lemma Bα-measurable-count: f ∈ measurable (count Ω) Bα
lemma integrable-count: finite Ω =⇒ integrable (count Ω) f

The positive integral is well-defined also for an infinite space Ω. However, to
equate it to sums we require that the function has a finite support, i.e. f is strictly
positive only on a finite subset of Ω. The positive integral maps the negative
values of f to zero, hence we are only interested in the positive support of f .

lemma
∫ P-count:

finite {x ∈ Ω | 0 < f x} =⇒
∫ P

f d(count Ω) = ∑
x∈Ω ∧ 0< f x

f x

lemma
∫

-count:

finite {x ∈ Ω | f x 6= 0} =⇒
∫

f d(count Ω) = ∑
x∈Ω ∧ f x 6=0

f x

These equalities simply follow from the linearity of the Lebesgue integral: all
functions are Borel-measurable on the count measure. As the support of f is finite
we can represent it as a finite sum. These rules allow us to specialize theorems
about integrals on measure spaces to finite sums.

3.2 Push-Forward Measure

A measurable function X from a measureM into a σ-algebraN induces a measure
on N , the so called push-forward measure. In measure theory books, the push-
forward of the measure µ under the measurable function X is often written X(µ)
or X∗(µ), implicitly assuming a σ-algebra N . From the measure N we only need

39

CHAPTER 3. CONCRETE MEASURES

the σ-algebra of its measurable sets. While the measure values are ignored, we still
require to that it forms a σ-algebra. This is ensured by the type of N :: βmeasure.

distr :: αmeasure→ βmeasure→ (α→ β)→ βmeasure
distrMN X = measure-of ΩN AN (λA. µM (X−1[A] ∩ΩM))

We call the constant for the push-forward measure distr, as the push-forward mea-
sure of a random variable is its probability distribution. First, we show that distr
is well-defined by deriving the following justifying theorems:

lemma space-distr: ΩdistrMN X = ΩN

lemma sets-distr: AdistrMN X = AN
lemma µ-distr:

X ∈ measurableMN ∧ A ∈ AN =⇒ µdistrMN X A = µM (X−1[A] ∩ΩM)

For the last theorem we show that µM (X−1[A] ∩ΩM) is countably additive in A.
This holds as the inverse image of a measurable function maps countable, disjoint
unions of measurable sets again to countable, disjoint unions of measurable sets.

We try to reduce operations that only talk about values mapped by X into
operations on the push-forward measure under X. Obviously, we can transfer the
measure itself µM {x | P (X x)} = µdistrMN X {x | P x}. This is also possible with
the AE-quantifier and the Lebesgue integral.

lemma AE-distr:
X ∈ measurableMN =⇒ (AEdistrMN X x. P x)⇔ (AEM x. P (X x))

theorem
∫ P-distr:

X ∈ measurableMN ∧ f ∈ measurable N BR =⇒∫ P
f d(distrMN X) =

∫ P
x. f (X x) dM

corollary
∫

-distr:
X ∈ measurableMN ∧ f ∈ measurable N BR =⇒∫

f d(distrMN X) =
∫

x. f (X x) dM
corollary integrable-distr-eq:

X ∈ measurableMN ∧ f ∈ measurable N BR =⇒
integrable (distrMN X) f ⇔ integrableM (λx. f (X x))

To prove Theorem
∫ P-distr we use induction on the Borel-measurable function f .

The integral of real functions and integrability is simply a matter of unfolding the
definition, and then rewriting with Theorem

∫ P-distr.
The composition of two push-forward measures is equal to the push-forward

measure of the composition of the two measurable functions. This directly follows
from the compositionality of inverse images: (Y ◦ X)−1[A] = X−1[Y−1[A]].

lemma distr-distr-eq:
X ∈ measurableMN ∧ Y ∈ measurable N L =⇒
distr (distrMN X) L Y = distrM L (Y ◦ X)

40

3.3. DENSITY MEASURE

These equalities are important for probability theory where a probability space
with a couple of random variabels is assumed. The push-forward measure allows
us to reduce statements about one of these random variables to statements about
a probability space where the random variable does not occur anymore.

3.3 Density Measure

We define the density measure f 1 as follows: we use the positive integral to weigh
each element x in the measure space M with f x. The function f is called the
density function.

density :: αmeasure→
(
α→ R

)
→ αmeasure

densityM f = measure-of ΩM AM
(
λA.

∫ P
x. f x · χ A x dM

)
For a Borel-measurable function f the integral behaves as a measure, it is positive
and by monotone convergence it is also countably additive. So we defined a
measure on the same σ-algebra as that ofM, expressible as integral of f :

lemma space-density: ΩdensityM f = ΩM

lemma sets-density: AdensityM f = AM
lemma µ-density:

f ∈ measurableM BR ∧ A ∈ AM =⇒

µdensityM f A =
∫ P

x. f x · χ A x dM

Intuitively, the null sets are extended with sets where f is a.e. nonpositive. This
extends also nicely to the AE-quantifier:

lemma null-sets-density:
f ∈ measurableM BR =⇒(
A ∈ null-setsdensityM f

)
⇔
(

A ∈ AM ∧AEM x ∈ A. f x ≤ 0
)

lemma AE-density:
f ∈ measurableM BR =⇒(
AEdensityM f x. P x

)
⇔
(

AEM x. 0 < f x =⇒ P x
)

Now, what happens when we integrate over a density measure? As expected,
it results in an integral where the two functions are multiplied. This sticks with
the intuition that we add a weight to each element.

theorem
∫ P-density:

f , g ∈ measurableM BR ∧ (AEM x. 0 ≤ f x) =⇒(∫ P
g d(densityM f)

)
=

(∫ P
x. f x · g x dM

)
We prove this rule by induction on the Borel-measurable function g.

1In measure theory textbooks this is often called a measure having density f .

41

CHAPTER 3. CONCRETE MEASURES

This can be easily extended to integration on real functions. Note that we
now also assume that f is a real, a.e.-positive function, otherwise the types for the
integrands would not match anymore.

corollary integrable-,
∫

-density:
f , g ∈ measurableM BR ∧ (AEM x. 0 ≤ f x) =⇒
integrable (densityM f) g⇔ integrableM (λx. f x · g x),(∫

g d(densityM f)
)
=

(∫
x. f x · g x dM

)
From Theorem

∫ P-density also immediately follows that sequentially apply-
ing two density functions to a measure is the same as concurrently applying the
product of both density functions:

lemma density-density:
f , g ∈ measurableM BR ∧ (AEM x. 0 ≤ f x) =⇒
density (densityM f) g = densityM (λx. f x · g x)

The positive integral is equal if the integrands are a.e.-equal. From this it
obviously follows that the density measures are equal when the density functions
are a.e.-equal. Is the density function uniquely determined by its measure? Yes,
for a σ-finite measure we show that density measures are equal iff their density
functions are a.e.-equal:

theorem density-unique-iff:
σ-finite-measureM ∧ f , g ∈ measurableM BR ∧
(AEM x. 0 ≤ f x) ∧ (AEM x. 0 ≤ g x) =⇒
(densityM f = densityM g)⇔ (AEM x. f x = g x)

The proof for the left to right implication is quite involved, first we show that it
holds when the density measures are finite, then when M is finite, and finally
whenM is σ-finite.

The density function is a.e.-finite iff the density measure is also σ-finite:

lemma σ-finite-iff-finite-density:
σ-finite-measureM ∧ f ∈ measurableM BR =⇒
σ-finite-measure (densityM f)⇔ AEM x. f x < ∞

We use C, the σ-finite cover ofM, to construct the sets F n m = {x | f x < n}∩C m.
Each F n m has finite measure, and their union covers the entire space.

3.3.1 Point Measure

By combining the density measure and the count measure we get the point measure,
which assigns a measure value to each element in a discrete measure space:

point :: α set→
(
α→ R

)
→ αmeasure

point A f = density (count A) f

42

3.3. DENSITY MEASURE

The measurable sets are obviously all subsets of A. To equate the measure value
to the sum over f we require that f is nonnegative in X and that X is finite:

lemma µ-point:
(∀i ∈ X. 0 ≤ f i) ∧ finite X ∧ X ⊆ A =⇒ µpoint A f X = ∑i∈X f i

3.3.2 Radon-Nikodým Derivative

From the previous section we know that we can construct new measures by adding
densities to a measure. Interestingly the other direction also holds: under some
assumptions there exists a density between two measures on the same measurable
sets. More precisely, the Radon-Nikodým theorem states that for each measure N
that is absolutely continuous on M there exists an a.e.-unique density function f ,
s.t. density M f = N . This is used to define conditional expectation in probability
theory and mutual information in information theory. The Radon-Nikodým theo-
rem requires thatM is σ-finite.

First we introduce absolute continuity. This is a minimal assumption for Radon-
Nikodým, as we cannot weigh elements in a null set ofM to get a non-null set in
N :

absolutely-continuous :: αmeasure→ αmeasure→ B

absolutely-continuousMN ⇔ null-setsM ⊆ null-setsN

The implication between almost everywhere quantification immediately follows
from the inclusion between null sets:

lemma absolutely-continuous-AE:
AM = AN ∧ absolutely-continuousMN =⇒
(AEM x. P x) =⇒ (AEN x. P x)

With Lemma AE-density it directly follows that a density measure is absolutely
continuous to its supporting measure:

lemma absolutely-continuous-density:
f ∈ measurableM BR =⇒ absolutely-continuousM (densityM f)

As Radon-Nikodým states, the other direction is also true: if two measures
are absolutely continuous, then there exists the exists the so-called Radon-Nikodým
derivative, which is the density function between these two measures:

theorem Radon-Nikodým:
σ-finite-measureM ∧ absolutely-continuousMN ∧ AM = AN =⇒
∃ f ∈ measurableM BR. (∀x. 0 ≤ f x) ∧ densityM f = N

For the proof we first assume that M and N are finite measures. There we
form G = {g | ∀A. µdensityM g A ≤ µN A} and construct a sequence of gi ∈ G
with limi

∫
gi dM = supg∈G

∫
g dM and finally choose limi gi as Radon-Nikodým

derivative. Then we assume that N is an arbitrary measure space, and we cover
Ω with one set where N is a.e.-infinite and a sequence of sets with finite measure.
Finally, we assume that M is σ-finite and weigh each set Ci in its σ-cover with

43

CHAPTER 3. CONCRETE MEASURES

µM (Ci) · 2−i then we have a finite measure, obtain f and revert the weighting. As
this proof is quite involved we omitted further details from this presentation —
our formalized proof follows Bauer [9], §17. The interested reader may look in the
textbook, we do not give more details as all reusable theorems used by the proof
are already presented.

We know from Theorem density-unique-iff that the Radon-Nikodým deriva-
tive f is a.e.-uniquely defined by M and N . So, together with the proof of its
existence it is sensible to define the Radon-Nikodým derivative as a function of
M and N :

RN-deriv :: αmeasure→ αmeasure→
(
α→ R

)
RN-derivMN =

SOME f ∈ measurableM BR. (∀x. 0 ≤ f x) ∧ densityM f = N

Thanks to Radon-Nikodým, this definition is correct:

corollary RN-deriv-BR-measurable, RN-deriv-nonneg, RN-deriv-density:
σ-finite-measureM ∧ absolutely-continuousMN ∧ AM = AN =⇒
RN-derivMN ∈ measurableM BR,
(∀x. 0 ≤ RN-derivMN x),
densityM (RN-derivMN) = N

Together with Theorem density-unique-iff we show that the Radon-Nikodým
derivative is a.e. the density function f when applied on the density measure of f :

lemma RN-deriv-unique:
σ-finite-measureM ∧ f ∈ measurableM BR ∧ (AEM x. 0 ≤ f x) =⇒
AEM x. RN-derivM (densityM f) x = f x

The existence of the Radon-Nikodým derivative will justify the characteriza-
tion of distributions in Section 4.3, and the definition of entropy and mutual infor-
mation in Section 4.4.

3.4 Products of Measures

We first introduce the binary product of measure spaces, and then finite products
of measure spaces. In Section 4.5 we will further extend them to infinite products.

3.4.1 Binary Product Measure

The binary product measure is the measure-theoretic counterpart of the Cartesian
product of sets. The measurable sets are generated by the products of the measur-
able sets of its factors. The measure is defined using the iteration of the Lebesgue
integral. With Fubini’s theorems we later show that the result is independent of
the order of iteration.

�⊗� :: αmeasure→ βmeasure→ (α× β)measure
M⊗N = measure-of (ΩM ×ΩN) {A× B|A ∈ AM, B ∈ AN }(

λQ.
∫ P

x.
(∫ P

y. χ Q (x, y) dN
)

dM
)

44

3.4. PRODUCTS OF MEASURES

The space of the binary product measure is the Cartesian product of the spaces of
its factors M and N . And we also know that each Cartesian product of measur-
able sets is measurable in the binary product measure.

lemma space-pair-measure:
ΩM⊗N = ΩM ×ΩN

lemma sets-pair-measureI:
A ∈ AM ∧ B ∈ AN =⇒ A× B ∈ AM⊗N

With these lemmas we verify that the projection functions fst and snd and the
pair construction is measurable. All functions on the binary product type can be
constructed using them. This also allows us to use characterize binary operators
as measurable functions, e.g. (λ(x, y). x + y) ∈ measurable (BR ⊗ BR) BR.

lemma measurable-fst:
fst ∈ measurable (M⊗N)M

lemma measurable-snd:
snd ∈ measurable (M⊗N) N

lemma measurable-Pair:
f ∈ measurable L M ∧ g ∈ measurable L N =⇒
(λx. (f x, g x)) ∈ measurable L (M⊗N)

The last lemma requires Theorem measurable-σ, all others lemma follow by def-
inition.

The next step is now to show that the iterated integral, we employ in the def-
inition for M⊗N , is really a measure. The idea is quite simple: the integral is
positive and from monotone convergence follows countable additivity. However,
to apply monotone convergence on the Lebesgue integral we need to show that
the integrand λx.

∫ Py. χ Q (x, y) dN is a Borel-measurable function for each mea-
surable set Q. This function can be rewritten into the measure of the cut of Q:
λx. µN {y | (x, y) ∈ Q}. It is measurable when N is finite:

lemma measurable-finite-measure-cut:
finite-measure N ∧ Q ∈ AM⊗N =⇒(
λx. µN {y | (x, y) ∈ Q}

)
∈ measurableM BR

We prove this by induction over Q with Corollary σ-sets-induct-disjoint: the
generator of M⊗ N is ∩-stable, the cut is measurable for each generating set
A × B, and that property is closed under complement and countable union of
disjoint sets.

Now we generalize the previous lemma to a σ-finite measure N . With count-
able additivity of the measure µM we represent the cut {x | (x, y) ∈ Q} as the sum
of all restrictions to the elements of the σ-cover. The restrictions being finite, with
the Lemmas measurable-finite-measure-cut and BR-measurable-SUP it then
follows:

lemma measurable-σ-finite-measure-cut:
σ-finite-measure N ∧ Q ∈ AM⊗N =⇒(
λx. µN {y | (x, y) ∈ Q}

)
∈ measurableM BR

45

CHAPTER 3. CONCRETE MEASURES

With the Borel-measurability of the integrand, we then infer monotone conver-
gence for the iterated integral in the definition of the binary product measure. So
we constructed a measure space where the measure is defined to be the iterated
integral over χ Q:

theorem µ-pair-measure:
σ-finite-measureM ∧ Q ∈ AM⊗N =⇒

µM⊗N Q =
∫ P

x.
(∫ P

y. χ Q (x, y) dN
)

dM

The usual characterization of the binary product measure assumes that the
measure of the Cartesian product equals multiplication of the measures. We verify
this characterization by applying the equation χ (A× B) (x, y) = χ A x · χ B y.

corollary µ-pair-measure-Times:
σ-finite-measureM ∧ A ∈ AM ∧ B ∈ AN =⇒
µM⊗N (A× B) = µM A · µN B

Also the product of σ-finite measure spaces is again a σ-finite measure space. This
allows us to combine multiple product measure:

lemma σ-finite-measure-pair-measure:
σ-finite-measureM ∧ σ-finite-measure N =⇒ σ-finite-measure (M⊗N)

The binary product measure is commutative in its factors. Formally, this trans-
lates to the measure preserving nature of

(
λ(x, y). (y, x)

)
:

lemma distr-pair-swap:
σ-finite-measureM ∧ σ-finite-measure N =⇒
M⊗N = distr (N ⊗M) (M⊗N)

(
λ(x, y). (y, x)

)
This lemma is proved by Corollary µ-pair-measure-Times and Theorem measure-
eqI-generator-eq and commutativity of multiplication. From this immediately
follows commutativity of the product measure, of the integral, and of the AE-
quantifier.

For the AE-quantifier we also show iterativity of the product measure, i.e. the
AE-quantifier over the measure is equal to an iteration of the AE-quantifier over
both its factors:

lemma AE-pair-iff:
σ-finite-measureM ∧ σ-finite-measure N ∧ {x | P x} ∈ AM⊗N =⇒
(AEM⊗N x. P x)⇔ (AEM x. AEN y. P (x, y))

3.4.2 Fubini’s Theorem

We show now that the Lebesgue integral overM⊗N equals the iterated integral
of its factors M and N for all measurable functions. From this directly follows
then Fubini’s theorem, i.e. that integrals on σ-finite measure spaces are commuta-
tive. In this section we assume thatM and N are σ-finite measure spaces.

46

3.4. PRODUCTS OF MEASURES

For the iteration rule of the positive integral on the product measure it is neces-
sary that the positive integral along one factor is measurable. This rule is not just
an auxiliary lemma for Fubini’s theorem, but it actually shows that the Lebesgue
integral over a parametrized function is measurable.

lemma BR-measurable-
∫ P-fst:

f ∈ measurable (M⊗N) BR =⇒(
λx.

∫ P
y. f (x, y) dN

)
∈ measurableM BR

We prove this by induction on the Borel-measurable function f . The base case
is shown with Lemma measurable-σ-finite-measure-cut. All other cases are
closure properties of the Lebesgue integral and of measurable functions.

Now we show the iteration rule for the Lebesgue integral:

theorem
∫ P-fst:

f ∈ measurable (M⊗N) BR =⇒∫ P
f d (M⊗N) =

∫ P
x.
(∫ P

y. f (x, y) dN
)

dM

For this we use again induction over the Borel-measurable function f . The base
case is proved with Theorem µ-pair-measure. All other cases are closure proper-
ties of the Lebesgue integral.

Instead of proving the symmetric variant of the last two lemmas we use the
symmetry properties of the product space. With Lemma distr-pair-swap we
know that the pair swap function

(
λ(x, y). (y, x)

)
is measure preserving between

M⊗N and N ⊗M. This allows us to get symmetric variants of Lemma BR-
measurable-

∫ P-fst and Theorem
∫ P-fst without writing two nearly identical

proofs.

corollary
∫ P-Fubini:

f ∈ measurable (M⊗N) BR =⇒∫ P
x.
(∫ P

y. f (x, y) dN
)

dM =
∫ P

y.
(∫ P

x. f (x, y) dM
)

dN

To show Fubini’s theorem also for real-valued functions we first need the in-
tegrability along one factor of the product measure. With Theorem

∫ P-fst we
show that from integrability on the product space follows a.e.-integrablity along
one factor:

theorem
∫

-fst-integrable:
integrable (M⊗N) f =⇒ AEM x. integrable N (λy. f (x, y))

Then, with this theorem we extend Theorem
∫ P-fst to integration on functions

into R:

theorem
∫

-fst:
integrable (M⊗N) f =⇒∫

x.
(∫

y. f (x, y) dM
)

dN =
∫

f d (M⊗N)

47

CHAPTER 3. CONCRETE MEASURES

Finally, we prove Fubini’s theorem for integrable functions into R:

corollary
∫

-Fubini:
integrable (M⊗N) f =⇒∫

x.
(∫

y. f (x, y) dN
)

dM =
∫

y.
(∫

x. f (x, y) dM
)

dN

This corollary is proved with two instantiations of Theorem
∫

-fst, once with M,
N and f and once with the two measures swapped and the function λ(y, x). f (x, y).
With Lemma distr-pair-swap we show that λ(y, x). f (x, y) is integrable onN ⊗M.

With Theorem
∫ P-fst we can also show the commutation of the density mea-

sure with the pair measure.

lemma pair-measure-density-fst:
f ∈ measurableM BR ∧ (AEM x. 0 ≤ f x)∧
σ-finite-measure (densityM f) =⇒
(densityM f)⊗N = density (M⊗N) (λ(x, y). f x)

Such a commutation law also holds for the push-forward measure.

lemma pair-measure-distr-fst:
T ∈ measurableM S ∧ σ-finite-measure (distrM S T) =⇒
(distrM S T)⊗N = distr (M⊗N) (S ⊗N) (λ(x, y). (T x, y))

We only show the variants for the first element projection, with Lemma distr-pair-
swap we can also show their symmetric variants. Both lemmas show how nice the
density, the push-forward and the product measure fit into our measure-theoretic
framework.

3.4.3 Product σ-Algebra on Dependent Function Space

In textbooks, product spaces with finitely many factors are usually defined as the
iteration of the binary product. There the product space

⊗
i∈{1,...,n}Mi is defined to

beM1 ⊗ (M2 ⊗ (M3 ⊗ · · ·⊗Mn)) and, since it is isomorphic under associative
reordering: it can be written without parenthesis. The problem now is that the
product measure type encodes the amount of factors and their order and types.
This has several problems in Isabelle/HOL: (1) the types are not equal under
associative reordering, forcing us to apply coercion functions between reordered
product spaces and (2) this is problematic when we want to do induction on n,
which is not possible as the type would depend on n.

To avoid these problems we model the product measure space
⊗

i∈IM i as de-
pendent function space. The factors of the product measure are represented with a
functionM mapping from the index I into measure spaces. The product measure
space provides the canonical σ-algebra for the function space: it is used for the
finite product of σ-finite measures, infinite product of probability measures, and
for the trace space of a stochastic process. The measure part of

⊗
i∈IM i is used

as product measure in the finite and the infinite case.
Notation: In this section we assume that M is a function from the index set I into

measure spaces. We abbreviate ΩM i with Ωi, AM i with Ai, and µM i with µi.

48

3.4. PRODUCTS OF MEASURES

The basic sets we want to measure are
{
ω ∈
�

i∈I Ωi | ω i ∈ A
}

for each i in
I and A in Ai. Yet, these basic sets are not suited to define a measure, as they
are not closed under intersection. For the finite case we define the measure on
the cubes

�
i∈I A i, where A i is in Ai for all i ∈ I. This does not work for the

infinite case, the index set may not be countable, and multiplication is hard to
handle in the countable but infinite case. To express products that map to finite
multiplication, we use the embedding of cubes with finite indices. For this we
define the embedding of sets Q from

�
i∈J Ωi in

�
i∈I Ωi, where J ⊆ I:

emb :: ι set→
(
ι→ α

)
set→

(
ι→ α

)
set

emb J Q =
{
ω ∈
�

i∈I Ωi | ω�J ∈ Q
}

With emb J Q cubes on J are extended to cubes on I:

lemma emb-
�

:
J ⊆ I ∧

(
∀i ∈ J. A i ⊆ Ωi

)
=⇒

emb J
(�

i∈J A i
)
=
(�

i∈I if i ∈ J then A i else Ωi
)

The measurable sets of the product measure are generated by the embedding of
all cubes of all finite index sets J ⊆ I. These generating sets are ∩-stable and we
can easily assign measures to them.⊗

i∈�� :: ι set→
(
ι→ αmeasure

)
→
(
ι→ α

)
measure⊗

i∈IMi =

extend-measure
(�

i∈I Ωi
){

(J, A) | (J 6= ∅ ∨ I 6= ∅) ∧ finite J ∧ J ⊆ I ∧ (∀ j ∈ J. A i ∈ Ai)
}(

λ(J, A). emb J (
�

j∈J A j)
)

(
λ(J, A). ∏ j∈J∪{i∈I. µi Ωi 6=1} if j ∈ J then µ j (A j) else µ j Ω j

)
The premeasure we use (the last parameter to extend-measure) multiplies over all
indices whose measure is not 1. This is necessary when we define the infinite
product measure in Section 4.5. In that case the index set equates J as µi Ωi will
always be 1.

To simplify further proofs we restrict the generating sets to embeddings where
the index set J is not empty if I is not empty. And for the measure we need to take
care of the case where the factors are not probability spaces. When the index set
is empty I = ∅, the generating sets contain only the entire space, i.e. the singleton
set containing the everywhere undefined function. This gives us a probability
measure for the case I = ∅.

Notation: We abbreviate Ω⊗
i∈IMi with Ω⊗,A⊗

i∈IMi withA⊗, and µ⊗
i∈IMi with µ⊗.

Now we show that the measurable sets are generated by cubes for a finite I
and alternatively by the projections of each index:

lemma space-
⊗

: Ω⊗ =
�

i∈I Ωi

lemma sets-
⊗

-finite:

finite I =⇒ A⊗ = σ-sets Ω⊗ {�
i∈I A i

∣∣∣ ∀i ∈ I. A i ∈ Ai

}
49

CHAPTER 3. CONCRETE MEASURES

lemma sets-
⊗

-single:

A⊗ = σ-sets Ω⊗ {{ f ∈ Ω⊗ | f i ∈ A
} ∣∣∣ i ∈ I, A ∈ Ai

}
This gives us a simple rule to show the measurability of functions into the product
space.

lemma measurable-
⊗

-single:
f ∈ ΩN → Ω⊗ ∧ (∀i ∈ I, A ∈ Ai. {x | f x i ∈ A} ∈ AN) =⇒
f ∈ measurable N (

⊗
i∈IMi)

So, f is measurable if the projection of each index is measurable, and the domain
of the resulting function is restricted to I:

lemma measurable-
⊗

-restrict:
(∀i ∈ I. f i ∈ measurable N Mi) =⇒
(λx. (λi. f i x)�I) ∈ measurable N (

⊗
i∈IMi)

The opposite direction is also true, the projection of each index is measurable:

lemma measurable-
⊗

-component:
i ∈ I =⇒ (λω. ω i) ∈ measurable (

⊗
i∈IMi)Mi

The last two lemmas also imply that merging of two products and adding
dimensions is also measurable. Together with the measurability of the projection
at index i ∈ I, we relate the binary product measure N ⊗ L and the product
measure

⊗
i∈IMi. Later we will show that this is measure preserving on product

measures.

merge :: ι set→ ι set→
(
(ι→ α)× (ι→ α)

)
→ (ι→ α)

merge I1 I2 = (λ(ω1,ω2) i. if i ∈ I1 then ω1 i else
if i ∈ I2 then ω2 i else undefined)

lemma measurable-
⊗

-merge:

merge I1 I2 ∈ measurable
(
(
⊗

i∈I1
Mi)⊗ (

⊗
i∈I2
Mi)

) (⊗
i∈I1∪I2

Mi

)
lemma measurable-

⊗
-add-dim:

(λ(ω, x). ω(i := x)) ∈ measurable
(
(
⊗

i∈IMi)⊗Mi

) (⊗
i∈{i}∪IMi

)
The equation of Lemma sets-

⊗
-single gives a powerful induction principle

for measurable sets in A⊗. We can strengthen it when each σ-algebra Ai is gen-
erated by G i. Then we show that the σ-algebra A⊗ is generated by projections of
the generators G i. A requirement is that each generator G i contains a σ-cover C i.

lemma prod-generator:(
∀i ∈ I. G i ⊆ P(Ωi) ∧ Ai = σ-sets Ωi (G i) ∧

(
⋃

j C i j) = Ωi ∧ C i ∈N→ G i
)

=⇒

A⊗ = σ-sets Ω⊗ {{x ∈ Ω⊗ ∣∣ x i ∈ A
} ∣∣∣ i ∈ I, A ∈ G i

}
50

3.4. PRODUCTS OF MEASURES

When the index set I is finite, the product σ-algebra A⊗ is generated by products
over G i ∈ G i for each element i ∈ I. While the description of these generating
sets is more complicated, they have the advantage that the sets are smaller. In fact
the sets may have finite measures.

lemma prod-generator-finite:

finite I ∧
(
∀i ∈ I. G i ⊆ P(Ωi) ∧ Ai = σ-sets Ωi (G i) ∧

(
⋃

j C i j) = Ωi ∧ C i ∈N→ G i
)

=⇒

A⊗ = σ-sets Ω⊗ {�
i∈I A i

∣∣∣ ∀i ∈ I. A i ∈ G i
}

This lemma will be used in Section 3.5 to prove that the product space of Borel
sets is isomorphic to the Borel sets on the Euclidean space. This then allows us
to prove that the Lebesgue measure on the Euclidean space equals the product of
Lebesgue measures on the real line.

3.4.4 Finite Product Measures

In the previous section we proved lemmas about the measurable sets of the prod-
uct space. Now we show that for a finite index set I the product measure exists, i.e.
cubes are mapped to the multiplication of the measures of their factors. We only
show the finite case in this section, deferring the infinite case to Section 4.5.

We assume an index set I, and that all measure spacesMi are σ-finite.2

theorem µ-
⊗

:
finite I ∧ (∀i ∈ I. A i ∈ Ai) =⇒ µ⊗ (

�
i∈I A i) = ∏i∈I µi (A i)

We prove this equation by induction on I. In the induction case we use the binary
product to construct a measure space with an additional factor. This works as the
binary product measure requires σ-finiteness for only one of the measures.

For I = ∅, the product measure is equal to the count measure of the singleton
set {λ_. undefined}. This is convenient as we get a probability measure in the
case

⊗
i∈∅M i.

lemma
⊗

-empty:
⊗
i∈∅

M i = count {λ_. undefined}

The finite product measure is again σ-finite. The σ-cover uses the increasing σ-
covers of the factors.

lemma σ-finite-
⊗

: finite I =⇒ σ-finite-measure (
⊗

i∈IMi)

The merge function we defined in the previous section relates the binary mea-
sure (

⊗
i∈IMi)⊗ (

⊗
i∈JMi) with the finite product measure

⊗
i∈I∪JMi. With the

previous lemmas we show that it is measure preserving between these measures:

lemma distr-merge:
finite I1 ∧ finite I2 ∧ I1 ∩ I2 = ∅ =⇒
distr ((

⊗
i∈I1
Mi)⊗ (

⊗
i∈IMi)) (

⊗
i∈I1∪I2

Mi) (merge I1 I2) =

(
⊗

i∈I1∪I2
Mi)

2This assumption is on all i, not only the ones in I. It is actually a locale assumption and allows
us to show that the factors are in the σ-finite measure sublocale.

51

CHAPTER 3. CONCRETE MEASURES

Similarly, we show that on a product with only one factor the component projec-
tion is measure preserving:

lemma distr-singleton: distr (
⊗

i∈{i}Mi)Mi (λx. x i) =Mi

Sometimes the Lebesgue integral over a finite product can be solved by in-
duction over the index set. For this we provide unfolding rules for the Lebesgue
integral on nonnegative functions, or integrable functions.

theorem
⊗

-
∫ P-fold-insert:

i /∈ I ∧ finite I ∧ f ∈ measurable (
⊗

i∈I∪{i}Mi) BR =⇒∫ P
f d

⊗
i∈I∪{i}

Mi =
∫ P

ω.
(∫ P

x. f (ω(i := x)) dMi

)
d
⊗
i∈I

Mi

theorem
⊗

-
∫

-fold-insert:
i /∈ I ∧ finite I ∧ integrable (

⊗
i∈I∪{i}Mi) f =⇒∫

f d
⊗

i∈I∪{i}
Mi =

∫
ω.
(∫

x. f (ω(i := x)) dMi

)
d
⊗
i∈I

Mi

We prove these lemmas by splitting the finite product into a binary product by
Lemma distr-merge and Lemma distr-singleton and finally applying Fubini
on the binary product.

The last lemma proves the distributivity of multiplication and integration by
induction on I. First we show the distributivity for nonnegative functions:

corollary
⊗

-
∫ P-setprod:

finite I ∧ (∀i ∈ I. f i ∈ measurableMi BR) ∧ (∀i ∈ I,ω. 0 ≤ f i ω) =⇒∫ P
ω. ∏

i∈I
f i (ω i) d

⊗
i∈I

Mi = ∏
i∈I

∫ P
f i dMi

With this we show the integrability. Using again the unfolding lemmas and induc-
tion over the index I we show the distribution of the Lebesgue integral.

corollary
⊗

-integrable-setprod,
⊗

-
∫

-setprod:
finite I ∧ (∀i ∈ I. integrableMi (f i)) =⇒
integrable (

⊗
i∈IMi) (λω. ∏i∈I f i (ω i)) ,∫

ω. ∏
i∈I

f i (ω i) d
⊗
i∈I

Mi = ∏
i∈I

∫
f i dMi

3.5 Lebesgue Measure

An important measure is the Lebesgue measure λ assigning each interval its length:
λ {a ..< b} = b− a. Usually the Lebesgue measure is constructed using Cara-
theodory’s extension theorem (see Remark 3 in §8 of Bauer [9], or Chapter 1 of
Ash [4]). The measurable sets are the Borel sets, hence this measure is called
Lebesgue-Borel measure, its completion is then the Lebesgue measure. Another more
direct way is to to use the outer Lebesgue measure λ∗ and chose all λ∗-measurable
sets as Lebesgue measurable sets (see Chapter 1 of Gordon [25]). Both definitions
result in the same measure (see Problem 3 in Chapter 1 of Ash [4]).

52

3.5. LEBESGUE MEASURE

Instead of following one of these constructions, we use the gauge integral (also
called the Henstock-Kurzweil integral) available in the multivariate analysis in Is-
abelle/HOL.3 The gauge integral is an extension of the Riemann integral and of
the Lebesgue integral on Euclidean vector spaces (see Chapter 9 of Gordon [25]).
We use this construction as it simplifies the existence proof of the Lebesgue mea-
sure and we can easily relate the gauge integral to the Lebesgue integral.

In Isabelle/HOL the predicate HK-integrable A f states that the function f is
gauge integrable on the set A, in which case the gauge integral of f on the set A has
the real value HK-integral A f . The gauge measure of a set A is the gauge integral
of the constant 1 function on A. Since the gauge measure is restricted to sets with
a finite measure, it cannot be directly used as Lebesgue measure since it is not a
σ-algebra. However we can measure the indicator function χ A on the intervals
{−n .. n} for all natural numbers n. When χ A is measurable on all intervals, we
deem it as Lebesgue measurable and the Lebesgue measure is the supremum of
the gauge measures for all intervals {−n .. n}. To define the Lebesgue measure
on multidimensional Euclidean spaces we use hypercubes {x | ∀i. |xi| ≤ n}. The
σ-algebra of the Lebesgue measure on a Euclidean space Rn consists of all sets A
gauge measurable set on all hypercubes.

cube :: N→ Rn set
cube n = {x | ∀i. |xi| ≤ n}
λHK

Rn :: Rn measure
λHK

Rn = measure-of URn {A | ∀n. HK-integrable (cube n) (χ A)}(
λA. supn HK-integral (cube n) (χ A)

)
The gauge integral is monotone convergent, hence the measurable sets form a
σ-algebra:

lemma σ-algebra-lebesgue:
σ-algebra URn {A | ∀n. HK-integrable (cube n) (χ A)}

lemma space-lebesgue:
ΩλHK

Rn
= URn

lemma sets-lebesgue:
AλHK

Rn
= {A | ∀n. HK-integrable (cube n) (χ A)}

From the monotone convergence of the gauge integral it follows also that it forms
a measure space, mapping cubes to the product of their edge lengths. Hence, the
Lebesgue measure forms a σ-finite measure space.

theorem µ-lebesgue:
A ∈ AλHK

Rn
=⇒ µλHK

Rn
A = supn HK-integral (cube n) (χ A)

corollary µ-lebesgue-atLeastAtMost:
a ≤ b =⇒ µλHK

Rn
{a .. b} = ∏i<n(bi − ai)

lemma σ-finite-lebesgue:
σ-finite-measure λHK

Rn

3The multivariate analysis in Isabelle/HOL is ported from a later version of [31].

53

CHAPTER 3. CONCRETE MEASURES

3.5.1 Lebesgue-Borel Measure

We know that λHK
Rn is a σ-algebra and since all intervals {a .. b} are Lebesgue

measurable all Borel sets are Lebesgue measurable:

lemma lebesgue-borel: A ∈ ABRn =⇒ A ∈ AλHK
Rn

But the Lebesgue measure is not generated by {a .. b}. It contains not only all
Borel sets, but is also complete, i.e. for each null set it also contains all subsets:

lemma lebesgue-complete:
A ⊆ B ∧ B ∈ null-setsλHK

Rn
=⇒ A ∈ null-setsλHK

Rn

The Lebesgue measure is the completion of the Lebesgue-Borel measure (see Chap-
ter 1 in Ash [4]). With these two lemmas we only proved that the Lebesgue mea-
surable sets include the completion of the Borel sets. We do not prove the other
direction, as it is complicated and we do not have an application for it.

While the Lebesgue measure admits more measurable sets than the Borel sets,
its measurable sets are complicated to handle (see Remark 3 in §8 in Bauer [9]).
It is easier to work on the Lebesgue-Borel measure, where the measurable sets
are the Borel sets, with its nice generation property. For this, we introduce the
Lebesgue-Borel measure by changing the measurable sets from the Lebesgue sets
to the Borel sets.

λRn :: Rn measure
λRn = measure-of URn ABRn µλHK

Rn

Now the measure λRn has the Borel sets as measurable sets, assigns to each cube
the product of its edge lengths as measure, and hence is σ-finite:

lemma space-λRn : ΩλRn = URn

lemma sets-λRn : AλRn = ABRn

lemma µ-λRn-atMostAtLeast: a ≤ b =⇒ µλRn {a .. b} = ∏i<n(bi − ai)

lemma σ-finite-λRn : σ-finite-measure λRn

As application of the fact that λRn is generated by all intervals {a .. b}, we use
Theorem measure-eqI-generator-eq to show that λRn is equal to other measures
introduced on the Borel sets and based on the volume of cubes.

theorem λRn-eqI:(
∀a b. a ≤ b =⇒ µM {a .. b} = ∏i<n(bi − ai)

)
∧ AM = ABRn =⇒

M = λRn

We use this to show how to apply an affine transformation to the integral:

corollary λRn-real-affine:
c 6= 0 =⇒ λR = density

(
distr λR BR (λx. t + c · x)

)
(λ_. |c|)

corollary λRn-
∫

-real-affine:

c 6= 0 =⇒
∫

f dλR = |c| ·
∫

x. f (t + c · x) dλR

54

3.5. LEBESGUE MEASURE

We will see another application in Section 3.5.3 when we equate the Lebesgue-
Borel measure on multidimensional Euclidean spaces to the product of Lebesgue-
Borel measures.

3.5.2 Lebesgue Integral and Gauge Integral

From the linearity of the gauge integral and from our definition of the Lebesgue
measure it is easy to see that all Lebesgue measurable simple functions whose
integral is finite are also gauge integrable. With the monotone convergence of
the gauge integral we show that all nonnegative Lebesgue measurable functions
with a finite integral are gauge integrable. And finally we show that all Lebesgue
integrable functions are gauge integrable.

theorem has-integral-iff-
∫ P-lebesgue:

f ∈ measurable λHK
Rn BR ∧ (∀x. 0 ≤ f x) =⇒

HK-has-integral URn f I ⇔
(∫ P

f dλHK
Rn = (I)R

)
corollary lebesgue-has-integral:

integrable λHK
Rn f =⇒ HK-has-integral URn f

(∫
f dλHK

Rn

)

Please note that the right-side of Theorem has-integral-iff-
∫ P-lebesgue equates

two R values, so it forces the integral to be finite.
The Lebesgue-Borel measure is defined as a sub-σ-algebra of the Lebesgue

measure. Hence, for Borel-measurable functions, Lebesgue integrability equals
Lebesgue-Borel integrability:

lemma λHK
Rn -
∫

-eq-λRn :
f ∈ measurable BRn BR =⇒
integrable λHK

Rn f ⇔ integrable λRn f ,∫
f dλHK

Rn =
∫

f dλRn

We lift now the fundamental theorem of calculus (FTC) for the gauge integral
to the Lebesgue integral on the Lebesgue-Borel measure. First, we show that a
function continuous on a closed interval is also integrable on this interval:

theorem integrable-atLeastAtMost-isCont:
a ≤ b ∧ continuous-on {a .. b} f =⇒ integrable λR (λx. f x · χ {a .. b} x)

In the next step we show FTC:

corollary
∫

-FTC:
a ≤ b ∧ continuous-on {a .. b} f ∧ differentiable-on {a .. b} F f =⇒∫

x. f x · χ {a .. b} x dλR = F b− F a

Here differentiable-on {a .. b} F f states that f is the differential of F on {a .. b}.
The proof simply equates the Lebesgue-Borel integral to the gauge integral and
then uses the FTC on the gauge integral.

55

CHAPTER 3. CONCRETE MEASURES

3.5.3 Euclidean Spaces and Product Measures

We relate the Euclidean space Rn with the n-dimensional product of Lebesgue-
Borel measures:4

λn ::
(

N→ R
)
measure

λn = (
⊗

i∈{1 .. n} λR)

The function p2e :: (N→ R) → Rn maps functions to vectors with (p2e f)i = f i.
We use Lemma prod-generator-finite to show that p2e is measurable:

lemma p2e-measurable: p2e ∈ measurable λn BRn

With Theorem measure-eqI-generator-eq we show that it is measure preserving
from λn to λRn .

theorem λRn-eq-λn: λRn = distr λn BRn p2e

With this, the Theorem
∫ P-distr, and the Corollaries

∫
-distr, and integrable-

distr-eq, it follows the equivalence of integrals:

corollary λRn-
∫ P:

f ∈ measurable BRn BR =⇒
∫ P

f dλRn =
∫ P

x. f (p2e x) dλn

lemma λRn-integrable, -
∫

:
f ∈ measurable BRn BR =⇒
integrable λRn f ⇔ integrable λn (f ◦ p2e),∫

f dλRn =
∫

x. f (p2e x) dλn

These lemmas allow now proofs by induction over the dimension. While the
Euclidean vector space formalization in Isabelle/HOL includes the dimensionality
in the vector type and hence it is not possible to use induction over the dimension-
ality of the Euclidean space. With Lemmas λHK

Rn -
∫

-eq-λRn and λRn-eq-λn we equate
the gauge integral to the Lebesgue integral over λn, we then use induction over n.

4n is the dimension of the Euclidean space Rn.

56

Chapter 4

Probability

The concepts from measure theory, like measure, measurable sets and functions
and Lebesgue integration map to probability, events, random variables and expec-
tation. We introduce probability measures as measures with measure value 1 for
the entire space. The other concepts map one-to-one onto the probabilistic con-
cepts. Instead of introducing new constants we use the measure-theoretic ones.

For probability theory we formalize the following concepts:

Independence of events states that the occurrence of one of these events does not
influence the occurrence of the others. While introductory textbooks often
only introduce independence between two events or random variables, we
introduce independence on indexed families of events and of random vari-
ables.

Distribution of a random variable is the push-forward measure of the random
variable. When analysing the properties of random variables we often ignore
the concrete result values and only look at the distribution. For this we
equate the distribution of a random variable to a density measure.

Information theory quantifies the information stored in a random variable (en-
tropy) or shared between two random variables (mutual information). We
formalize entropy and mutual information and their conditional versions.

Infinite products π = ∏i∈I µi extends the finite product of measures to an infinite
index I, this works at least with probability measures. For distinct indices
i1, i2, . . . , in, and when µil is defined on the sets Al for all l ≤ n, then we have:

π {ω | ω i1 ∈ A1 ∧ω i2 ∈ A2 ∧ · · · ∧ω in ∈ An} = µi1 A1 · µi2 A2 · · · µin An

This is used in probability theory to construct a probability space with in-
finitely many independent random variables.

Trace measure τ is the stochastic process of a Markov chain defined by a transi-
tion matrix T . Where T s t is the probability that the Markov chain transi-
tions from state s into state t. The probability that a trace of a Markov chain
starts with the states s1, s2, . . . , sn is

τ {ω | ∀i ≤ n. ωi = si} = ∏
i<n

T si si+1 .

57

CHAPTER 4. PROBABILITY

4.1 Probability Measures

A probability measure is a finite measureM where the measure value of the space is
1. The finite measure value µ f

M A for a measurable set A of a probability measure
M is also called probability of A.

locale prob-measure = finite-measureM +

assumes µM ΩM = 1

lemma prob-spaceI: µM ΩM = 1 =⇒ prob-measureM

Notation: In this chapter we assume thatM is a probability measure. We write PrM A =

µ
f
M A for the probability of a set A, and we write PrM(x. P x) = µ

f
M {x | P x} for the

probability of a measurable predicate P. We omit the probability measureM when writing
the probability Pr(x. P x) = PrM(x. P x) and Pr A = PrM A.

4.1.1 Random Variables

A function f is a random variable1 on the probability measure M into a measure
space N if f ∈ measurable M N . For many theorems in probability theory we
assume a probability measure with a collection of random variables on it. The
push-forward measure of a random variable f allows us to reason about the prob-
ability distribution of f . The push-forward measure of a random variable f is
again a probability measure:

lemma prob-space-distr:
f ∈ measurableMN =⇒ prob-measure (distrMN f)

4.1.2 Conditional Probability

If the probability of an event A depends on another event B, e.g. A is the outcome of
a dice and B tells us if the dice was odd, we may want to ask what the probability is
that A happens when we know that B happened. This is the conditional probability
of A given B. Instead of events we define conditional probability on measurable
predicates:

Pr�(x. � | �) :: αmeasure→
(
α→ B

)
→
(
α→ B

)
→ R

PrM(x. P x | Q x) = Pr(x. P x ∧ Q x)/ Pr(x. Q x)

It is easy to see that conditional probability introduces a measure depending on
the given event Q. We introduce it by using density and weigh each element in Q
with the inverse of the probability of Q. Elements not in Q are weigh with 0.

cond-measure :: αmeasure→
(
α→ B

)
→ αmeasure

cond-measureM Q = densityM
(
λx. χ {x | Q x} x/ Pr(x. Q x)

)
1Some textbooks call it a random object or element [43], and only random variable when into R.

58

4.1. PROBABILITY MEASURES

When the probability of Q is not 0, then we have a probability measure:

lemma prob-space-cond-measure:
Pr(x. Q x) 6= 0 =⇒ prob-measure (cond-measureM Q)

From Pr(x. Q x) 6= 0 also follows that {x | Q x} is measurable.
The conditional probability of a predicate P given a predicate Q equals the

probability of P on the probability measure cond-measureM Q:

lemma Pr-cond-measure:
Pr(x. Q x) 6= 0 ∧ {x | P x} ∈ AM =⇒
Prcond-measureM Q(x. P x) = Pr(x. P x | Q x)

4.1.3 Jensen’s Inequality

The Lebesgue integral gains some nice properties when used on a probability
measure. First we get some strict inequalities when the integrand is strictly less
than or strictly greater than some boundary:

lemma
∫

-less: integrableM X ∧
(

AEM x. X x < b
)

=⇒
∫

X dM < b

lemma
∫

-greater: integrableM X ∧
(

AEM x. a < X x
)

=⇒ a <
∫

X dM

Another important inequality is Jensen’s inequality. It generalizes the fact that a
convex function q at the middle of the interval {a .. b} is less than or equal to
the average of the values at the endpoints of the interval: q ((a + b)/2) ≤ (q a +

q b)/2. Jensen’s inequality generalizes middle and average to integration. First,
we defined the concept of convex functions on a carrier I:

convex-on :: R set→ (R→ R)→ B

convex-on I f ⇔(
∀x, y ∈ I. ∀u, v ≥ 0. u + v = 1 =⇒ f (u · x + v · y) ≤ u · f x + v · f y

)
An example for a convex function is the vertically mirrored logarithm. We need
its convexity later in information theory.

lemma minus-log-convex: 1 < b =⇒ convex-on {0 <..} (λx. − logb x)

Jensen’s inequality is about a convex function q on an open and convex domain I.
Hence I is an open interval allowing infinite endpoints.

theorem jensens-inequality:(
I = {a <..< b} ∨ I = {a <..} ∨ I = {..< b} ∨ I = UR

)
∧

integrableM X ∧
(

AEM x. X x ∈ I
)
∧

integrableM (λx. q (X x)) ∧ convex-on I q =⇒

q
(∫

X dM
)
≤
∫

x. q (X x) dM

For information theory Jensen’s inequality is helpful to show that the Kullback-
Leibler divergence and hence also mutual information is always nonnegative.

59

CHAPTER 4. PROBABILITY

4.2 Families of Independent Sets and Functions

Two sets A and B are independent if Pr (A ∩ B) = Pr A · Pr B. Independence
is generalized to families of sets Ai indexed by i ∈ I: for each finite, nonempty
subset J of the index set I the independence property Pr (

⋂
j∈J A j) = ∏ j∈J Pr A j

holds. Note that this is stronger than the pairwise independence of each Ai and
A j. For example: assume we have the uniform probability measure on the space
{0, 1} × {0, 1}. The sets {(0, 0), (0, 1)}, {(0, 0), (1, 0)}, and {(0, 0), (1, 1)} are pair-
wise independent, but all three together do not form an independent family.

4.2.1 Independent Sets of Sets

We introduce independence for an indexed family of sets of sets:

indep-sets ::
(
ι→ α set set

)
→ ι set→ B

indep-sets F I ⇔
(

F ∈ I → P(AM) ∧
(
∀J ⊆ I. J 6= ∅ ∧ finite J =⇒

∀A ∈
�

j∈J F j. Pr (
⋂

j∈J A j) = ∏ j∈J Pr(A j)
))

This predicate indep-sets is monotone in the index set and in the sets of sets, i.e.
we can restrict the index set and the range of F:

lemma indep-sets-mono:
indep-sets F I ∧ J ⊆ I ∧ (∀i ∈ J. G i ⊆ F i) =⇒ indep-sets G J

So, we know that subsets are again independent, but is it possible to deduce in-
dependence of further sets? When A and B are independent then the complement
of a A is also independent:

Pr ((Ω− A) ∩ B) = Pr (B− (A∩ B)) = Pr B− Pr(A∩ B) = (1− Pr A) · Pr B

This also works for the union of disjoint sets. Hence, for an independent family F
the Dynkin closures of each element in F is independent:

theorem indep-sets-dynkin-sets:
indep-sets F I =⇒ indep-sets (λi. dynkin-sets ΩM (F i)) I

When the family of independent sets F is ∩-stable, we know with Theorem σ-
sets-eq-dynkin-sets that the Dynkin closure is equal to the σ-closure. Hence the
σ-closures of the sets of an independent family are again independent.

corollary indep-sets-σ-sets:
indep-sets F I ∧

(
∀i ∈ I. ∩-stable (F i)

)
=⇒

indep-sets (λi. σ-sets ΩM (F i)) I

We strengthen this rule by partitioning the index I of an independent family,
and we then show that the σ-algebras generated by the union of each part are also

60

4.2. FAMILIES OF INDEPENDENT SETS AND FUNCTIONS

independent. The index set is now the union over all I, where J indexes the parts.

lemma indep-sets-collect-σ-sets:
indep-sets F (

⋃
j∈J I j) ∧ (∀ j ∈ J, i ∈ I j. ∩-stable (F i)) ∧

disjoint-familyJ I =⇒
indep-sets (λ j. σ-sets ΩM (

⋃
i∈I j F i)) J

4.2.2 Independent Random Variables

Based on independent sets of sets we describe an indexed family of independent
random variables:

indep-vars ::
(
ι→ βmeasure

)
→
(
ι→ α→ β

)
→ ι set→ B

indep-vars N X I ⇔
((
∀i ∈ I. X i ∈ measurableM (N i)

)
∧

indep-sets
(
λi.
{
{x | X i x ∈ A}

∣∣ A ∈ AN i
})

I
)

Independent random variables obey a simple data flow rule: when a family of
random variables is constructed such that each of these random variables is built
out of different, independent random variables, then the result are again inde-
pendent random variables. This rule follows from Lemma indep-sets-collect-σ-
sets. We prove a simpler variant, where each random variable is a composition
with exactly one random variable from an independent family:

lemma indep-vars-compose:
indep-vars N X I ∧ (∀i ∈ I. Y i ∈ measurable (N i) (L i)) =⇒
indep-vars L (λi. Y i ◦ X i) I

This lemma helps us to derive independence of random variables when we already
know that the random variables they are based on are independent. But, how do
we prove that random variables are independent in the first place? The definition
of indep-vars assumes independence for each finite collection of measurable sets
of N , a σ-algebra. As usual we can simplify this by assuming that each N i is
generated by a generator G i. While it holds also for an infinite index set, we only
prove the lemma for a finite index. This follows from Corollary indep-sets-σ-sets.

lemma indep-vars-finite:
I 6= ∅ ∧ finite I ∧ (∀i ∈ I. X i ∈ measurableM (N i)) ∧
(∀i ∈ I. AN i = σ-sets ΩN i (G i) ∧ ∩-stable (G i) ∧ ΩN i ∈ G i ∧

G i ⊆ P(ΩN i)) =⇒
indep-vars N X I ⇔(
∀A ∈ (

�
i∈I G i). Pr(x. ∀i ∈ I. X i x ∈ A i) = ∏i∈I Pr(x. X i x ∈ A i)

)
The usual variant of independence is when we only look at two independent

random variables:

indep-var :: βmeasureβmeasure→→ (α→ β)→ (α→ β)→ B

indep-var S T X Y ⇔
indep-vars (λi. if i then S else T) (λi. if i then X else Y) UB

61

CHAPTER 4. PROBABILITY

For the case of two random variables, independence says that the joint distribution
is equivalence to the product of both single distributions.

lemma indep-var-distribution-eq:

indep-var S T X Y ⇔
(

X ∈ measurableM S ∧ Y ∈ measurableM T ∧(
distrM S X

)
⊗
(
distrM T Y

)
= distrM

(
S ⊗ T

) (
λx. (X x, Y x)

))
This also holds for family of independent random variables. However we need
infinite products of probability spaces, hence we show it in Section 4.5.

4.2.3 Sequences of Independent Sets and 0-1-Laws

Often we want to have a more specialized version, where we only talk about a
single set per index. For example we want to state that a sequence F ∈N→ α set
is independent.

indep-events ::
(
ι→ α set

)
→ ι set→ B

indep-events F I ⇔ indep-sets
(
λi. {F i}

)
I

As an application of independence we prove Kolmogorov’s and Borel’s 0-1-
law. They are helpful to show that a limit of sets is either a.e.-true or a.e.-false.
For Kolmogorov’s 0-1-law, we start with introducing tail events. They are used to
describe limiting properties of a sequence of σ-algebras A. These σ-algebras are
often the σ-algebras generated by a sequence of random variables.

tail-events ::
(

N→ α set set
)
→ α set set

tail-events A =
⋂

n σ-sets ΩM
(⋃

i≥n A i
)

When A is a sequence of σ-algebras, then the tail events are also a σ-algebra:

lemma σ-algebra-tail-events:
(∀i. σ-algebra ΩM (A i)) =⇒ σ-algebra ΩM (tail-events A)

lemma tail-events-subset:
(∀i. A i ⊆ AM) =⇒ tail-events A ⊆ AM

Kolmogorov’s 0-1-law states that each tail event is either a.e. true or a.e. false.

theorem kolmogorov-0-1-law:
(∀i. σ-algebra ΩM (A i)) ∧ indep-sets A UN ∧ X ∈ tail-events A =⇒
Pr X = 0 ∨ Pr X = 1

Using this we can easily show Borel’s 0-1-law by instantiating Ai with the σ-algebra
{Ω, Ω− Fi, Fi, ∅}, then

⋂
n
⋃

m≥n Fm is a tail event.

corollary borel-0-1-law:
indep-events F UN =⇒ Pr (

⋂
n
⋃

m≥n F m) = 0 ∨ Pr (
⋂

n
⋃

m≥n F m) = 1

62

4.3. DISTRIBUTIONS OF RANDOM VARIABLES

4.3 Distributions of Random Variables

The distribution of a random variable X into S is defined as its push-forward mea-
sure:2 distrM S X, see Kallenberg [43]. When the measure space S is the Borel
σ-algebra, the distribution is often expressed as cumulative distribution function (cdf)
FX a = Pr(x. X x ≤ a). With Theorem measure-eqI-generator-eq it is easy to
show that the cdf FX uniquely determines the distribution of X. When the distri-
bution can be expressed as the measure S with density f the function f is called
probability density function (pdf) (for a discrete random variable X the function f is
also called probability mass function (pmf)).

Distributions of random variables are mostly expressed as pdf on a counting
space or on the Lebesgue measure. For example, the exponential distribution
has the pdf λx. l · exp−l·x, where l is a parameter for the exponential distribution.
When the distribution of a random variable has a pdf it helps us to compute its
probability, expectation, variance, and entropy by integration.

We introduce a predicate to easily express the distribution of a random vari-
able. This predicate distributed S X PX states that X is a random variable with the
measure space S as range and that X has the pdf PX .

distributed :: βmeasure→
(
α→ β

)
→
(
β→ R

)
→ B

distributed S X PX ⇔ (X ∈ measurableM S ∧
PX ∈ measurableM BR ∧ AES x. 0 ≤ PX x ∧
distrM S X = density S PX)

We use the Lebesgue measure on distributed to represent the distribution of contin-
uous random variables. For each Borel-measurable function f it is always possible
to construct a random variable X f with f as pdf. We simply use the random vari-
able X f = λx. x on the measure space density λR f . It is not necessary to apply
the the inverse transform method or the Box-Muller method to construct random
variables out of binary sequences like Hasan [32] does.

From Theorem density-unique-iff we know that distributed is a.e.-unique in
the density function. Hence, for two different densities on the same random vari-
able, we know that they are a.e.-equal:

lemma distributed-unique:
distributed S X P1 ∧ distributed S X P2 =⇒ AES x. P1 x = P2 x

When the random variable X induces the density PX on the measure space S ,
then the probability of X equals the integral over S :

lemma distributed-Pr:
distributed S X PX ∧ A ∈ AS =⇒

Pr
(

x. X x ∈ A
)
=
∫ P

x. PX x · χ A x dS

Similarly we can replace the application of X in an integral by the multiplication

2That’s why the constant for the push-forward measure is called distr.

63

CHAPTER 4. PROBABILITY

with PX on the measure space S :

lemma distributed-
∫

:
distributed S X PX ∧ g ∈ measurable S BR =⇒(∫

x. g (X x) dM
)
=

(∫
x. PX x · g x dS

)
These are generic rules working with each random variables for which the pdf is
known.

From Lemma distributed-Pr it is easy to get the cdf of a random variable with
a pdf on the Lebesgue measure. For example, for an exponentially distributed
random variable X the equation

Pr(x. X x ≤ a) =
∫

0≤x≤a
l · exp (−l · x) dλR

holds. But we also know that the other direction also holds, i.e. when the cdf of X
is representable as an integral over PX , then the random variable X is distributed
with PX as pdf. Fortunately, Theorem measure-eqI-generator-eq provides us
with a technique to reduce the equality for all Borel sets to the equality for all
intervals {.. a}.

lemma distributedI-borel-atMost:

X ∈ measurableM BR ∧ PX ∈ measurable BR BR ∧
(

AEλR
x. 0 ≤ PX x

)
∧(

∀a. Pr
(

x. X x ≤ a
)
=
(∫ P

x. PX x · χ {.. a} x dλR

))
=⇒

distributed λR X PX

4.3.1 Joint Distribution

We model the joint distribution of two random variables X and Y as the distribution
of XY = λx. (X x, Y x). When PXY is the density of the joint distribution of X and Y
we write distributed

(
S ⊗ T

)
XY PXY . When X is distributed with density PX and

Y is distributed with density PY then X and Y are the marginal distributions of XY ,
and PX and PY are the marginal pdfs.

We know that the marginal pdfs PX and PY always exist, and that they are the
integral of PXY along the measure space T and S , respectively:

lemma distributed-marginal1, -marginal2:
σ-finite-measure T ∧ σ-finite-measure S ∧
distributed

(
T ⊗ S

) (
λx. (X x, Y x)

)
PXY =⇒

distributed S X
(
λx.

∫ P
y. PXY (x, y) dT

)
,

distributed T Y
(
λy.

∫ P
x. PXY (x, y) dS

)
,

We first prove Lemma distributed-marginal1 and then use the symmetry of the

64

4.3. DISTRIBUTIONS OF RANDOM VARIABLES

product space on distributed random variables:

lemma distributed-swap:
σ-finite-measure T ∧ σ-finite-measure S ∧
distributed

(
S ⊗ T

) (
λx. (X x, Y x)

)
PXY =⇒

distributed
(
T ⊗ S

) (
λx. (Y x, X x)

)
(λ(y, x). PXY (x, y))

What do we know about the joint pdf of two random variables? A simple
case is when the two random variables are independent, then the joint pdf is the
product of their marginal pdfs:

lemma distributed-joint-indep:
σ-finite-measure S ∧ σ-finite-measure T ∧
distributed S X PX ∧ distributed T Y PY ∧ indep-var S T X Y =⇒
distributed

(
S ⊗ T

) (
λx. (X x, Y x)

) (
λ(x, y). PX x · PY y

)
There is no general description of the joint pdf when the variables are not inde-
pendent. However, we can provide a simpler way to show that a function is the
pdf for the joint distribution of X and Y . It is enough if PXY is the pdf on each
product A× B:

lemma distributed-jointI:
σ-finite-measure T ∧ σ-finite-measure S ∧
X ∈ measurableM S ∧ Y ∈ measurableM T ∧
PXY ∈ measurable

(
S ⊗ T

)
BR ∧

(
AES⊗T x. 0 ≤ PXY x

)
∧(

∀A ∈ AS , B ∈ AT . Pr
(

x. X x ∈ A∧ Y x ∈ B
)
=(∫ P

x.
(∫ P

y. PXY (x, y) · χ B y dT
)
· χ A x dS

))
=⇒

distributedM
(
S ⊗ T

) (
λx. (X x, Y x)

)
PXY

4.3.2 Uniform Distribution

A random variable X has a uniform distribution if the probability that it hits an ele-
ment in its range is equal for all elements. The density function is λx. χ A x/µ f

λR
A,

where A is the range of X.
With Lemma distributedI-borel-atMost we prove that each random variable

with the cumulative distribution function (t− a)/(b− a) is uniformly distributed
on the interval {a .. b}:

theorem unifom-distributed-iff:
distributed λR X (λx. χ {a .. b} x/µ f

λR
{a .. b})⇔(

X ∈ measurableM BR ∧ a < b ∧

(∀a ≤ t ≤ b. Pr(x. X x ≤ t) = (t− a)/(b− a))
)

65

CHAPTER 4. PROBABILITY

When a random variable is uniformly distributed on {a .. b}, then we also
know that its expectation is (a + b)/2. This is easily proved with the fundamental
theorem of calculus on the integrand λx. x · χ {a .. b} x/(b− a).

lemma uniform-distributed-expectation:

distributed λR X
(
λx. χ {a .. b} x/µ f

λR
{a .. b}

)
=⇒

∫
X dM = (a + b)/2

4.3.3 Exponential Distribution

A random variable X is exponentially distributed when its distribution on the Le-
besgue-Borel measure has the following density:

exponential-density :: R→ R→ R

exponential-density l x = if 0 ≤ x then l · exp (−x · l) else 0

Exponentially distributed random variables appear as the transition times in con-
tinuous-time Markov chains. Here a random variable X describes the time between
two transitions on a path. These random variables are memoryless, i.e. it forgets
how much time has passed, so the probability that X is above a + t, under the
condition that it is above a, does not depend on a, only on the distance t.

lemma distributed-exponential-memoryless:
distributed λR X (exponential-density l) ∧ 0 ≤ a ∧ 0 ≤ t =⇒
Pr(x. a + t ≤ X x | a ≤ X x) = Pr(x. t ≤ X x)

Similar to the uniform distribution, we show that each exponentially distributed
random variable has 1− exp (−x · l) as the cumulative distribution function.

theorem distributed-exponential-iff:
distributed λR X (exponential-density l)⇔(

X ∈ measurableM BR ∧ 0 < l ∧(
∀a ≥ 0. Pr(x. X x ≤ a) = 1− exp(−a · l)

))
We also show that the expectation of such a random variable is 1/l.

lemma exponential-distributed-expectation:

distributed λR X (exponential-density l) =⇒
∫

X dM = 1/l

4.4 Information

Information theory is concerned with quantifying information represented by ran-
dom variables. Shannon [70] introduced entropy. Examples where it is used in
computer science are to reason about the average size of compressed data, quan-
titative information flow analysis (see Clark et al. [16]), or analysis of security
properties of side channel attacks (see Köpf and Dürmuth [48], Section 5.3 and
5.4). A detailed introduction into information theory is given by Gray [26], as well
as Cover and Thomas [18]. We used these books as basis for our formalization.

66

4.4. INFORMATION

As the data represented in computer systems is discrete the first formalization
of information theory in theorem provers was of discrete nature. Coble’s formal-
ization [17] reasons about anonymity. While his theorems are restricted to discrete
finite random variables, his definitions are already suited for the continuous case.

Our definition of Kullback-Leibler divergence, conditional entropy, mutual in-
formation and conditional mutual information is similar to Coble’s definitions [17].
Especially, the conditional mutual information is also represented using mutual in-
formation on joint distributions. This is necessary as we have no formalization of
conditional distributions. With our formalizations of product measures, integrals
and distributions we are able to prove information theory properties on continu-
ous random variables.

The random variables are defined on a probability spaceM, but we also want
to abstract the size of a bit. For binary data this is usually 2, but in the continuous
case this is sometimes also the Euler constant e. To abstract over this we introduce
information spaces:

locale information-space = prob-measureM +

fixes b :: R assumes 1 < b

From now on we will assume thatM and b form an information space.
Entropy, mutual information and their conditional extensions work on distri-

butions of random variables. We name the random variables X, Y , and Z and their
resulting measure spaces S , T , and U , respectively.

Notation: To save space, we abbreviate the (joint) distribution measures of these ran-
dom variables:

DX = distrM S X

DXY = distrM (S ⊗ T) (λx. (X x, Y x))

DXYZ = distrM (S ⊗ T ⊗ U) (λx. (X x, Y x, Z x))

4.4.1 Entropy

The entropy H(X) of a random variable X quantifies the uncertainty of X. In the
discrete case it is defined to be −∑x PX x · logb (PX x), where PX is the pdf of X.
To extend this to the continuous case we use the Radon-Nikodým derivative of DX

as pdf of X, and the sum of the range of X is replaced by the integral over DX . We
also introduce H(X) for the discrete case.

entropy :: βmeasure→
(
α→ β

)
→ R

entropy S X = −
∫

x. logb (RN-deriv S DX x) dDX

H(X) = entropy (count X[ΩM]) X

Note that DX also depends on S . When X is distributed with the pdf PX , we
express the entropy as an integral over S .

lemma entropy-distr:

distributed S X PX =⇒ entropy S X = −
∫

x. PX x · logb(PX x) dS

67

CHAPTER 4. PROBABILITY

This equation tells us that to work with entropy we need to assume that the inte-
gral in this equation is finite, and that the pdf PX exists. This is actually a general-
ization of discrete finite random variables: for them, the pdf always exists and the
entropy is always defined (since the entropy density is always integrable). Since
these two assumptions appear quite often, we introduce a predicate to characterize
random variables with a finite entropy:

finite-entropy :: βmeasure→ (α→ β)→ (β→ R)→ B

finite-entropy S X PX ⇔ distributed S X PX ∧
integrable S (λx. PX x · logb (PX x))

As mention, each discrete finite random variable has a finite entropy:

lemma finite-entropy-simple-fn:

simple-fnM X =⇒ finite-entropy (count X[ΩM]) X
(
λa. Pr {x | X x = a}

)
Now we analyze random variables with finite entropy and with a finite sup-

port, i.e. the set where PX is nonzero has a finite measure. We show that the
entropy has an upper bound in this case:

theorem entropy-le:
finite-entropy S X PX ∧ µS {x | PX x 6= 0} < ∞ =⇒
entropy S X ≤ logb (µ f

S {x | PX x 6= 0})

This theorem is proved using Theorem jensens-inequality with convexity of the
logarithm − logb (f x).

We know even for which distribution the maximum is reached: when we have
a uniformly distributed random variable X, then the entropy equals the logarithm
of the measure of the support of X.

corollary entropy-uniform:
distributed S X (λx. χ A x/µ f

S A) =⇒ entropy S X = logb (µ f
S A)

This tells us that the uniformly distribution is the maximum entropy distribution
for random variables with a finite support. This lemma also tells us that the
entropy can be negative: when µ

f
S A < 1.

4.4.2 Conditional Entropy

Conditional entropy H(X|Y) quantifies the uncertainty of the random variable X,
when the outcome of the random variable Y is already known. Coble [17] defines
conditional entropy in terms of entropy: H(X|Y) = H(X, Y)−H(Y). Gray [26] calls
it conditional relative entropy and gives two definitions, the first one integrates
over the pdf of X conditioned by Y , the second one uses the Kullback-Leibler
divergence. Gray’s Kullback-Leibler divergence is infinite if the two measures are
not absolutely continuous, hence the second form is more general. However, in
our setting we only allow the conditional entropy to assume finite values, hence
we chose the integral version. We assume that the random variable Y has the pdf

68

4.4. INFORMATION

PY , and PXY is the joint pdf of X and Y . In this case the pdf of X conditioned by Y
is PX|Y(x, y) = PXY (x, y)/PY y. In the discrete case, conditional entropy is

−∑
x,y

PXY (x, y) · logb (PX|Y (x, y)) .

Similar to our definition of entropy this equation maps nicely to the general case
by using the Radon-Nikodým derivative and the Lebesgue integral. We use the
abbreviation H(X|Y) for the discrete case:

conditional-entropy :: βmeasure→ γmeasure→
(
α→ β

)
→
(
α→ γ

)
→ R

conditional-entropy S T X Y =

−
∫
(x, y). logb

(
RN-deriv

(
S ⊗ T

)
DXY (x, y)/RN-deriv T DY y

)
dDXY

H(X|Y) = conditional-entropy (count X[ΩM]) (count Y [ΩM]) X Y

Now we show that the conditional entropy fulfills the so called chain rule:
H(X|Y) = H(X, Y)−H(Y). We need to assume that the random variable X and the
joint random variables of X and Y have a finite entropy.

theorem conditional-entropy-chain-rule:
σ-finite-measure S ∧ σ-finite-measure T ∧
finite-entropy T Y PY ∧ finite-entropy (S ⊗ T) (λx. (X x, Y x)) PXY =⇒
conditional-entropy S T X Y =

entropy (S ⊗ T) (λx. (X x, Y x))− entropy T Y

4.4.3 Kullback-Leibler Divergence

To define mutual information we formalize Kullback-Leibler divergence. It quantifies
the similarity of two probability measure S and T on the same σ-algebra AS =

AT . It is often seen as some kind of distance between these two measures. This
works if T is expressible as a density of S . We integrate over the logarithm of the
Radon-Nikodým derivative.

KL-divergence :: R→ αmeasure→ βmeasure→ R

KL-divergence b S T =
∫

x. logb (RN-deriv S T x) dT

When both measure spaces are representable as density functions f and g, then
we represent the Kullback-Leibler divergence as integral replacing the Radon-
Nikodým derivative with g x/ f x.

lemma KL-divergence-density:
σ-finite-measure S ∧
f ∈ measurable S BR ∧ AES x. 0 ≤ f x ∧
g ∈ measurable S BR ∧ AES x. 0 ≤ g x ∧
AES x. (f x = 0 =⇒ g x = 0) =⇒
KL-divergence b (density S f) (density S g) =

∫
x. g x · logb

g x
f x

dS

The Kullback-Leibler divergence is often seen as some kind of metric or dis-
tance. This only holds for absolutely continuous probability measures. Only for

69

CHAPTER 4. PROBABILITY

them the Radon-Nikodým derivative exists. This does not yet imply symmetry,
but at least the Kullback-Leibler divergence is then nonnegative and only 0 iff the
two measures are equal.

theorem KL-divergence-eq-0, -nonneg:
prob-measure (densityM D) ∧ integrableM (λx. D x · logb (D x)) ∧
D ∈ measurableM BR ∧

(
AEM x. 0 ≤ D x

)
=⇒(

KL-divergence bM (densityM D) = 0
)
⇔
(
densityM D =M

)
,

0 ≤ KL-divergence bM (densityM D)

In the following sections we will apply the Kullback-Leibler divergence only on
distributions for which we know the pdf, hence these two lemmas will be appli-
cable.

4.4.4 Mutual Information

Mutual information I(X; Y) quantifies the information shared by the two random
variables X and Y . For the discrete case information theory defines it as

∑
x,y

PXY (x, y) · logb
PXY (x, y)
PX x · PY y

.

Gray [26] uses Kullback-Leibler divergence between the joint distribution of X and
Y and the product of the distributions to define the mutual information also for
continuous random variables. Coble [17] defines it in the same way, but only uses
it for finite random variables. For finite random variables this definition is equal
to the previous equation, hence we introduce the abbreviation I(X; Y) for mutual
information on discrete random variables.

mutual-information :: βmeasure→ γmeasure→
(
α→ β

)
→
(
α→ γ

)
→ R

mutual-information S T X Y = KL-divergence b (DX ⊗DY) DXY

I(X; Y) = mutual-information (count X[ΩM]) (count Y [ΩM]) X Y

From Theorem KL-divergence-nonneg we derive that mutual information is non-
negative. When the pdf for X, Y and their joint distribution is given then we equate
mutual information to the integral over PXY (x, y) · logb (PXY (x, y)/(PX x · PY y)).

lemma mutual-information-distr, -nonneg:
σ-finite-measure S ∧ σ-finite-measure T ∧
finite-entropy S X PX ∧ finite-entropy T Y PY ∧
finite-entropy (T ⊗ S) (λx. (X x, Y y)) PXY =⇒
mutual-information S T X Y =∫

(x, y). PXY (x, y) · logb
PXY (x, y)
PX x · PY y

d
(
S ⊗ T

)
,

0 ≤ mutual-information S T X Y

This version assumes that all occurring random variables have a finite entropy.3

But note that the mutual information may be defined even when the random
variables do not have a finite entropy.

3There is also an alternative version of this theorem in Isabelle/HOL, assuming only integrability
of PXY (x, y) · logb (PXY (x, y)/(PX x · PY y)).

70

4.4. INFORMATION

An example where this may not hold are independent random variables. For
them the mutual information is always zero, even when both do not have a finite
entropy. We proved that two random variables X and Y are independent if and
only if the joint distribution equals the product distribution: DXY = DX ⊗ DY .
With Theorem KL-divergence-eq-0 we also know that the Kullback-Leibler diver-
gence is zero if and only if the two measures are equal. From this immediately
follows that the mutual information is zero if and only if the random variables are
independent:

theorem mutual-information-indep-var:
indep-var S T X Y ⇔(

X ∈ measurableM S ∧ Y ∈ measurableM T ∧
integrable DXY (entropy-density b (DX ⊗DY) DXY) ∧
absolutely-continuous (DX ⊗DY) DXY ∧
mutual-information S T X Y = 0

)
An alternative way to define mutual information is to use entropy: I(X; Y) =

H(X)− H(X|Y). However, for this equation it is again necessary that all occurring
random variables have a finite entropy:

theorem mutual-information-eq-entropy-conditional-entropy:
σ-finite-measure S ∧ σ-finite-measure T ∧
finite-entropy S X PX ∧ finite-entropy T Y PY∧
finite-entropy (S ⊗ T) (λx. (X x, Y x)) PXY =⇒
mutual-information S T X Y = entropy S X − conditional-entropy S T X Y

This equation and Lemma mutual-information-nonneg allow us to give en-
tropy as an upper bound for conditional entropy.

corollary conditional-entropy-le-entropy:
σ-finite-measure S ∧ σ-finite-measure T ∧
finite-entropy S X PX ∧ finite-entropy T Y PY∧
finite-entropy (S ⊗ T) (λx. (X x, Y x)) PXY =⇒
conditional-entropy S T X Y ≤ entropy S X

4.4.5 Conditional Mutual Information

Conditional mutual information quantifies the information shared by two random
variables, under the assumption that the result of a third random variable is al-
ready known. The discrete definition in information theory is similar to mutual
information, it sums up for all possible outcomes z of Z the mutual information
conditioned that Z = z.

∑
z

PZ z ∑
x,y

PXY |Z(x, y, z) · logb

PXY |Z(x, y, z)
PX|Z(x, z) · PY |Z(y, z)

As usual we could try to map this to integration over the Radon-Nikodým deriva-
tives of the distributions of X, Y and Z. Gray [26] uses the Kullback-Leibler diver-

71

CHAPTER 4. PROBABILITY

gence on conditional distributions of Z. For continuous random variables this re-
quires in both cases the formalization of conditional distributions. To avoid this we
use the same definition as Coble [17], the equality I(X; Y |Z) = I(X; Y , Z)− I(X; Z):

conditional-mutual-information :: βmeasure→ γmeasure→ δmeasure→(
α→ β

)
→
(
α→ γ

)
→
(
α→ δ

)
→ R

conditional-mutual-information S T U X Y Z =

mutual-information S (T ⊗ U) X (λx. (Y x, Z x))−
mutual-information S U X Z

I(X; Y |Z) = conditional-mutual-information
(count X[ΩM]) (count Y [ΩM]) (count Z[ΩM]) X Y Z

Similar to mutual information we can show that conditional mutual information
is nonnegative and is an integral over the pdf of the joint random variable of X, Y
and Z. We require that for the random variables X, Y and Z the pdfs PX , PZ , PYZ ,
PXZ , and PXYZ are defined and have a finite entropy.4

lemma conditional-mutual-information-eq, -nonneg:
σ-finite-measure S ∧ σ-finite-measure T ∧ σ-finite-measure U ∧
finite-entropy S X PX ∧ finite-entropy U Z PZ ∧
finite-entropy (T ⊗ U) (λx. (Y x, Z x)) PYZ ∧
finite-entropy (S ⊗ U) (λx. (X x, Z x)) PXZ ∧
finite-entropy (S ⊗ T ⊗ U) (λx. (X x, Y x, Z x)) PXYZ =⇒
conditional-mutual-information S T U X Y Z =∫

(x, y, z). PXYZ (x, y, z) · logb
PXYZ (x, y, z) · PZ z

PXZ (x, z) · PYZ (y, z)
d
(
S ⊗ T ⊗ U

)
,

0 ≤ conditional-mutual-information S T U X Y Z

4.5 Infinite Product of Probability Spaces

The finite product measure allows us to construct a measure space with a finite
set of independent random variables. In probability theory it is often necessary to
have an infinite set of independent random variables. For this, we introduce now⊗

i∈IMi, the product of infinitely many probability measures Mi. The measure⊗
i∈IMi defined in Section 3.4.3 is already usable for a finite index I. In this

section we prove that its elementary property holds for an infinite index I: each
set X embedded from a finite product measure

⊗
i∈JMi (with J ⊆ I) has the same

measure value µ⊗
i∈IMi (emb J X) = µ⊗

i∈JMi X. We used the proof in [8] as the
basis of our formalization of infinite products.

We start by introducing the locale product-prob-measures. It assumes thatMi is
a probability measure and I an index set:

locale product-prob-measures =
fixesM :: ι→ αmeasure and I :: ι set
assumes ∀i. prob-measureMi

4Again there is a version of this theorem in Isabelle/HOL which relaxes these assumptions to
only require the integrals in both mutual informations are defined.

72

4.5. INFINITE PRODUCT OF PROBABILITY SPACES

Notation: Note that we write Mi instead of M i. In this section we will assume this
locale, i.e. allMi are probability measures. For technical purposes we do not restrict that
assumption to indices from I.

We will prove the existence of the infinite product space with Caratheodory’s
extension theorem in the form of Corollary caratheodory-∅-continuous. This
is done in three steps: (1) define a generating algebra G, (2) define a volume µG
on G, and (3) show that µG is ∅-continuous hence extensible to a measure.

As generating sets we need a family of sets which is at least a ring. This
rules out the projections at a single index {ω | ω i ∈ A} as this is neither stable
under intersection nor under union. It also rules out projections of finite Cartesian
products emb J (

�
j∈J A j) as this is not stable under union. What we can use are

the projections of the σ-algebra of finite products: emb J X for X ∈ A⊗
j∈JMi . We

introduce the set G as all these projections:

G ::
(
ι→ α

)
set set

G = {emb J A | finite J ∧ J ⊆ I ∧ J 6= ∅ ∧ A ∈ A⊗
i∈JM j}

This generator is more complicated than the generator used to define
⊗

i∈IMi. But
still, its generated σ-algebra equals the one from the product measure

⊗
i∈IMi:

lemma sets-
⊗

-G: A⊗
i∈IMi = σ-sets (

�
i∈I Ωi) G

This generator G forms a ring, and even an algebra (we require that the index set
is nonempty, otherwise it does not contain the space

�
i∈I Ωi):

lemma algebra-G: I 6= ∅ =⇒ algebra (
�

i∈I Ωi) G

This will simplify the proof of countable additivity, since it now is enough to show
that there exists a ∅-continuous volume µG. This volume µG on the generator G
is now defined using the finite product measure:

µG ::
(
ι→ α

)
set→ R

µG X =

(
SOME m. ∀J ⊆ I. finite J ∧ J 6= ∅ =⇒(

∀A ∈ A⊗
i∈JM j . X = emb J A =⇒ m = µ⊗

j∈JM j A
))

The Hilbert choice in the definition forces us to show that the resulting value is
uniquely defined. This requires that we can embed two different representations
of X with index sets J1 and J2 into the same finite product measure J1 ∪ J2. For
this we prove the following fact: each finite product measure can be expressed
as an embedding into a finite product measure with a bigger index set. In other
words, the restriction to a smaller index set is measure preserving:

lemma distr-restrict:
J 6= ∅ ∧ J ⊆ K ∧ finite K =⇒
(
⊗

i∈JMi) = distr (
⊗

i∈KMi) (
⊗

i∈JMi) (λω. λi ∈ J. ω i)

This is easily shown by Theorem measure-eqI-generator-eq, the generating sets
are the products over all J, as shown by Lemma sets-

⊗
-finite.

73

CHAPTER 4. PROBABILITY

With Lemma distr-restrict we show then the defining equation for µG.

lemma µG-eq:
finite J ∧ J ⊆ I ∧ J 6= ∅ ∧ A ∈ A⊗

i∈JM j =⇒ µG (emb J A) = µ⊗
i∈JM j A

That µG is positive follows directly from the specification and for additivity we
have an argument similar to the proof of Lemma µG-eq.

lemma positive-µG: I 6= ∅ =⇒ positive G µG

lemma additive-µG: I 6= ∅ =⇒ additive G µG

With these two lemmas we showed that µG is a volume, and then Cara-
theodory’s extension theorem tells us that a probability measure exists mapping
emb J (

�
i∈J A i) to ∏i∈J µ i (A i). From the existence of such a probability measure

follows the property for the infinite product measure
⊗

i∈IMi:

theorem µ-
⊗

-inf:

J ⊆ I ∧ finite J ∧
(
∀i ∈ J. A i ∈ Ai

)
=⇒

µ⊗
i∈IMi

(
emb J (

�
i∈J A i)

)
= ∏ j∈J µi (A i)

Since we use Caratheodory’s extension theorem caratheodory-∅-continuous,
we assume a decreasing sequence of sets Ai ∈ G whose measures converge to a
nonzero limit.. Each element Ai is an embedding of some finite product measure
with dimension Ji. We construct inductively an element ω0 contained in all Ai.
Hence ω0 is in the limit of the sequence Ai and our measure is countably additive.
For more details see Bauer [8], §9.

With this we have a probability measure usable to construct arbitrary many,
independent random variables with arbitrary distributions. Comparing this to
the formalization in [39] which only provides a probability measure on sequences
N→ B, and hence induces random variables with only a discrete distribution.

The infinite product measure does not only provide us with a probability space
providing an infinite amount of independent random variables, but it also allows
us to show that the joint distribution of a family of independent random variables
is equal to the product of the single distributions:

theorem indep-vars-iff-distr-eq-
⊗

:
I 6= ∅ ∧ (∀i. Xi ∈ measurableMNi) =⇒
indep-vars N X I ⇔(

distrM (
⊗

i∈I Ni) (λω. λi ∈ I. Xi ω) = (
⊗

i∈I distrMNi Xi)
)

4.6 Markov Chains

We introduce Markov chains as probabilistic automata, i.e. as discrete-time time-
homogeneous finite-space Markov processes. A Markov chain is defined by its
state space S and a transition matrix τ. We assume no initial distribution or start-
ing state, however when measuring paths we provide the starting state to the

74

4.6. MARKOV CHAINS

probability function. A path (or trace) on a Markov chain is a function N → S ,
i.e. an infinite sequence of states visited in the Markov chain.

locale markov-chain =

fixes S :: α set and τ :: α→ α→ R

assumes finite S and S 6= ∅
assumes ∀s, s′ ∈ S . 0 ≤ τ s s′ and ∀s ∈ S .

(
∑s′∈S τ s s′

)
= 1

In this section we will assume this locale, i.e. a discrete-time Markov chain with the finite
state space S and transition matrix τ.

We write E s for the set of all successor states, i.e. all s′ ∈ S with τ s s′ 6= 0.
Note that a path ω does not require that ω (i + 1) is a successor of ω i.

E :: α→ α set
E s = {s′ ∈ S | τ s s′ 6= 0}

4.6.1 Construction

The transition matrix τ defines for each state the distribution of the next state. We
introduce Ds as this transition distribution:5

D� :: α→ αmeasure
Ds = point S (τ (if s ∈ S then s else s0))

lemma space-D: ΩDs = S

lemma sets-D: ADs = P(S)
lemma Pr-D: s ∈ S ∧ A ⊆ S =⇒ PrDs A = (∑s′∈A τ s s′)

lemma prob-space-D: prob-measure Ds

Here s0 is an arbitrary element from S . Using this in the definition, the distribution
Ds is always a probability measure.

Our first goal is to define a probability measure Ts on the space of all paths
N→ S .6 Where s is the starting state. The path space Ts should assign the proba-
bility τ s ω0 · τ ω0 ω1 · · · τ ωn−1 ωn to the set of all paths starting with ω0,ω1, . . . ,ωn.
The measurable sets ATs should allow the projection on each time point, so that
the sets {ω | ω n = s} are measurable. For this we use the σ-algebra from the
product space

⊗
i∈N count S .

How can we proof the existence of such a measure? Our first option is to use
the method by Hurd [39] and define the algebra of finite unions of cylinders, i.e.
sets starting with the same prefix. We have Caratheodory’s extension theorem
available, but to operate on finite unions of cylinders is very cumbersome. Intro-
ductions into Markov chains, like in Kwiatkowska et al. [50], use the semiring of
the cylinders. This simplifies the proof, and Caratheodory’s extension theorem is
available on semirings too, however we still need to show the countable additivity
of the premeasure.

5The function Ds is also called a Markov kernel.
6We call it T for trace space

75

CHAPTER 4. PROBABILITY

An alternative is to cast the path measure Ts out of the infinite product measure
with N× S as index set. This product measure

⊗
(n,s)∈N×S Ds is indexed by time

n and the current state s, as product factors we use the distribution Ds where s is
the current state from the index. We can simply map an element from this product
space into a path in Ts, by starting with (0, s) and then following the states selected
at each time point. For this we define path recursively:

path :: α→ (N× α→ α)→ (N→ α)

path s ω 0 = ω (0, if s /∈ S then s0 else s)
path s ω (n + 1) = ω (n + 1, path s ω n)

Using s0, path s is even measurable when s is not in S .

lemma path-measurable:
path s ∈ measurable (

⊗
(n,s)∈N×S Ds) (

⊗
n∈N count S)

This guarantees that path s defines a probability measure on
⊗

n∈N count S . We
call this probability measure Ts:

T� :: α→
(

N→ α
)
measure

Ts = distr (
⊗

(n,s)∈N×S Ds) (
⊗

n∈N count S) (path s)

Ts is now the trace space for our Markov chain. With Theorem µ-
⊗

-inf and
Lemma µ-distr we derive the equation for cylinder sets, i.e. the set of all traces
starting with the same prefix:

theorem Pr-T :
(∀i < n. ω i ∈ S) ∧ s ∈ S =⇒
PrTs {ω′ | ∀i < n. ω′ i = ω i} = ∏i<n τ ((s′·ω) i) (ω i)

Notation: In the rest of this thesis we write the AE-quantifier on the path measure Ts as
AEs ω. P ω instead of AETs ω. P ω and the probability PrTs is written as Prs.

From this we derive the Markov property, i.e. the probability that the Markov
chain transitions from t n to t (n + 1) is independent of the Markov chain’s previ-
ous states. This property is also called memoryless as the Markov chain does not
remember the states before its current state. While we use the conditional proba-
bility on two different events, we only need to show that ∀i ≤ n. ω i = t i has a
nonzero probability, as the probability for ω n = t n is then also nonzero.

theorem Markov-property:
s ∈ S ∧ Prs(ω. ∀i ≤ n. ω i = t i) 6= 0 =⇒
Prs(ω. ω (n + 1) = t (n + 1) | ∀i ≤ n. ω i = t i) =
Prs(ω. ω (n + 1) = t (n + 1) | ω n = t n)

The Markov chain we construct is also time homogeneous, i.e. the transition proba-
bility is not time dependent.

theorem time-homogeneous:
s ∈ S ∧ Prs(ω. ω i = a) 6= 0∧ Prs(ω. ω j = a) 6= 0 =⇒
Prs(ω. ω (i + 1) = b | ω i = a) = Prs(ω. ω (j + 1) = b | ω j = a)

76

4.6. MARKOV CHAINS

The statements proved in the Theorems Markov-property and time-homogeneous

are the defining properties of a discrete-time time-homogeneous Markov chain.
Hence we know that we constructed the correct probability measure for the Markov
chain given by τ.

4.6.2 Iterative Equations

The Markov chain induces iterative equations on the measure Ts, the Lebesgue
integral and the AE-quantifier, relating properties about s to properties of E s,
states that are not successors of s are ignored. These equations are often useful in
inductive proofs.

theorem Pr-eq-sum:
s ∈ S ∧ A ∈ ATs =⇒
Prs A = (∑s′∈E s τ s s′ · Prs′(ω. s′·ω ∈ A))

theorem
∫ P-eq-sum:

s ∈ S ∧ f ∈ measurable Ts BR =⇒∫ P
f dTs = ∑

s′∈E s
τ s s′ ·

∫ P
ω. f (s′·ω) dTs′

theorem AE-eq-sum:
s ∈ S ∧ {ω | P ω} ∈ ATs =⇒(

AEs ω. P ω
)
⇔
(
∀s′ ∈ E s. AEs′ ω. P (s′·ω)

)
We prove the iterative equation for Prs by using Theorem measure-eqI-generator-
eq. We show the equality of Ts to an iterative measure whose measure equals
the right side of Theorem Pr-eq-sum. As generator we use the cylinder sets
{ω | ∀i < n. ω i = ω′ i}. Based on this the integral equation is shown by in-
duction on the Borel-measurable function f .

4.6.3 Reachability

A state s′ is reachable in Φ starting in s iff there is a nonzero probability to reach s′

by only going through the specific set of states Φ. The starting state s and the final
state s′ are not necessary in Φ.

reachable :: α set→ α→ α set
reachable Φ s ⇔ {s′ ∈ S | ∃ω ∈N→ S , n. (∀i ≤ n. ω i ∈ E ((s·ω) i) ∧

ω n = s′ ∧ (∀i < n. ω i ∈ Φ)}

Reachability is a purely qualitative property, as it is defined on the graph of
nonzero transitions. Hence an upper bound R of reachable Φ s is given when
all successor states of R∩Φ are in R again.

lemma reachable-closed:
s ∈ R∩Φ ∧ (∀t ∈ R∩Φ. E t ⊆ R) ∧ R ⊆ S ∧ Φ ⊆ S =⇒
reachable Φ s ⊆ R

77

CHAPTER 4. PROBABILITY

The until-operator introduces a similar concept on paths. Its definition does
not assume that a state is a successor state of the previous one, as this is already
ensured by the probability measure Ts.

until :: α set→ α set→
(

N→ α
)
set

until Φ Ψ = {ω | ∃n. (∀i < n. ω i ∈ Φ) ∧ω n ∈ Ψ}

Can we compute the probability of Prs(until Φ Ψ) by only using reachable? It
is easy to show that Prs(until Φ Ψ) = 0 iff (reachable Φ s) ∩ Ψ = ∅. But is there
also a method to characterize Prs(until Φ Ψ) = 1 in terms of reachable? For this
we need to introduce state fairness. A path ω is state fair w.r.t. s and t if t appears
infinitely often as the successor of s in ω, provided that s appears infinitely often.
The definition and proofs about state fairness are based on Baier [6].

fair :: α→ α→
(

N→ α
)
set

fair s t =
{
ω
∣∣ finite {i | ω i = s∧ω (i + 1) = t} =⇒ finite {i | ω i = s}

}
Baier [6] defines state fairness and a more general version called p-fairness, but
we only need state fairness. We show that almost every path is state fair for each
state and its successors.

theorem AE-fair:
s ∈ S ∧ s′ ∈ S ∧ t′ ∈ E s′ =⇒ AEs ω. s·ω ∈ fair s′ t′

Using this we prove that starting in a state s almost every path fulfills until Φ Ψ
if (1) all states reachable by Φ are in Φ or Ψ and (2) each state reachable from s has
again the possibility to reach Ψ. This theorem allows us to prove that until Φ Ψ
a.e.-holds by a reachability analysis on the graph, and hence Prs(until Φ Ψ) = 1.

corollary AE-until:
s ∈ Φ ∧Φ ⊆ S ∧ reachable (Φ \Ψ) s ⊆ Φ ∪Ψ∧(
∀t ∈ (reachable (Φ \Ψ) s∪ {s}) \Ψ. reachable (Φ \Ψ) t ∩Ψ 6= ∅

)
=⇒

AEs ω. s·ω ∈ until Φ Ψ

4.6.4 Hitting Time

The hitting time on a path ω is the first index at which a state from a set Φ occurs.

hitting :: α set→
(

N→ α
)
→N

hitting Φ ω = LEAST i. ω i ∈ Φ

For the computation of rewards it is important to know if the expected hitting
time is finite. Standard textbook proofs assume an irreducible chain. We took such
a proof from [53], and adapted it to our setting. Instead of an irreducible chain we
assume Φ is always reached from s. We show that the expected hitting time of Φ
for paths starting in s is finite if almost every path starting in s reaches Φ.

theorem
∫ P-hitting-time-finite:

s ∈ S ∧ Φ ⊆ S ∧ (AEs ω. s·ω ∈ until S Φ) =⇒(∫ P
ω. hitting Φ (s·ω) dTs

)
< ∞

78

Chapter 5

Applications

In this chapter we apply the probability theory developed in the previous chapters
to the following applications.

pCTL model checking: Probabilistic model checkers, like PRISM [51] or MRMC [45],
interpret Markov chains and analyze quantitative properties, specified as
probabilistic CTL (pCTL) formulas [30]. We formalize and verify the algo-
rithm used by these probabilistic model checkers.

This work is published in Hölzl and Nipkow [38].

ZeroConf protocol: Network protocols without central services need randomiza-
tion for symmetry breaking. We analyze the probability for double allocation
and the expected runtime for the ZeroConf protocol [15]. We model its ad-
dress allocation run as a Markov chain, based on Bohnenkamp et al. [13].

This work is published in Hölzl and Nipkow [37].

Crowds protocol: Anonymizing services deploy random choice to conceal the
original sender when connecting to a server. We formalize the Crowds pro-
tocol by Reiter and Rubin [67]. We analyze the probability that the initiating
sender of a message contacts an attacker and the information the attacker
gains when this happens. To analyze this the path establishment is mod-
elled as a Markov chain.

This work is published in Hölzl and Nipkow [37].

Köpf-Dürmuth countermeasure: Köpf and Dürmuth [48] analyze a countermea-
sure they developed against side channel attacks. We formalized this analy-
sis using the information theory developed in this thesis.

The Isabelle theories for pCTL model checking, the ZeroConf protocol and the
Crowds protocol can be found in the AFP [36]. The Köpf-Dürmuth countermea-
sure is found in the Isabelle repository.

79

CHAPTER 5. APPLICATIONS

5.1 pCTL Model Checking

5.1.1 pCTL Formulas

We do not introduce a labeled Markov chain as [50] does, instead we define labels
to be subsets of S . We introduce a Markov chain with rewards as a Markov
chain with ρ, the rewards associated per state, and ι, the rewards associated per
transitions. These rewards are nonnegative, real numbers.

locale markov-chain-with-reward = markov-chain+
fixes ρ :: α→ R and ι :: α→ α→ R

assumes ∀s ∈ S . 0 ≤ ρ s and ∀s, s′ ∈ S . 0 ≤ ι s s′

For the rest of this section we assume a Markov chain with rewards, with the state space
S , the transition matrix τ, and the reward functions ρ and ι.

The pCTL syntax is introduced as an inductive data type.

datatype sform = label P(S) | ¬sform | sform∧ sform |
P./R pform | E./R eform

and pform = X sform | sform U≤N sform | sform U∞ sform
and eform = C<N | I=N | F∞ sform
and ./ = ≤ | < | = | > | ≥

Informally, a state s fulfills P./r Φ (or E./r Φ) if the probability (expected reward) of
the paths starting in s and fulfilling Φ is related with ./ r. A path fulfills X Φ if its
second state fulfills Φ. A path fulfills Φ U≤k Ψ (or Φ U∞ Ψ, the unbounded until)
if it stays in Φ, until it reaches Ψ in at least k steps (at some step). The reward C<k

sums all state and transitions rewards for the first k steps, I=k is the state reward
at step k, and the unbounded cumulated reward F∞ Φ sums rewards until Φ is
reached, if it is never reached it is infinity.

We define now semantics to assign a formal meaning to the pCTL syntax,
cf. [30, 50].

q
�

y
S :: sform→ α setq

label S ′
y

S = {s ∈ S | s ∈ S ′}q
¬ Φ

y
S = S \

q
Φ

y
Sq

Φ ∧ Ψ
y

S =
q

Φ
y

S ∩
q

Ψ
y

S
q

P./r Φ
y

S =

{
s ∈ S

∣∣∣∣ Prs

(
ω.

q
Φ, s·ω

y
P

)
./ r
}

q
E./r Φ

y
S =

{
s ∈ S

∣∣∣∣ ∫ ω.
q

Φ, s·ω
y

EdTs ./ r
}

q
�,�

y
P :: pform→ (N→ α)→ Bq

X Φ,ω
y

P = ω 1 ∈
q

Φ
y

Sq
Φ U≤k Ψ,ω

y
P = ∃n ≤ k. ω n ∈

q
Ψ

y
S ∧

(
∀i < n. ω i ∈

q
Φ

y
S

)
q

Φ U∞ Ψ,ω
y

P = ∃n. ω n ∈
q

Ψ
y

S ∧
(
∀i < n. ω i ∈

q
Φ

y
S

)

80

5.1. PCTL MODEL CHECKING

q
�,�

y
E :: eform→ (N→ α)→ Rq

C<k,ω
y

E = ∑i<k ρ (ω i) + ι (ω i) (ω (i + 1))q
I=k,ω

y
E = ρ (ω k)

q
F∞ Φ,ω

y
E = if ∃i. ω i ∈

q
Φ

y
S then

s
C<hitting

q
Φ
y

S
ω,ω

{

E
else ∞

We see that
q

Φ
y

S is a subset of S and hence also finite. The set {ω |
q

Φ,ω
y

P} is
measurable in Ts, and λω.

q
Φ,ω

y
E is Borel-measurable on Ts. So the probability

for
q

P./r Φ
y

S , and the integral for
q

E./r Φ
y

S are well-defined.

5.1.2 Computable HOL Fragment

The pCTL model checking algorithm solves linear equation systems. This may
(in general) fail. To cater for this possibility we use the option values in our
computation and formulate our algorithm with the help of the do-syntax.

To represent such non-total functions in HOL we use the option data type

datatype α option = Some α | None

whose values are Some x for x :: α and None. We introduce the option-monad to
combine non-total functions to new non-total functions. The infix bind-operator
>>= is defined by the equations ((Some x) >>= f) = f x and (None >>= f) = None.
Notation return is equal to Some. Similar to Haskell’s monad-syntax we use the
do-syntax to represent chains of bind-operators, for example:

do x← f f >>= (λx.
y← g x =⇒ g x >>= (λy.
let z = h x y Some (x + y + h x y)))
return (x + y + z)

We use the option-monad not only to represent non-total functions, but also to
write the algorithm in a more imperative style. The only non-total function in the
pCTL model checking algorithm is Gauss-Jordan elimination.

The while-combinator while satisfies the standard recursion equation:

while :: (α→ B)→ (α→ α)→ α→ α

while P f x = if P x then while P f (f x) else x

5.1.3 Verifying the Algorithm

The model checking algorithm Sat for pCTL formulas is based on three methods:

• Iterative methods to compute the probability of bounded until and the ex-
pectation of bounded rewards

• Reachability analysis on the graph of nonzero transitions to compute the setsq
P=0(Φ U∞ Ψ)

y
S and

q
P=1(Φ U∞ Ψ)

y
S .

81

CHAPTER 5. APPLICATIONS

• Solving systems of linear equations for the unbounded until operator and
unbounded rewards. This requires the previous methods to construct a sys-
tem of linear equations with a unique solution.

The definition and the correctness proof of the algorithm Sat is by induction
over the syntax of pCTL formulas. For a better overview of the formalization
we split the definition of Sat into multiple parts interleaved with the necessary
auxiliary definitions. The final soundness theorem states that Sat Φ returns a result
and computes the set of states s for which s ∈

q
Φ

y
S holds, i.e. Sat Φ = Some

q
Φ

y
S .

The definition of Sat on label S ′, ¬Φ, Φ ∧Ψ, and P./r(XΦ) is easy. The sound-
ness proof of the first three is done automatically, the last one needs Theorem Pr-
eq-sum.

Sat :: sform→ α set option
Sat (label S ′) = return {s ∈ S | s ∈ S ′}
Sat (¬ Φ) = do

F ← Sat Φ
return (S \ F)

Sat (Φ ∧ Ψ) = do
F1 ← Sat Φ
F2 ← Sat Ψ
return (F1 ∩ F2)

Sat (P./r (X Φ)) = do
F ← Sat Φ
return

{
s ∈ S | (∑s′∈F τ s s′) ./ r

}
The iterative methods to compute bounded until (ProbUB k s S 1 S 2), cumu-

lative expectation (ExpC k s) and state expectation (ExpI k s) are simply defined
by recursion on the bounding value k. Soundness is proved by induction on the
bounding value k and using the iterative equations given by Theorems Pr-eq-sum

and
∫ P-eq-sum.

ProbUB :: N→ α→ α set→ α set→ R

ProbUB 0 s S 1 S 2 = if s ∈ S 2 then 1 else 0
ProbUB (k + 1) s S 1 S 2 = if s ∈ S 1 \ S 2

then ∑s′∈S τ s s′ · ProbUB k s′ S 1 S 2

else (if s ∈ S 2 then 1 else 0)

ExpC :: N→ α→ R

ExpC 0 s = 0
ExpC (k + 1) s = ρ s + ∑s′∈S τ s s′ · (ι s s′ + ExpC k s′)

ExpI :: N→ α→ R

ExpI 0 s = ρ s
ExpI (k + 1) s = ∑s′∈S τ s s′ · ExpI k s′

82

5.1. PCTL MODEL CHECKING

Sat (P./r (Φ U≤k Ψ)) = do
F1 ← Sat Φ
F2 ← Sat Ψ
return

{
s ∈ S | ProbUB k s F1 F2 ./ r

}
Sat (E./r (C<k)) = return

{
s ∈ S | ExpC k s ./ r

}
Sat (E./r (I=k)) = return

{
s ∈ S | ExpI k s ./ r

}
Our next step is to check the unbounded until operator. Here we compute

the probability PΦ,Ψ(s) = Prs
(
ω.

q
Φ U∞ Ψ, s·ω

y
P

)
for each state s by setting up

a system of linear equations. From Theorem Pr-eq-sum and the behavior of the
unbounded until operator we derive a system of linear equations for PΦ,Ψ(s).

PΦ,Ψ(s) =

∑s′∈E(s) τ s s′ · PΦ,Ψ(s′) if s ∈ Φ \Ψ

1 if s ∈ Ψ

0 otherwise

We show that such a linear equation system has a unique solution, with two con-
ditions: (1) the solutions are equal on Ψ and (2) the solutions are equal in all
states which never reach Ψ, i.e. PΦ,Ψ(s) = 0. We proved this lemma following the
uniqueness proof in [30].

lemma unique-solution:
Φ ⊆ S ∧ Ψ ⊆ N ⊆ S ∧(
∀s ∈ S . PΦ,Ψ(s) = 0 =⇒ s ∈ N

)
∧(

∀s ∈ S \ N. l1 s− c s = ∑s′∈S τ s s′ · l1 s′
)
∧(

∀s ∈ S \ N. l2 s− c s = ∑s′∈S τ s s′ · l2 s′
)
∧(

∀s ∈ N. l1 s = l2 s
)

=⇒
∀s ∈ S . l1 s = l2 s

To find a solution of such a system of linear equations, we formalized Gauss-
Jordan elimination on matrices represented as functions [59]. Then we adapted
this to use states as indices instead of natural numbers. Correctness says that if
gauss M a returns Some x, then x is a solution to the equation system M · x = a.

lemma gauss-jordan-elimination:
gauss M a = Some x =⇒ ∀s ∈ S . (∑s′∈S M s s′ · x s′) = a s

Before we use the uniqueness of our system of linear equations, Lemma unique-
solution requires us to compute the states with PΦ,Ψ(s) = 0 before the algorithm
builds the system of linear equations. ProbZ computes the set of all states with
PΦ,Ψ(s) > 0 and returns the complement. The set of all s with PΦ,Ψ(s) > 0 is
computed by starting with R = Ψ and adding states to R which are in Φ and are
predecessors of a state in R. With Lemma reachable-closed we know that R con-
tains all reachable states, hence PΦ,Ψ(s) > 0 for all s ∈ R. The termination measure
for the while-combinator is the difference S \ R, with each step either states are

83

CHAPTER 5. APPLICATIONS

added, or the loop terminates.

pred :: α set→ α set→ α set
pred Φ R = {s ∈ Φ | R∩ E(s) 6= ∅}
ProbZ :: α set→ α set→ α set
ProbZ Φ Ψ = S \ while (λR. ¬pred Φ R ⊆ R) (λR. R∪ pred Φ R) Ψ

The system of linear equations solved by gauss M a needs to be in the right
form, i.e. the matrix M contains all variable coefficients and a all constants. We in-
troduce LES F to define the matrix of the linear equation system l s = (∑s∈S τ s s′ ·
l s′) + a s for s /∈ F, and l s = a s if s ∈ F.

LES :: α set→ α→ α→ R

LES F r c = if r ∈ F then (if c = r then 1 else 0)
else (if c = r then τ r c− 1 else τ r c)

Combining all these functions we can finally compute the probability of an
unbounded until formula. We prove its soundness using Lemmas gauss-jordan-
elimination and unique-solution, and Theorem Pr-eq-sum.

Sat (P./r (Φ U∞ Ψ)) = do
F1 ← Sat Φ
F2 ← Sat Ψ
p← gauss (LES (F2 ∪ ProbZ F1 F2))

(λs. if s ∈ F2 then 1 else 0)
return

{
s ∈ S | p s ./ r

}
The last equation of Sat computes the unbounded reward E./r(F∞ Φ). Similar
to the unbounded until operator, we introduce a system of linear equations for
RΦ(s) =

∫
ω

q
F∞ Φ, s·ω

y
Ed Prs. With Theorem

∫ P-hitting-time-finite we know
that RΦ(s) is finite if PS ,Φ(s) = 1. If PS ,Φ(s) < 1 there is a nonzero probability that
Φ is never reached, and hence RΦ(s) = ∞.

RΦ(s) =

∑s′∈E(s) τ s s′ · (ρ s + ι s s′ + RΦ(s′)) if PS ,Φ(s) = 1∧ s /∈ Φ

0 if s ∈ Φ

∞ otherwise

To be usable with LES, we rewrite the first equation into:

RΦ(s)−
(
ρ s + ∑

s′∈E(s)

τ s s′ · ι s s′
)

= ∑
s′∈E(s)

τ s s′ · RΦ(s′) .

The Gauss-Jordan elimination we use works only on real numbers, luckily we can
replace ∞ by 0 and replace it again after we solved the equation system. This is
sound since for each s and s′ ∈ E(s) with RΦ(s′) = ∞ either s ∈ Φ or RΦ(s) = ∞
hold. The states s with PS ,Φ(s) = 1 are computed by ProbOne, building on ProbZ.

ProbOne :: α set→ α set→ R

ProbOne Φ Ψ = ProbZ (Φ \Ψ) (ProbZ Φ Ψ)

84

5.1. PCTL MODEL CHECKING

We know that the resulting states only reach states which again reach Ψ, hence the
assumptions of Corollary AE-until are fulfilled, and we know that ProbOne S Φ
is the set of all states s with PS ,Φ(s) = 1. With all this, we can formalize the last
equation for Sat.

Sat (E./r (F∞ Φ)) = do
F ← Sat Φ
let Y = ProbOne S F
l← gauss (LES (S \ (Y \ F)))
(λs. if i ∈ Y \ F then − (ρ s + (∑s′∈S . τ s s′ · ι s s′))

else 0)
let e = (λs. if s ∈ Y then l s else ∞)

return
{

s ∈ S | e s ./ r
}

Finally we show the soundness of Sat by induction on the structure of Φ. If we
assume that Sat terminates with a result F, then F is the same set as defined by
the semantic.

theorem sound-Sat: Sat Φ = Some F =⇒
q

Φ
y

S = F

Now we turn to completeness. The only case in which Sat returns None is
when the Gauss-Jordan elimination does not find a unique solution. Hence we
need the property that if a unique solution exists, then gauss returns this solution.

If there is a unique solution x for M · x = a then gauss returns a result:

lemma complete-gauss:(
∀s ∈ S . ∑s′∈S M s s′ · x s′ = a s

)
∧(

∀y. (∀s ∈ S . ∑s′∈S M s s′ · y s′ = a s) =⇒ ∀s ∈ S . x s = y s
)

=⇒
∃x′. gauss M a = Some x′

With this and Lemma unique-solution we prove that Sat always returns a result:

theorem complete-Sat: ∃F. Sat Φ = Some F

Using Theorem sound-Sat we finally show

corollary sound-and-complete-Sat: Sat Φ = Some
q

Φ
y

S

5.1.4 Discussion

We used the tutorial [50] as a guideline to formalize the pCTL model checking
algorithm. Most parts of the soundness proof are straightforward. Three parts,
however, required a more substantial formalization of the background theory:

• The correctness of ProbOne is based on Theorem AE-fair, which required us
to formalize state fairness as found in [6].

• For the unbounded until and the unbounded rewards we solve a linear equa-
tion system. We needed to show that the solution of this equation system is
unique, for which we followed the original proof from [30].

85

CHAPTER 5. APPLICATIONS

• The unbounded reward for a state can only be characterized as a linear equa-
tion if the reward is finite. We needed Theorem

∫ P-hitting-time-finite to
show that the reward is finite, if the final states are almost always reached.

Technically, the largest difference between our work and Kwiatkowska et al. [50]
is the construction of the probability space of paths: we use infinite products of
probability spaces, whereas they use Caratheodory on semirings. We do not need
to show that the probability of cylinders is countably additive, this is generically
done for infinite products. We want to reuse the infinite products for continuous-
time Markov chains and Markov decision processes.

The equations we give for the algorithm are not directly executable by the
code generator in Isabelle [27]. We use sets in our equations, and the adaption
of Gauss-Jordan elimination uses an arbitrary mapping from {0, . . . , |S | − 1} to
S . One method to obtain an executable version is to create a copy SatL of Sat
operating on lists instead of subsets of S . We assume as input a list of states
xs = [s0, s1, . . . sn], and define the Markov chains on S = set-of xs. It should be
straightforward to show that Sat Φ = Some F implies set-of (SatL Φ) = F. The
biggest hurdle is the while-combinator in ProbZ and the adaption of Gauss-Jordan
elimination.

5.2 ZeroConf Protocol

Ad-hoc networks usually do not have a central address authority assigning ad-
dresses to new nodes in the network. An example are consumer networks where
users want to connect their laptops to exchange data or attach a network capable
printer. When connecting with WiFi these devices use IPv4 and hence need IPv4
addresses to communicate with each other.

The ZeroConf protocol [15] is a distributed network protocol which allows new
hosts in the network to allocate an unused link-local IPv4 address. A link-local
address is only valid in the local network, e.g. a WiFi network. We assume point-
to-point communication in our local network, and hence directly communicate
with each host identified by a valid address. The problem with IPv4 addresses is
that they are limited, i.e. they are represented by 32-bit numbers, and for the local
network the addresses from 169.254.1.0 to 169.254.254.255 are available, hence we
can chose from 65024 distinct addresses. ZeroConf works by randomly selecting
an address from this pool and then probing if the address is already in use.

Bohnenkamp et al. [13] give a formal analysis of the probability that an address
collision happens, i.e. two hosts end up with the same address. They also analyze
the expected run time until a (not necessarily valid) address is chosen. As a case
study we formalize their analysis in Isabelle/HOL.

Andova et al. [3] present a model-checking approach for discrete-time Markov
reward chains and apply it to the ZeroConf protocol as a case study. They support
multiple reward structures and can compute the probability based on multiple
constraints on these reward structures. Kwiatkowska et al. [49] have modelled this
protocol as a probabilistic timed automata in PRISM. Both models include more

86

5.2. ZEROCONF PROTOCOL

features of the actual protocol than the model by Bohnenkamp et al. [13] that we
follow.

5.2.1 Description of Address Allocation

We give a short description of the model used in Bohnenkamp et al. [13]. The
address allocation in ZeroConf uses ARP (address resolution protocol) to detect
if an address is in use or not. An ARP request is sent to detect if a specific IPv4
address is already in use. When a host has the requested IPv4 address it answers
with an ARP response. ZeroConf allocates a new address as follows:

1. Uniformly select a random address in the range 169.254.1.0 to 169.254.254.255.

2. Send an ARP request to detect if the address is already in use.

3. When a host responds to the ARP request, the address is already taken and
we need to start again (go back to 1).

4. When no response arrives before a time limit r, we again send an ARP re-
quest. This is repeated N times.

5. When no response arrived for N requests we assume our address is not in
use and are finished.

This probabilistic process depends on two parameters: (1) The probability q
that the random chosen address is already taken; this probability depends on the
number of hosts in the network and the number of available addresses. (2) The
probability p that either the ARP request or response is lost.

The Markov chain shown in Fig. 5.1 describes the address allocation from a
global viewpoint. At Start a new host is added to the network, it chooses an
address and sends the first ARP request. There are two alternatives.

• With probability 1− q the host chooses an unused address, the allocation is
finished, the Markov chain directly goes to Ok . Of course, the host does not
know this, and still sends out N + 1 ARP probes. Hence we associate the
time cost r · (N + 1) with this transition.

• With probability q the host chooses a used address and goes to the probing
phase: in the Prb n state it sends an ARP request and waits until r time units
have passed, or until it receives an ARP response from the address owner.
With probability 1− p the host receives an ARP response and needs to choose
a new address—we go back to Start. With probability p this exchange fails
and we go to the next probe phase. After N + 1 probes, the host assumes the
chosen address is free. As two hosts in the network end up with the same
address we reached the Error state. The time cost E models the cost to repair
the double allocation. This might involve restarting a laptop.

87

CHAPTER 5. APPLICATIONS

Start Prb 0 Prb 1 Prb N Error

Ok

q; r

1− q; r · (N + 1)

p; r

1− p; 0

1− p; 0

1− p; 0

p; E

1; 0

1; 0

Figure 5.1: Markov chain of the ZeroConf protocol. The labels are annotated with
P; T : the probability P to take this edge and the elapsed time T .

5.2.2 Formal Model of ZeroConf Address Allocation

The Isabelle/HOL model of the ZeroConf protocol describes the Markov chain in
Fig. 5.1. We set up a context containing the probe numbers (starting with 0), the
probabilities p and q, and the costs r and E:

locale zeroconf =

fixes N :: N and p q r E :: R

assumes 0 < p and p < 1 and 0 < q and q < 1
assumes 0 ≤ E and 0 ≤ r

In the following sections we assume that these fixed variables N, p, q, r, and E fulfill the
above assumptions of the ZeroConf protocol.

To represent the states in the Markov chain we introduce a new datatype:

datatype zc-state = Start | Prb N | Ok | Error

We have the type zc-state with the distinct objects Start, Ok, Error, and Prb n for all
n :: N. The valid states S :: zc-state set are a restriction of this to only valid probe
numbers. This also gives us a finite number of states.

S :: zc-state set
S = {Start,Ok,Error} ∪ {Prb n | n ≤ N}

The final modeling step is to define the transition matrix τ :: zc-state→ zc-state→
R and the cost function ρ :: zc-state → zc-state → R. Both are defined by a case
distinction on the current state and return the zero function 0 updated at the states
with nonzero transition probability or cost.

τ :: zc-state→ zc-state→ R

τ s = case s of Start ⇒ 0(Prb 0 := q,Ok := 1− q)
| Prb n⇒ if n < N then 0(Prb (n + 1) := p, Start := 1− p)

else 0(Error := p, Start := 1− p)
| Ok ⇒ 0(Ok := 1)
| Error ⇒ 0(Error := 1)

88

5.2. ZEROCONF PROTOCOL

ρ :: zc-state→ zc-state→ R

ρ s = case s of Start ⇒ 0(Prb 0 := r,Ok := r · (N + 1))
| Prb n⇒ if n < N then 0(Prb (n + 1) := r)

else 0(Error := E)
| Ok ⇒ 0
| Error ⇒ 0

Here f (x := v) is the function f updated at x to the new value v, i.e. f (x := v) x = v.
We need to prove that we actually defined a Markov chain: as a consequence,

Isabelle/HOL is able to provide the probabilities Prs A for each state s and path
set A. For this we show that τ is a valid transition matrix for a Markov chain on S ,
and ρ is a valid cost function:

lemma τ-DTMC: markov-chain-with-reward S τ ρ

To prove this we need to show that τ and ρ are nonnegative for all states in S . And
finally we need to show that τ s is a distribution for all s in S , which is easy to
show by using the helper Lemma S-split:

lemma S-split: ∑
s∈S

f s = f Start+ f Ok+ f Error+ ∑
n≤N

f (Prb n)

5.2.3 Probability of an Erroneous Allocation

The correctness property we want to verify is that no collision happens, i.e. we
want to compute the probability that a protocol run ends in the Error state. The
goal of this section is not only to show what we proved, but to show how we proved
it. Most of the proofs are automatic by rewriting and we do not show the details.
But we want to show the necessary lemmas and theorems needed to convince
Isabelle/HOL.

We define Perr :: zc-state → R to reason about the probability that a trace ω

ends in the Error state when we started in a state s:

Perr :: zc-state→ R

Perr s = Pr s
(
ω. s·ω ∈ until S {Error}

)
Our final theorem will be to characterize Perr Start only in terms of the system
parameters p, q and N.

The first obvious result is that when we are already in Error , we will stay in
Error , and when we are in Ok we will never reach Error :

lemma Perr-error: Perr Error = 1
lemma Perr-ok: Perr Ok = 0

Perr-error is proved by rewriting: Error · ω ∈ until S {Error} is always true. The Ok
case is proved by reachable (S \ {Error}) Ok ⊆ {Ok}. Together with lemma S -split
and these two lemmas we provide an iterative lemma for Perr:

lemma Perr-iter:
s ∈ S =⇒
Perr s = τ s Start · Perr Start+ τ s Error+ ∑n≤N τ s (Prb n) · Perr (Prb n)

89

CHAPTER 5. APPLICATIONS

However this is a bad rewrite theorem, using it would result in non-termination
of the rewrite engine. To avoid this we derive rules for specific states:

lemma Perr-last-probe: Perr (Prb N) = p + (1− p) · Perr Start
lemma Perr-start-iter: Perr Start = q · Perr (Prb 0)

Our next step is to compute the probability to reach Error when we are in Prb n.
This is the only proof which is not done by a simple rewrite step, but it requires
induction and two separate rewrite steps. The induction is done over the number
n of steps until we are in Error . To give the reader a better feeling for what these
proofs look like, here is the skeleton of the Isabelle proof:

lemma Perr-probe-iter:
n ≤ N =⇒ Perr (Prb (N − n)) = pn+1 + (1− pn+1) · Perr Start

proof (induct n)
case (n + 1)
have Perr (Prb (N − (n + 1))) =

p ∗ (pn+1 + (1− pn+1) ∗ Perr Start) + (1− p) ∗ Perr Start
<proof>

also have · · · = p(n+1)+1 + (1− p(n+1)+1) · Perr Start
<proof>

finally show Perr (Prb (N − (n + 1))) =
p(n+1)+1 + (1− p(n+1)+1) · Perr Start .

qed simp – The 0-case is a simple rewriting step with Perr-last-probe.

Together with Perr-start-iter we prove our final theorem:

theorem Perr-start: Perr Start = (q · pN+1)/(1− q · (1− pN+1))

With typical parameters for the ZeroConf protocol (16 hosts (q = 16/65024), 3
probe runs (N = 2) and a probability of p = 0.01 to lose ARP packets) we compute
(by rewriting) in Isabelle/HOL that the probability to reach Error is below 1/1013:

corollary Perr-start’: Perr Start ≤ 1/1013

5.2.4 Expected Running Time of an Allocation Run

Users are not only interested in a very low error probability but also in fast allo-
cation time for network address. Obviously there are runs which may take very
long, but the probability for these runs are near zero. So we want to verify that
the average running time of an allocation run is in the time range of milliseconds.

The running time of an allocation run Cfin :: S → R is modelled as the integral
over the sum of all costs ρ for each step in each run. The sum of all steps until
either Ok or Error is reached is simply cost-until:

Cfin :: zc-state→ R

Cfin s =
∫
ω
cost-until {Error,Ok} (s ·ω) dPr s

90

5.3. CROWDS PROTOCOL

J1

J3

J2

J4

J7

J6
J5

C1

C2

S

Figure 5.2: The established route J1 − J4 − J2 − J7 − J4 −C1 − S

In order to evaluate the integral we first show that it is finite. This is the case if
cost-until {Error,Ok} is a.e.-finite. So we first show that almost every path reaches
{Error,Ok}:

lemma AE-term: s ∈ S =⇒ AEs ω. s ·ω ∈ until S {Error,Ok}

Using this we show an elementary form of Cfin in a similar way to Perr:

theorem Cfin-start:
Cfin Start =

q · (r + pN+1 · E + r · p · (1− pN)/(1− p)) + (1− q) · (r · N + 1)
1− q + q · pN+1

With typical values (16 hosts, 3 probe runs, a probability of p = 0.01 to lose
ARP packets, 2 ms for an ARP round-trip (r = 0.002) and an error penalty of one
hour (E = 3600)) we compute in Isabelle/HOL that the average time to terminate
is less or equal 0.007 s:

corollary Cfin-start’: Cfin Start ≤ 0.007

5.3 Crowds Protocol

The Crowds protocol described by Reiter and Rubin [67] is an anonymizing pro-
tocol. The goal is to allow users to connect to servers anonymously. Neither the
final server should know which user connects to it, nor attackers collaborating in
the network. The Crowds protocol establishes an anonymizing route through a
so called mix network: each user (Reiter and Rubin name them jondo pronounced
“John Doe”) is itself participating in the mix network. When a jondo establishes
a route, it first connects to another random jondo which then decides based on a
coin flip weighted with p f if it should connect to the final server, or go through a
further jondo, and so on. Figure 5.2 shows an established route through the jon-
dos J1 − J4 − J2 − J7 − J4 −C1 − S . There is no global information about a route
available to the participating jondos. For each connection a jondo only knows
its immediate neighbours, but no other previous or following jondo, so it may
happen that a route is going through a loop, as seen in Fig. 5.2.

First, Reiter and Rubin [67] show that the server has no chance to guess the
original sender. In a second step they assume that some jondos collaborate to

91

CHAPTER 5. APPLICATIONS

Start

Init J1

Init J2

Init J3

Mix J1

Mix J2

Mix J3

End

init J1

init J2

init J3 1

Probabilities:

p f /3

1/3

1− p f

Figure 5.3: Example Markov chain of the small Crowds network {J1, J2, J3}

guess the jondo initiating the route. They analyze the probability that a collab-
orating node is the successor of the initiating jondo. This analysis is affected by
the fact that the route may go through the initiating jondo multiple times. An
analysis of the Crowds protocol in PRISM, for specific sizes, has been conducted
by Shmatikov [71].

Similar to the ZeroConf case, we only analyze the Markov chain having a
global view on the protocol. We could model the individual behaviour of jondos
in Isabelle/HOL and show that this induces our Markov chain model, but this is
not in the scope of this thesis.

5.3.1 Formal Model of Route Establishment

We concentrate on the probabilistic aspects of route establishment in the Crowds
protocol. We assume a set jondos of an arbitrary type α (which is just used to iden-
tify jondos), and a strict subset colls, the collaborating attackers. A jondo decides
with probability p f if it chooses another jondo as next step, or if it directly connects
to the server. The distribution of the initiating jondos is given by init. Naturally
the initiating jondo is not a collaborating jondo. In Isabelle this is expressed as the
following context:

locale crowds =
fixes jondos colls :: α set and p f :: R and init :: α→ R

assumes 0 < p f and p f < 1
assumes jondos 6= ∅ and colls 6= ∅ and finite jondos and colls ⊂ jondos
assumes ∀ j ∈ jondos. 0 ≤ init j and ∀ j ∈ colls. init j = 0

and ∑ j∈jondos init j = 1

The Markov chain has four different phases: start, the initial node, and the
mixing phase, and finally the end phase where the server is contacted. See Fig. 5.3

92

5.3. CROWDS PROTOCOL

for a small example. Our formalization of Markov chains requires a single start
node, otherwise we could choose init as initial distribution. The type of the state
α c-state depends on the type of the jondos α.

datatype α c-state = Start | Init α | Mix α | End

Similar to the ZeroConf protocol not all possible values of c-state are necessary. We
restrict them further by only allowing non-collaborating jondos as initial jondos,
and only elements from jondos participate in the mixing phase. With this definition
it is easy to show that the set of states S :: α c-state set is finite.

S ::
(
α c-state

)
set

S = {Start} ∪ {Init j | j ∈ jondos \ colls} ∪ {Mix j | j ∈ jondos} ∪ {End}

Often we are interested in the jondo referenced by the current state. We intro-
duce jondo-of :: α c-state → α returning the jondo if we are in an initial or mixing
state:

jondo-of :: α c-state→ α

jondo-of s = case s of Init j⇒ j | Mix j⇒ j

The transition matrix τ :: α c-state → α c-state → R is defined by a case
distinction on all possible transitions. The probability for steps from Start are
given by the distribution of the initiating jondos init. The first routing jondo is
arbitrarily chosen, and the probability of going from a mixing state to a mixing
state is the product of p f to stay in the mixing phase and the probability 1/J
for the next jondo. With probability 1− p f the mixing state is finished and than
the Markov chain stays in End. Figure 5.4 shows an example path through the
different phases.

J,H :: R

J = |jondos|
H = |jondos \ colls|
τ :: α c-state→ α c-state→ R

τ s t = case (s, t) of (Start, Init j) ⇒ init j
| (Init j, Mix j′) ⇒ 1/J
| (Mix j, Mix j′) ⇒ p f /J
| (Mix j, End) ⇒ 1− p f

| (End, End) ⇒ 1
| _ ⇒ 0

Here f (x := v) is the function f updated at x to the new value v, i.e. f (x := v) x = v.
This completes the definition of the Markov chain describing the route es-

tablishment in the Crowds protocol. Finally we show that S and τ describe a
discrete-time Markov chain:

lemma markov-chain-crowds: markov-chain S τ

93

CHAPTER 5. APPLICATIONS

J1

J2

J3

J4

J5

J6

J7

J1

J2

J3

J4

J5

J6

J7

C1

C2

J1

J2

J3

J4

J5

J6

J7

C1

C2

J1

J2

J3

J4

J5

J6

J7

C1

C2

J1

J2

J3

J4

J5

J6

J7

C1

C2

J1

J2

J3

J4

J5

J6

J7

C1

C2

S

Start Init Mix0 Mix1 Mix2 Mix3 Mix4 End

Figure 5.4: The established route J1 − J4 − J3 − J5 − J4 −C1 − S

5.3.2 Independence of Initiating Jondo and Contacting Jondo

We define a number of path properties of our Markov chain. The functions len ::
(N → α c-state) → N, first-jondo :: (N → α c-state) → α and last-jondo :: (N →
α c-state) → α operate on paths not containing the Start element. len returns the
length of the mixing phase, i.e. how many Mix states are in the path until End is
reached, first-jondo is the initiating jondo, and last-jondo is the jondo contacting the
server.

len ω = (LEAST n. ω n = End)− 2

first-jondo ω = jondo-of (ω 0)

last-jondo ω = jondo-of (ω (len ω+ 1))

The path functions len, first-jondo and last-jondo are well-defined on almost
every path. The paths in our Markov chain do not contain the Start element, so
the paths start with an Init state. Hence for almost every path we know that the
first element is an initiating state, then for the next len elements we have mixing
states, and finally a tail of End states:

lemmas
AEStart ω. ω ∈N→ S

AEStart ω. ∃ j ∈ jondos \ colls. ω 0 = Init j

AEStart ω. ∀i ≤ len ω. ∃ j ∈ jondos. ω (i + 1) = Mix j

AEStart ω. ∀i > len ω. ω (i + 1) = End

With this we can easily show that the jondo contacting the server is independent
from the initiating jondo:

theorem indep-varStart (count (jondos \ colls)) (count jondos) first-jondo last-ncoll

94

5.3. CROWDS PROTOCOL

5.3.3 Probability that Initiating Jondo Contacts a Collaborator

The attacker model assumes that the collaborators want to detect the initiator of a
route. This is obviously only possible if one of the collaborators is chosen as one
of the mixing jondos. We have two goals: (1) If the numbers of collaborators is
small, the probability to contact a collaborator should be near zero. (2) We want
to analyze the probability that the initiating jondo directly contacts a collaborator.
When we know the ratio of collaborators to jondos, how can we adjust p f , so that
this probability is less or equal to 1/2?

The random variable hit-colls is true if a collaborator participates in the mixing
phase, first-coll is the mixing phase in which the collaborator is hit, and last-ncoll is
the last non-collaborating jondo, i.e. the jondo contacting a collaborator.

hit-colls :: (N→ α c-state)→ B

hit-colls ω = ∃n, j ∈ colls. ω n = Mix j

first-coll :: (N→ α c-state)→N

first-coll ω = (LEAST n. ∃ j ∈ colls. ω n = Mix j)− 1

last-ncoll :: (N→ α c-state)→ α

last-ncoll ω = jondo-of (ω (first-coll ω))

The property we want to check only makes sense if a collaborator participates
in the mixing phase. So we first prove the probability to hit a collaborator:

lemma PrStart(ω. hit-colls ω) = (1− H/J)/(1− H/J · p f)

We already see that the probability to hit a collaborator goes to 0 if the number
of collaborators and p f stay constant and J −→ ∞. Then H/J −→ 1 and hence
PrStart(ω. hit-colls ω) −→ 0. Thus our first goal is satisfied.

Additionally, we want to control the probability that the initiating jondo hits
a collaborator. For this, we compute the probability to have a fixed first and last
non-collaborating jondo before we hit a collaborator:

lemma P-first-jondo-last-ncoll:
l ∈ jondos \ colls and i ∈ jondos \ colls =⇒
PrStart(ω. first-jondo ω = i∧ last-ncoll ω = l | hit-colls ω) =

init i · (p f /J + (if i = l then 1− H/J · p f else 0))

Note that the conditional probability does not divide by 0 because, by the previous
lemma, we know that PrStart(ω. hit-colls ω) 6= 0. By summing up over all possible
non-collaborating jondos we show the probability that the last non-collaborating
jondo is the initiating jondo:

theorem PrStart(ω. first-jondo ω = last-ncoll ω | hit-colls ω) = 1− (H− 1)/J · p f

With this we can now enforce that the probability that the initiating jondo hits a
collaborator is less or equal to 1

2 :

corollary
H > 1 ∧ J/(2 · (H − 1)) ≤ p f =⇒
PrStart(ω. first-jondo ω = last-ncoll ω | hit-colls ω) ≤ 1

2

95

CHAPTER 5. APPLICATIONS

Reiter and Rubin [67] call this probably innocent. Because p f < 1 this is only
possible if 1/2 < (H− 1)/J, i.e. more than half of the jondos are non-collaborating.
This meets our second goal.

5.3.4 Information Gained by Collaborators

Obviously, in Isabelle/HOL we are not only restricted to state probabilities or
expectations. For example, for quantitative information flow analysis, similar to
the analysis by Malacaria [55], we are interested in the mutual information Is(X; Y)
between two random variables X and Y (c.f. Section 4.4). We know that if X and
Y are simple functions, i.e. functions with a finite range, then Is(X; Y) can be
computed in the known discrete way:

lemma
simple-functions X =⇒ simple-functions Y =⇒
Is(X; Y) = ∑(x,y)∈{(Xx,Y x)|x.x∈Ω} . Prs(ω. X ω = x ∧ Y ω = y)·

log2

(
Prs(ω. X ω = x ∧ Y ω = y)/(Prs(ω. X ω = x) · Prs(ω. Y ω = y))

)
We are only interested in runs which hit a collaborator. To use mutual information
with this restriction we introduce the conditional probability Prhit-colls, with the
condition that each run hits a collaborator. Its characteristic property (we omit the
technical definition) is

lemma
{x | P x} ∈ measurables =⇒ Prhit-colls(ω. P ω) = PrStart(ω. P ω | hit-colls ω)

With this property and Lemma P-first-jondo-last-ncoll we can now show an
upper bound for the information flow:

theorem Ihit-colls(first-jondo; last-ncoll) ≤ (1− (H − 1)/J · p f) · log2 H

This supports the intuitive understanding that the information the attackers can
gain is restricted by the probability that the initiating jondo is the jondo directly
contacting a collaborator.

5.4 Köpf-Dürmuth Countermeasure

Köpf and Dürmuth [48] give a countermeasure against timing attacks. For this,
they analyze the amount of information a deterministic side-channel attack can
gain. They show that |O| · log2(n + 1) bits is an upper bound, where O is the set of
possible observations and n is the number of attacks. In this section we formalize
their analysis using the information theory developed in Section 4.4.

Before we start with the formalization, we introduce the locale finite-information
to define a finite and discrete probability space with a size for bits b. A common
instantiation is b = 2, i.e. when a unit of information is a binary digit.

locale finite-information =

fixes Ω :: α set and p :: α→ R and b :: R

assumes finite Ω and (∑x∈Ω p x) = 1 and ∀x. 0 ≤ p x and 1 < b

96

5.4. KÖPF-DÜRMUTH COUNTERMEASURE

The measure point Ω p (introduced in Section 3.3.1) is then an information space:

lemma information-space (point Ω p) b

Our model assumes an arbitrary distribution K on the finite set keys and an
arbitrary distribution M on the finite set messages. The observation observe k m
represents the side-channel information an attacker gains about a key k when
exchanging the message m. In our analysis we assume that n messages are ex-
changed.

locale koepf-duermuth =

finite-information keys K b + finite-information messages M b
for keys :: k set and K :: k→ R and

messages :: m set and M :: m→ R and b :: R +

fixes observe :: k→ m→ o and n :: N

The model assumes a probability space where the key and each of the n messages
are independently distributed. The sequence of n messages is modelled as a list.
We write length xs for the length of the list xs, set xs for the set of elements in the
list xs, and xs!i for the i-th element of the list xs.

msgs :: (k×m list) set
msgs = keys× {ms | set ms ⊆ messages∧ length ms = n}

P :: (k×m list)→ R

P (k, ms) = K k · (∏i<n M (ms ! i))

We show that P is a discrete distribution on the space msgs. We will use it as
implicit probability space for the conditional entropy H(X|Y) and for mutual in-
formation I(X; Y).

lemma finite-information msgs P b

Our final theorem will be about the mutual information between the key and
all observations on the sent messages. For this the random variable O is intro-
duced representing all observations by an attacker in one run. The goal is then to
give a bound on I(K;O), where K = fst is the random variable returning the key
of the run and O returns all observations by an attacker.

O :: k×m list→ o list
O (k,ms) = map (observe k) ms

Here map is the map function on lists, the result of map f [x1, x2, . . . , xn] is the list
[f x1, f x2, . . . , f xn].

The bound we provide depends on the set of all possible observations:

observations :: o set
observations = {observe k m | k ∈ keys∧m ∈ messages}

97

CHAPTER 5. APPLICATIONS

Now, we will show that I(K;O) ≤ |observations| · logb (n + 1). First, we show
that the order of the messages is irrelevant. We introduce t os o returning how
often each single observation o occurs in the observations os:

t :: o list→ o→N

t os = λo. card {i < n. os ! i = o}

The information an attacker gains stays equal no matter if he gets the observations
as list or if he only gets the count for each observation:

theorem I(K;O) = I(K; t ◦ O)

We can also give an upper bound for the cardinality of all possible outcomes of t:

theorem card
(

t ◦ O[msgs]
)
≤ (n + 1)card observations

With Theorem entropy-le we know that H(t ◦ O) ≤ card observations · logb (n + 1).
With the chain rule for entropy and the equality of mutual information and en-
tropy we deduce I(K; t ◦ O) ≤ H(t ◦ O). And finally, with the equation I(K;O) =
I(K; t ◦ O), we prove the upper bound for a side-channel attack:

corollary I(K;O) ≤ card observations · logb (n + 1)

Our proofs closely follow Köpf and Dürmuth [48]. They continue with intro-
ducing guessing entropy to quantify the expected effort for guessing the correct
key. We stop at this point as we do not yet have guessing entropy in our informa-
tion theory.

98

Chapter 6

Conclusion

6.1 Summary

In this thesis we developed measure, probability, and information theory in Is-
abelle/HOL.

One central goal of this development was the construction of measure spaces,
starting with the explicit introduction of the push-forward measure and density
measures. While this is usual in textbooks it is new in formalizations. The intro-
duction of constants and verifying their properties not only allowed us to show
that these measures exist, but they also encouraged us to introduce algebraic rules
about combinations of these measures with products.

The next major construction is the product space. Bauer [9] introduces the
finite product spaces as iteration of binary product spaces, which in HOL is not
possible due to type constraints. Instead, we managed to introduce one mea-
sure space to represent both finite product spaces and infinite probability spaces.
While the definition is more complicated, we gain a common ground (and Isabelle
constant) for both concepts. This allows us to reuse the product σ-algebra in both
cases so we only need half of the measurability proofs. Also the product σ-algebra
is reused for stochastic processes as we see in the construction of the discrete-time
Markov chain.

To analyze probability spaces we formalized tools to analyze random variables.
Independence of a family of random variables relates their joint distribution to the
product of their single distributions. For information theory mutual information
of two random variables quantifies their shared information. This mutual infor-
mation is exactly then zero if the two random variables are independent. To show
this we introduced Kullback-Leibler divergence. For the analysis of random vari-
ables we expressed their distribution as a density measure and finally introduced
uniform and exponential distributions.

The formalization of discrete-time Markov chains allowed us to model and
verify the pCTL model checking algorithm. This required a couple of important
theorems: the iterative equations, a.e.-state fairness and the finiteness of the hitting
time (when the final states are a.e.-reached). Furthermore, these theorems helped
us to verify the ZeroConf and the Crowds protocol. The analysis of the Crowds
protocol used in addition independence and mutual information. This shows that

99

CHAPTER 6. CONCLUSION

Lines of theory
(counted by wc -l)

Extended reals 3,900
Measure theory 13,300
Probability theory 7,400
Examples 3,100
Total 27,700
Multivariate analysis 31,700
Isabelle/HOL base image 68,300

Figure 6.1: Line count of the probability and measure theory compared to multi-
variate analysis and the Isabelle/HOL image.

the developed theories are already quite helpful to formalize probabilistic models.
Isabelle’s probability theory is already used in further projects:

• Andrei Popescu, Johannes Hölzl and Tobias Nipkow [66, 65] formalize a
framework for concurrent noninterference. There is an unpublished version
of this framework, which uses a Markov decision process to describe the
probabilistic behaviour of schedulers. The infinite product measures and the
Markov chains were originally developed for this framework.

• Lars Noschinski proves the Girth-Chromatic number theorem [63, 62]. He
uses a probabilistic proof, where the proof itself uses results from probability
theory but no probabilistic concepts occur in the final theorem.

• Fabian Immler formalizes [41] the Daniell-Kolmogorov theorem allowing
us to construct stochastic processes as the limit of their finite-dimensional
distributions.

• Jeremy Avigad works together with his student on the formalization of char-
acteristic functions and the central limit theorem in Isabelle/HOL.

Figure 6.1 gives an overview of the sizes of the files formalizing probability
and measure theory and compares the cumulative size to the size of the theories
it is based on. It only lists the cumulative line count of all thy-files, ML-files are not
included. The base image is obviously a huge development containing already
real analysis which we heavily use. The multivariate analysis is comparable with
our theory, as it is also a big development of mathematical analysis. Integrating
some of the work listed above will likely outgrow the multivariate analysis.

6.2 Future Work

The developed theories are a good foundation for further formalization of math-
ematical proofs. But they would also gain from extending the automation and
additional support for common probability concepts.

100

6.2. FUTURE WORK

• In interactive theorem proving, automation is very important. A particu-
lar optimization would be to add special support to show measurability. In
Section 2.1 we declare quite a few introduction rules to show measurability
for most logic combinators, and for each measure space we try to find the
generic introduction rules. Unfortunately, the simplifier does not support
long chains of introduction rules, or backtracking search. For this a special
simplifier mechanism to solve measurability assumptions would be a valu-
able addition.

• When we model input values for an algorithm or a protocol, it is easy to
assume a set of independent random variables that represent independent
inputs. In HOL these random variables often have different types. Un-
fortunately, the current way to specify independent random variables with
indep-vars and indep-var restricts them to have the same type. It is also often
required to combine some random variables and then show that the result
is still independent from the other random variables. This is only partly
possible with Lemma indep-vars-compose.

A solution would be to use the σ-algebras generated by each random vari-
ables and represent the independence directly with indep-sets . However, it
would be nice to have special combinators to manage the index sets and
composition of random variables.

• Currently, we only allow finite real values for mutual information and en-
tropy. This is due to the problem that (1) the entropy may also be negative
and (2) the logarithm in the integrand in these definitions assumes also neg-
ative values. A solution would be to define entropy and mutual information
to be infinite if the integral is not defined, i.e. the integral is not finite or the
random variables do not have pdfs.

• For mathematical analysis an important tool are characteristic functions. It
is an alternative way to characterize distributions and is helpful when we
need to analyze sums of independent random variables. An application of
this is the proof of the central limit theorem. As mentioned in the previous
section, Jeremy Avigad is currently working on formalizing the central limit
theorem and thus also formalizes characteristic functions.

This would also introduce the normal distribution, a distribution central to
stochastics. The central limit theorem tells us that the normal distribution
is the limit of a sequence of sums of independent, identically distributed
random variables.

In general a further expansion on distributions and characteristics of distri-
butions would be interesting. Besides the normal distribution there is also
the Poisson distribution, which is often used in computer science and queue-
ing theory. Maximum entropy statements like Theorem entropy-le are also
interesting for the exponential and normal distribution.

• For computer science interesting probabilistic models include Markov chains
and Markov decision processes not only with discrete-time but also with

101

CHAPTER 6. CONCLUSION

continuous-time. For continuous-time Markov decision processes we need
to construct continuous-space Markov chains, requiring the formalization of
the Daniell-Kolmogorov theorem (already done by Immler [41]).

What is missing is the iteration of Markov kernels (the generalization of
transition matrices into functions from states to probability distributions of
states) to generate the finite-dimensional distributions of the Markov chain.
This should enable us to construct the trace spaces of Markov chains and
Markov decision processes.

Similar to our verification of pCTL model checking in Section 5.1 we can
then start to verify probabilistic model checking for these models.

102

Appendix A

Extended Real Numbers

Extended reals are used in measure theory to represent measure values. For ex-
ample the Lebesgue measure λR takes infinite values, as there is no real number
we can reasonably assign to λR. So we need a type containing the real numbers
and a distinct value for infinity. We introduce the type R as the reals extended
with a positive and a negative infinite element.

datatype R = ∞ | (R)R | −∞ real :: R→ R

real (r)R = r real ∞ = 0 real (−∞) = 0

The conversion function real restricts the extended reals to the real numbers
and maps ±∞ to 0. For the sake of readability we hide this conversion function.

(r)R ≤ (p)R ⇔ r ≤ p x ≤ ∞ −∞ ≤ x
−(r)R = (−r)R −(−∞) = ∞

(r)R + (p)R = (r + p)R ∞ + x = ∞ x + ∞ = ∞

(r)R · (p)R = (r · p)R x · ±∞ = ±∞ · x =

{
0 if x = 0

sgn x · ±∞ otherwise

For measure theory it is suitable to define ∞ · 0 = 0. Using min and max as
meet and join, we get that R is a complete lattice where bot is −∞ and top is ∞.

Our next step is to define the topological structure on R. This is an extension
of the topological structure on real numbers. However we need to take care of
what happens when ±∞ is in the set.

open A⇔ open {r | (r)R ∈ A} ∧
(∞ ∈ A =⇒ ∃x. ∀y > x. (y)R ∈ A) ∧ (−∞ ∈ A =⇒ ∃x. ∀y < x. (y)R ∈ A)

From this definition the continuity of (·)R follows directly. The definition of
limits of sequences in Isabelle/HOL is based on topological spaces. This allows us
to reuse these definitions and also some of the proofs such as uniqueness of limits.
We also verify that the limits and infinite sums on real numbers are the same as
the limits and sums on extended reals:

(λn. (f n)R) −−−→n→∞
(r)R ⇔ (λn. f n) −−−→

n→∞
r

103

APPENDIX A. EXTENDED REAL NUMBERS

If f is summable, then ∑n (f n)R = (∑n f n)R .
Hurd [40] formalizes similar positive extended reals and also defines a com-

plete lattice on them. Our R includes negative numbers and we not only show
that it forms a complete lattice but also that it forms a topological space. The com-
plete lattice is used for monotone convergence and the topological space is used
to define the Borel sets on R.

104

Bibliography

[1] Naeem Ahmad Abbasi. Formal Reliability Analysis using Higher-Order Logic
Theorem Proving. PhD thesis, The Department of Electrical and Computer
Engineering, Concordia University, Montréal, Québec, Canada, 2012.

[2] Reynald Affeldt and Manabu Hagiwara. Formalization of Shannon’s theo-
rems in SSReflect-Coq. 2012.

[3] Suzana Andova, Holger Hermanns, and Joost-Pieter Katoen. Discrete-time
rewards model-checked. In Kim Guldstrand Larsen and Peter Niebert, ed-
itors, Formal Modeling and Analysis of Timed Systems, volume 2791 of LNCS,
pages 88–104, 2003.

[4] Robert B. Ash. Real Analysis and Probability, volume 11 of Probability and Math-
ematical Statistics. Academic Press, 1972.

[5] Philippe Audebaud and Christine Paulin-Mohring. Proofs of randomized
algorithms in Coq. Science of Computer Programming, 74(8):568–589, 2009. ISSN
0167-6423. doi: 10.1016/j.scico.2007.09.002. Special Issue on Mathematics of
Program Construction (MPC 2006).

[6] Christel Baier. On the Algorithmic Verification of Probabilistic Systems. Habilita-
tion, Universität Mannheim, 1998.

[7] Christel Baier, Boudewijn R. Haverkort, Holger Hermanns, and Joost-Pieter
Katoen. Model-checking algorithms for continuous-time markov chains. IEEE
Trans. Software Eng., 29(6):524–541, 2003. doi: 10.1109/TSE.2003.1205180.

[8] Heinz Bauer. Probability Theory. de Gruyter, 1995. ISBN 3-11-013925-9.

[9] Heinz Bauer. Measure and Integration theory. de Gruyter, 2001. ISBN 3-11-
016719-0.

[10] Józef Białas. The σ-additive measure theory. Formalized Mathematics, 2(2):
263–270, 1991.

[11] Józef Białas. Properties of Caratheodor’s measure. Formalized Mathematics, 3
(1):67–70, 1992.

[12] Józef Białas. The one-dimensional Lebesgue measure. Formalized Mathematics,
5(2):253–258, 1996.

105

BIBLIOGRAPHY

[13] Henrik Bohnenkamp, Peter van der Stok, Holger Hermanns, and Frits Vaan-
drager. Cost-optimisation of the IPv4 Zeroconf protocol. In Dependable Sys-
tems and Networks (DSN’03), pages 531–540. IEEE CS Press, 2003.

[14] N. Bourbaki. General Topology (Part I). Addison-Wesley, 1966.

[15] S. Cheshire, B. Aboba, and E. Guttman. Dynamic configuration of IPv4 link-
local addresses. RFC 3927 (Proposed Standard), may 2005. URL http://www.
ietf.org/rfc/rfc3927.txt.

[16] David Clark, Sebastian Hunt, and Pasquale Malacaria. A static analysis for
quantifying information flow in a simple imperative language. Journal of Com-
puter Security, 15(3):321–371, 2007. ISSN 0926-227X.

[17] Aaron R. Coble. Anonymity, Information, and Machine-Assisted Proof. PhD
thesis, King’s College, University of Cambridge, 2009.

[18] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley-
Interscience, 1991. ISBN 0-471-06259-6.

[19] John R. Cowles and Ruben Gamboa. Using a first order logic to verify
that some set of reals has no Lebesgue measure. In Matt Kaufmann and
Lawrence C. Paulson, editors, Interactive Theorem Proving (ITP 2010), volume
6172 of LNCS, pages 25 – 34, 2010.

[20] Marc Daumas and David R. Lester. Stochastic formal methods: An appli-
cation to accuracy of numeric software. In Hawaii International International
Conference on Systems Science (HICSS 2007), pages 262–269. IEEE Computer
Society, 2007.

[21] Marc Daumas, David R. Lester, Érik Martin-Dorel, and Annick Truffert.
Improved bound for stochastic formal correctness of numerical algorithms.
Innovations in Systems and Software Engineering, 6(3):173–179, 2010. doi:
10.1007/s11334-010-0128-x.

[22] Agnes Doll. Kolmogorov’s zero-one law. Formalized Mathematics, 17(1–4):
73–77, 2009.

[23] Jürgen Elstrodt. Maß- und Integrationstheorie. Springer, 1996.

[24] Noboru Endou, Keiko Narita, and Yasunari Shidama. The Lebesgue mono-
tone convergence theorem. Formalized Mathematics, 16(2):167–175, 2008. doi:
10.2478/v10037-008-0023-1.

[25] Russel A. Gordon. The Integrals of Lebesgue, Denjoy, Perron, and Henstock, vol-
ume 4 of Graduate Studies in Mathematics. American Mathematical Society,
1994.

[26] Robert M. Gray. Entropy and information theory. Springer-Verlag, 1990.

106

http://www.ietf.org/rfc/rfc3927.txt
http://www.ietf.org/rfc/rfc3927.txt

BIBLIOGRAPHY

[27] Florian Haftmann and Tobias Nipkow. Code generation via higher-order
rewrite systems. In M. Blume, N. Kobayashi, and G. Vidal, editors, Functional
and Logic Programming (FLOPS 2010), volume 6009 of LNCS, pages 103–117,
2010.

[28] Florian Haftmann and Makarius Wenzel. Local theory specifications in Is-
abelle/Isar. In Stefano Berardi, Ferruccio Damiani, and Ugo de’Liguoro, edi-
tors, TYPES 2008, volume 5497 of LNCS, pages 153–168. Springer, 2009. ISBN
978-3-642-02443-6. doi: 10.1007/978-3-642-02444-3_10.

[29] Ernst Moritz Hahn, Holger Hermanns, and Lijun Zhang. Probabilistic reach-
ability for parametric markov models. International Journal on Software Tools for
Technology Transfer (STTT), 13(1):3–19, 2011. doi: 10.1007/s10009-010-0146-x.

[30] Hans Hansson and Bengt Jonsson. A logic for reasoning about time and
reliability. Technical Report SICS/R90013, Swedish Institute of Computer
Science, Dec 1994.

[31] John Harrison. A HOL theory of Euclidean space. In Joe Hurd and Tom
Melham, editors, Theorem Proving in Higher Order Logics, 18th International
Conference, TPHOLs 2005, volume 3603 of Lecture Notes in Computer Science,
pages 114–129, 2005.

[32] Osman Hasan. Formal Probabilistic Analysis using Theorem Proving. PhD thesis,
The Department of Electrical and Computer Engineering, Concordia Univer-
sity, Montréal, Québec, Canada, 2008.

[33] Osman Hasan, Naeem Abbasi, Behzad Akbarpour, Sofiène Tahar, and Reza
Akbarpour. Formal reasoning about expectation properties for continuous
random variables. In Ana Cavalcanti and Dennis Dams, editors, FM 2009:
Formal Methods, volume 5850 of LNCS, pages 435–450. 2009. ISBN 978-3-642-
05088-6.

[34] Holger Hermanns, Björn Wachter, and Lijun Zhang. Probabilistic CEGAR. In
Aarti Gupta and Sharad Malik, editors, Computer Aided Verification, 20th Inter-
national Conference, CAV 2008, Princeton, NJ, USA, July 7-14, 2008, Proceedings,
volume 5123 of LNCS, pages 162–175, 2008.

[35] Johannes Hölzl and Armin Heller. Three chapters of measure theory in
Isabelle/HOL. In Marko C. J. D. van Eekelen, Herman Geuvers, Julien
Schmaltz, and Freek Wiedijk, editors, Interactive Theorem Proving (ITP 2011),
volume 6898 of LNCS, pages 135–151, 2011.

[36] Johannes Hölzl and Tobias Nipkow. Markov models. The Archive of For-
mal Proofs, Jan 2012. ISSN 2150-914x. http://afp.sf.net/entries/Markov_
Models.shtml, Formal proof development.

[37] Johannes Hölzl and Tobias Nipkow. Interactive verification of Markov chains:
Two distributed protocol case studies. In U. Fahrenberg, A. Legay, and
C. Thrane, editors, Quantities in Formal Methods (QFM 2012), EPTCS, 2012.

107

http://afp.sf.net/entries/Markov_Models.shtml
http://afp.sf.net/entries/Markov_Models.shtml

BIBLIOGRAPHY

[38] Johannes Hölzl and Tobias Nipkow. Verifying pCTL model checking. In
C. Flanagan and B. König, editors, Tools and Algorithms for the Construction
and Analysis of Systems (TACAS 2012), volume 7214 of LNCS, pages 347–361,
2012.

[39] Joe Hurd. Formal Verification of Probabilistic Algorithms. PhD thesis, University
of Cambridge, 2002.

[40] Joe Hurd, Annabelle McIver, and Carroll Morgan. Probabilistic guarded com-
mands mechanized in HOL. Theoretical Computer Science, 346(1):96–112, Nov
2005.

[41] Fabian Immler. Generic construction of probability spaces for paths of
stochastic processes in isabelle/hol. Master’s thesis, Technische Universität
München, Oct 2012.

[42] A.G. ter Meulen J.F.A.K. van Benthem. Generalized quantifiers in natural lan-
guage. de Gruyter, 1985.

[43] Olav Kallenberg. Foundations of Modern Probability Theory. Probability and its
Application. Springer, 1997.

[44] J.-P. Katoen, A. McIver, L. Meinicke, and C. C. Morgan. Linear-invariant
generation for probabilistic programs: Automated support for proof-based
methods. In R. Cousot and M. Martel, editors, Static Analysis (SAS 2010),
volume 6337 of LNCS, pages 390–406, 2010. doi: 10.1007/978-3-642-15769-1_
24.

[45] Joost-Pieter Katoen, Ivan S. Zapreev, Ernst Moritz Hahn, Holger Hermanns,
and David N. Jansen. The ins and outs of the probabilistic model checker
MRMC. Performance Evaluation, 68:90–104, 2011.

[46] Andrei Kolmogorow. Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer,
Berlin, 1933.

[47] Andrei Kolmogorow. Foundations of the theory of probability. Chelsea Publish-
ing Company, New York, 1950.

[48] Boris Köpf and Markus Dürmuth. A Provably Secure and Efficient Counter-
measure against Timing Attacks. In Proc. 22nd IEEE Computer Security Foun-
dations Symposium (CSF ’09), pages 324–335, 2009.

[49] Marta Kwiatkowska, Gethin Norman, David Parker, and J. Sproston. Perfor-
mance analysis of probabilistic timed automata using digital clocks. Formal
Methods in System Design, 29:33–78, 2006.

[50] Marta Kwiatkowska, Gethin Norman, and David Parker. Stochastic model
checking. In M. Bernardo and J. Hillston, editors, Formal Methods for the Design
of Computer, Communication and Software Systems: Performance Evaluation (SFM
2007), volume 4486 of LNCS, pages 220–270, 2007.

108

BIBLIOGRAPHY

[51] Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Verifica-
tion of probabilistic real-time systems. In G. Gopalakrishnan and S. Qadeer,
editors, Computer Aided Verification (CAV 2011), volume 6806 of LNCS, pages
585–591, 2011.

[52] David R Lester. Topology in PVS: continuous mathematics with applications.
In Proceedings of the second workshop on Automated formal methods, AFM ’07,
pages 11–20, 2007. doi: 10.1145/1345169.1345171.

[53] David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. Markov chains and
mixing times. American Mathematical Society, 2006.

[54] Liya Liu, Osman Hasan, and Sofiene Tahar. Formalization of finite-state
discrete-time markov chains in HOL. In T. Bultan and P.-A. Hsiung, edi-
tors, Automated Technology for Verification and Analysis (ATVA 2011), volume
6996 of LNCS, pages 90–104, 2011.

[55] Pasquale Malacaria. Assessing security threats of looping constructs. In
Proceedings of the 34th Annual ACM SIGPLAN-SIGACT symposium on Princi-
ples of Programming Languages (POPL’07), pages 225–235, 2007. doi: 10.1145/
1190215.1190251.

[56] Franz Merkl. Dynkin’s lemma in measure theory. Formalized Mathematics, 9
(3):591–595, 2001.

[57] Tarek Mhamdi, Osman Hasan, and Sofiène Tahar. On the formalization of
the Lebesgue integration theory in HOL. In Matt Kaufmann and Lawrence C.
Paulson, editors, Proceedings of ITP 2010, volume 6172 of LNCS, pages 387–
402, 2010.

[58] Tarek Mhamdi, Osman Hasan, and Sofiène Tahar. Formalization of entropy
measures in hol. In Marko C. J. D. van Eekelen, Herman Geuvers, Julien
Schmaltz, and Freek Wiedijk, editors, Interactive Theorem Proving (ITP 2011),
volume 6898 of LNCS, pages 233–248, 2011.

[59] Tobias Nipkow. Gauss-Jordan elimination for matrices represented as
functions. In Gerwin Klein, Tobias Nipkow, and Lawrence Paul-
son, editors, The Archive of Formal Proofs. http://afp.sf.net/entries/
Gauss-Jordan-Elim-Fun.shtml, Aug 2011. Formal proof development.

[60] Andrzej Nędzusiak. σ-fields and probability. Formalized Mathematics, 1(2):
401–407, 1990.

[61] Andrzej Nędzusiak. Probability. Formalized Mathematics, 1(4):745–749, 1990.

[62] Lars Noschinski. A probabilistic proof of the girth-chromatic number theo-
rem. The Archive of Formal Proofs, Feb 2012. ISSN 2150-914x. http://afp.sf.
net/entries/Girth_Chromatic.shtml, Formal proof development.

[63] Lars Noschinski. Proof pearl: A probabilistic proof for the Girth-Chromatic
number theorem. In Lennart Beringer and Amy Felty, editors, Interactive
Theorem Proving (ITP 2012), volume 7406 of LNCS, 2012.

109

http://afp.sf.net/entries/Gauss-Jordan-Elim-Fun.shtml
http://afp.sf.net/entries/Gauss-Jordan-Elim-Fun.shtml
http://afp.sf.net/entries/Girth_Chromatic.shtml
http://afp.sf.net/entries/Girth_Chromatic.shtml

BIBLIOGRAPHY

[64] Steven Obua and Sebastian Skalberg. Importing hol into isabelle/hol. In
Ulrich Furbach and Natarajan Shankar, editors, Automated Reasoning, volume
4130 of LNCS, pages 298–302. 2006. doi: 10.1007/11814771_27.

[65] Andrei Popescu and Johannes Hölzl. Possibilistic noninterference. The Archive
of Formal Proofs, Sep 2012. ISSN 2150-914x. http://afp.sf.net/entries/
Possibilistic_Noninterference.shtml, Formal proof development.

[66] Andrei Popescu, Johannes Hölzl, and Tobias Nipkow. Proving concurrent
noninterference. In Certified Programs and Proofs (CPP 2012), LNCS. Springer,
2012.

[67] M. Reiter and A. Rubin. Crowds: Anonymity for web transactions. ACM
Transactions on Information and System Security (TISSEC), 1(1):66–92, 1998.

[68] Stefan Richter. Formalizing integration theory with an application to proba-
bilistic algorithms. In Konrad Slind, Annette Bunker, and Ganesh Gopalakr-
ishnan, editors, Proceedings of TPHOLs 2004, volume 3223 of LNCS, pages
271–286, 2004.

[69] René L. Schilling. Measures, Integrals and Martingales. Cambridge University
Press, 2005. ISBN 978-0-521-61525-9.

[70] Claude Elwood Shannon. A mathematical theory of communication. The
Bell System Technical Journal, 27:379–423 and 623–656, Jul 1948. URL http:
//cm.bell-labs.com/cm/ms/what/shannonday/paper.html.

[71] Vitaly Shmatikov. Probabilistic analysis of an anonymity system. Journal of
Computer Security, 12:355–377, 2004.

[72] Sebastian Skalberg. Import tool. URL http://www.mangust.dk/skalberg/
isabelle.php.

[73] Jinshuang Wang, Huabing Yang, and Xingyuan Zhang. Liveness reasoning
with Isabelle/HOL. In Stefan Berghofer, Tobias Nipkow, Christian Urban,
and Makarius Wenzel, editors, Theorem Proving in Higher Order Logics, volume
5674 of LNCS, pages 485–499. 2009. doi: 10.1007/978-3-642-03359-9_33.

[74] Makarius Wenzel. Structured induction proofs in isabelle/isar. In
Jonathan M. Borwein and William M. Farmer, editors, Mathematical Knowl-
edge Management (MKM 2006), volume 4108 of LNCS, pages 17–30. Springer,
2006.

110

http://afp.sf.net/entries/Possibilistic_Noninterference.shtml
http://afp.sf.net/entries/Possibilistic_Noninterference.shtml
http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html
http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html
http://www.mangust.dk/skalberg/isabelle.php
http://www.mangust.dk/skalberg/isabelle.php

