WVEEK 8

TUTORCLASS TC = NEW TUTORCLASS(“WEEKS8”);

TODAY’S PLAN

= UnitTesting Demo
= Object Orientated Programming Explanation
= Access to Variables Demo

= |[mmutable Set

= Timetable

UNIT TESTING

= Tests the Inputs and Outputs of a Function
= Checks if the output is what is expected

= Of course this only works on deterministic functions

UNIT TESTING

= Junit Library is used

UNIT TESTING — TEST BASED PROGRAMMING

= |t forces you to consider what each functions input and output is long before
= Also makes you consider the interaction of edge cases

= Automates Testing = Don’t have to enter everything manually

UNIT TEST

= Demo

OBJECT ORIENTATED PROGRAMMING

= Blueprint vs Instance

VARIABLE ACCESS

VARIABLE ACCESS

= Demo

IMMUTABLE SET

= Think of it as a set of Strings
= [aa,AA, bb]

= Rule of Sets: All elements are unique

IMMUTABLE SET — IMPLEMENT

= Constructor — Creates a empty set
= Boolean isElement(String s) — Is s included in set

= Boolean superset(ImmutableSet subset) — are all elements of subset found within
the current set

= Boolean isEqual(ImmutableSet other) — Are all elements of other found in the
current set

= Void add(String s) —Append s to the set if s is not currently found in the set

= String toString() — Represent the set as a String in the following format [a, b, c]

IMMUTABLE SET —TESTS

= | have written for you a unit test that will test your code

= Found on my website in this weeks folder

IMMUTABLE SET — IMPLEMENT

= Constructor — Creates a empty set
= Boolean isElement(String s) — Is s included in set

= Boolean superset(ImmutableSet subset) — are all elements of subset found within
the current set

= Boolean isEqual(ImmutableSet other) — Are all elements of other found in the
current set

= Void add(String s) —Append s to the set if s is not currently found in the set

= String toString() — Represent the set as a String in the following format [a, b, c]

TIME TABLE

= This is a two part task
= First Implement the class Date

= Then Implement the class Timetable

= With a subclass DateList

TIME TABLE — LIST REFRESHER

= Whatis a list?

TIME TABLE — LIST REFRESHER

first @

value value / value / value
next @ next @—

next @ next (null)

THE CLASS DATE

Date

- weekday : int

- starthour : int
- startmin : int

- duration : int

- title : String

+ Date(weekday : int, starthour : int, startmin : int, duration : int, title : String)
+ getWeekday() : int

+ getStarthour() : int

+ getStartmin() : int

+ getDuration() : int

+ getTitle() : String

+ toString() : String

TIME TABLE CLASS

Timetable

- dates : DateList

+ Timetable()

+ addDate(newDate : Date) : boolean
+ deleteDate(date : Date) : boolean
+ toString() : String

DATE LIST CLASS

DateList
- info ; Date
- next : Datelist

+ DateList(info : Date)
+ toString() : String

TIME TABLE CLASS

Timetable

- dates : DateList

+ Timetable()

+ addDate(newDate : Date) : boolean
+ deleteDate(date : Date) : boolean
+ toString() : String

