WEEK 9

MERRY CHRISTMAS

INHERITANCE

public class A {
public int min(C ¢, B b) { return 0; } // Methode 1

public void min(A a, B b) { } // Methode 2
1
public class B extends A {

public void min(A al, A a2) { } /7 Methode 3
+

public class C extends B {

public B min(A a, C ¢) { return new B(); } // Methode 4
}
public class Poly {

public static void main (Stringl] args) {

A a= (B)(new C());

B b = new B();

C ¢c = new C();

c.min(a, <); /7 Aufruf 1
b.min(a, (B)c); /7 Aufruf 2

((B)c) .min(c, (B)c); // Aufruf 3
((A)b) .min((B)a, b); // Aufruf 4

The static types of all the
Expressions of a Method Call

Signature of the Method when
it is called

What the Object evaluates to
Which Method # is called

INHERITANCE — METHOD 4

public class A {
public int min(C ¢, B b) { return 0; } // Methode 1

public void min(A a, B b) { } // Methode 2
1
public class B extends A {

public void min(A al, A a2) { } /7 Methode 3
+

public class C extends B {

public B min(A a, C ¢) { return new B(); } // Methode 4
}

public class Poly {
public static void main (Stringl] args) {

A a= (B)(new C());

B b = new B();

C ¢c = new C();

c.min(a, <); /7 Aufruf 1
b.min(a, (B)c); /7 Aufruf 2

((B)c) .min(c, (B)c); // Aufruf 3
((A)b) .min((B)a, b); // Aufruf 4

The static types of all the

Expressions of a Method Call
ABB

Signature of the Method when
it is called
min(B, B)

What the Obiject evaluates to
B

Which Method # is called
2

DOUBLY LINKED LISTS

DOUBLY LINKED LISTS

head——»| 1 |next|l——» | 2 |next|—» | 3 [|next|—*tail

Singly Linked List

head——{ null| 1 [next| prev| 2 |[nextle———|prev| 3 |next}|——tail

Doubly Linked List

DOUBLY LINKED LISTS

Singly Linked List Doubly Linked List
Easy Implement Mot easy
Less memory More Memory

Can traverse only in forward direction Traverse in both direction, back and froth

DOUBLY LINKED LISTS - METHODS

= Constructor that initializes head with NULL
= Public int size() — Returns # of elems in the List
= Public void add(int info) — Appends an elem to the end of the list

= Public void add(int index, int info) — Make a new node that will become the
$index element. If index is invalid do nothing

" Publc int remove(int index) — Removes an element at $index and returns its
value. If there is an invalid index, Integer.MIN_VALUE is to be returned

= Public void shiftLeft(int index) — shifts all elements $index to the left.You are
only allowed to change head, prev and next.

= Ex: [0, 1,2,4] will become [2,4, 0, |] with shiftLeft(2)
= Ex:[0, I] will become [I, 0] with shiftLeft(1])
= Shiftleft(0) does nothing

DOUBLY LINKED LISTS

= Unit test is provided on the website

DOUBLY LINKED LISTS - METHODS

= Constructor that initializes head with NULL
= Public int size() — Returns # of elems in the List
= Public void add(int info) — Appends an elem to the end of the list

= Public void add(int index, int info) — Make a new node that will become the
$index element. If index is invalid do nothing

" Publc int remove(int index) — Removes an element at $index and returns its
value. If there is an invalid index, Integer.MIN_VALUE is to be returned

= Public void shiftLeft(int index) — shifts all elements $index to the left.You are
only allowed to change head, prev and next.

= Ex: [0, 1,2,4] will become [2,4, 0, |] with shiftLeft(2)
= Ex:[0, I] will become [I, 0] with shiftLeft(1])
= Shiftleft(0) does nothing

MODELING

MODELLING

Create a Grundflaeche.java class with the method stubs of

= umfang()
= flaeche()

= toString()

MODELLING

= Create the classes Kreis, Rechteck, NEck
® These all extend Grundflaeche

® These overwrite all functions of Grundflaeche

MODELLING

" Add a istQuadrat() method to all grundflaesche classes

= Try to solve this by adding code only to two classes

MODELLING

® Create a Class Prisma with the methods

= volume()
= oberflaesche()

= toString()

MODELLING

= Create a class Quadrat that extends Grundflaesche

" Also add a method zuQuadrat which returns a Quadrat that is identical (in
length) to the current object. If it is not a Quadrat, return null

MODELLING

" Add a method to Prisma called istWuerfel(), that checks if the current Object is
a cube

Plan it out on paper first

get Methods may help

Try to avoid repetition in methods and variables by putting things in the parent
class

Area for a regular n-Sided shape is (a is sidelength)

1|"I'-1=lf”l-2

You can use Math.pi and Math.tan Trtan(%)"

UL has provided a test class (not a JUNIT one however :S)

VISITOR

VISITOR

Element : . Visitor
339 vistor. |
Client —
) visitElementAfe)
acceptivisitor) . .
P visitElementBie)

visitor.
visitElementA (this),

ElementB ElementA Visitor

accept(visitor) acceptivisitor}- - vistElementA (e
operationB() operationAll visitElementB(e)

VISITOR CLASS

® Add an accept() class as appropriate in each class

= Implement a class Visitor that has a visit() Method for each Class

= public void visit(Class cName)

= |mplement a class FlaeschenVisitor that extends Visitor

= |t should visit each object and get the flaesche

