
WEEK 7 
ASSEMBLY OF TEARS



TODAYS PLAN

 Tutor Task 

 Factorial

 Toolbox

 Quicksort

 Assembly



TUTOR TASKS



FACTORIAL



FACTORIAL – HEAD VS TAIL RECURSION



FACTORIAL – HEAD VS TAIL RECURSION

 Tail Recursion: Recursion call is at the end of the method

 Head Recursion: Recursion call is at the start of the method



FACTORIAL – HEAD VS TAIL RECURSION

 Tail Recursion: Recursion call is at the end of the method

 Head Recursion: Recursion call is at the start of the method



FACTORIAL – HEAD VS TAIL RECURSION

 How to Remember:

Tail Recursion: Nothing comes after the tail



FACTORIAL – HEAD VS TAIL RECURSION

 More Reading: https://www.cs.cmu.edu/~adamchik/15-

121/lectures/Recursions/recursions.html

https://www.cs.cmu.edu/~adamchik/15-121/lectures/Recursions/recursions.html


FACTORIAL

 Implement factorial using

 Iterative

 Head Recursion

 Tail Recursion

 Advisable to use a help method:

 private static int facTailRecHelper(int n, int k)



TOOLBOX 



TOOLBOX 

 No loops allowed

 No while

 No for

 Use Recursion



TOOLBOX – ISEVEN

 Boolean isEven(int n)

 True if Even

 False if Odd



TOOLBOX – EVEN SUM 

Public static int evenSum(int n)

 Sum all even numbers from n to 0 (also negatives)

 F(8):= 8+6+4+2(+0) = 20

 F(-8):= -8+-6+-4+-2(+-0) = -20

 No *, /, % allowed

 Do use isEven



TOOLBOX – MULTIPLICATION 

Public static int multiplication(int x, int y)

 Implement multiplication via addition recursively



TOOLBOX – ARRAY REVERSION 

Public static void reverse(int[] m)

 Reverse an array recursively

 Without the creation of temporary arrays



TOOLBOX – ARRAY REVERSION 

Public static int numberofOddIntegers(int[] m)

 Count recursively how many integers are odd



TOOLBOX – ARRAY REVERSION 

Public static int filterOdd(int[] m)

 Create a new array with only the odd numbers

 In order of the original array



QUICKSORT



QUICKSORT – DEMO

 Doing Quicksort with [5 1 3 9 1 5 3] 



QUICKSORT – IMPLEMENTATION 

 Void swap(int[] numbers, int i, int j)

 Int partition (int[] numbers, int left, int right)

 Numbers[right] = pivot element

 Array between left and right inclusive of pivot should be swapped according to 
quicksort

 Implements Quicksort

 Write a suitable main method that generates a random array

 Math.random()

 ran Random = new Random();

 From java.util.Random



ASSEMBLY



ASSEMBLY

 10 Minutes Reading time for the homework

 Most details on assembly are written there



ASSEMBLY – LINE BY LINE

 In gets input via a method like Read() and is placed 

in the stack

 A 16 Bit Address of ggt is loaded onto the stack

 Call the function with the two parameters (the 

order of which is the stack order)

 Output value at top of stack

 End Program



ASSEMBLY – LINE BY LINE

 Function declaration

 Reserves space for 1 variable (1x 16 bits)



ASSEMBLY – LINE BY LINE

 Copy variable 1 into the stack

 Copy variable 2 into the stack

 If var1<var2 Jump to Next Step

 Else 

 Copy Var2 into the stack

 Copy Var1 into the stack

 Save Var2 to Var1’s location

 Save Var1 to Var2’s location



ASSEMBLY – LINE BY LINE

 Loop: Begins here

 Setup for modulo operation

 B = b%a

 Setup for Jump Not Equal

 If Not Equal, jump back to line 20

 Copy the result into the stack


