WEEK 3
YOU'RE STILL HERE?

TODAYS PLAN

Administrative

 Stuff- Structural Changes
- Submission
- Homework Correction
- Note to UTF8
- Syntax Trees
- Flow Charts
- MinMax
- Pascals Triangle

ADMINISTRATIVE

ADMINISTRATIVE - STRUCTURAL CHANGES

Time	Beginners	Experienced
15 Mins	Admin + Homework Discussion Time	
30 Mins	Task I: General non-programming skills	
30 Mins	Task 2: General non-programming skills	
15 Mins	General Explanation to Tasks 3 and 4 (Programming Tasks)	
15 Mins	Theory Explanation Task 3	Own Programming Time Questions can be asked during Programming Time
30 Mins	Programming Time Task 3	
15 Mins	Theory Explanation Task 4	
30 Mins	Programming Time Task 4	

ADMIN - SUBMISSIONS

ADMIN - SUBMISSIONS

- 3 Instances in Moodle has been disabled
- See your email
- Submit in the Main Instance

ADMIN - HOMEWORK CORRECTION

- Thursday Afternoon I shall begin correcting
- Model Solutions uploaded
- Most questions have been asked in the tutor group

ADMIN - LAST WEEK'S HOMEWORK

- Any Questions?

ADMIN - UTF8

ADMIN - UTF8

- Linux \rightarrow

To be absolutely sure use"file -bi <filename>"

- Mac \rightarrow

Probably the same as Linux

- Windows \rightarrow

Atom Text Editor

TUTOR TASKS

01
 Syntax
 Trees

02
Flow
Charts

03
MinMax

04
Pascals
Triangle

SYNTAXTREES

SYNTAXTREES

- A lot of effort, but easy exam points

SYNTAXTREES

- Grammar on Moodle

SYNTAX - TREES DEMO

- Sum Function
- Absolute Value Function

SYNTAXTREES - YOUR TURN

```
int prod, x, n;
x = read();
if (0 < x) {
    prod = 1;
    n = 0;
    while (prod <= x) {
        n = n + 1;
        prod = prod * (-n);
    }
    write(prod);
} else {
    write(n);
}
```


FLOW CHARTS

FLOW CHARTS - SYMBOLS

FLOW CHART

EXAMPLE

FLOW CHART - SITE

- www.draw.io
int prod, $x, n ;$
$\mathrm{x}=\operatorname{read}()$;
if ($0<x$) \{
prod $=1$;
n = 0;
while (prod <= x) \{

$$
\mathrm{n}=\mathrm{n}+1 ;
$$

$$
\text { prod }=\operatorname{prod} *(-\mathrm{n}) ;
$$

\}
write(prod);
\} else \{
write(n);
\}

FLOW CHART

CODE

MIN-MAX

MINMAX - ARRAYS

- Essentially an Array is a list of Objects of a certain type

MINMAX - DECLARING AN ARRAY

- int[] arr = new int[5] $\rightarrow\{0,0,0,0,0\}$
- int[] arr $=\{1,2,3,4,5\} \rightarrow\{1,2,3,4,5\}$

MINMAX - USEFULL ARRAY FUNCTIONS

Say int[] n = new int[arrlength];

- n.length ()\rightarrow returns arrlength

MINMAX - ARRAY DEMO

MINMAX - YOUR TASK

- Find the smallest and largest elements of an array

MINMAX - YOUR TASK

I. Ask user for array length
2. Ask user for all values
3. In one pass through the smallest \& largest numbers should be found
4. Output the largest and smallest numbers

PASCAL'S TRIANGLE

PASCALS TRIANGLE

PASCALS TRIANGLE

- Binomial Coefficient

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

$$
\begin{gathered}
\binom{0}{0} \\
\binom{1}{0} \quad\binom{1}{1} \\
\binom{2}{0} \quad\binom{2}{1} \quad\left(\begin{array}{l}
2 \\
2 \\
0
\end{array}\right) \\
\binom{4}{1} \quad\left(\begin{array}{l}
4 \\
0 \\
2
\end{array}\right) \quad\binom{3}{1} \\
\binom{5}{1} \quad\left(\begin{array}{l}
5 \\
2 \\
3
\end{array}\right) \quad\binom{4}{4}
\end{gathered}
$$

PASCALS TRIANGLE

- Binomial Coefficient

$$
n \geq k \geq 0
$$

$$
\begin{aligned}
& \binom{0}{0} \\
& \binom{1}{0}\binom{1}{1} \\
& \binom{2}{0} \quad\binom{2}{1} \quad\binom{2}{2} \\
& \binom{3}{0} \quad\binom{3}{1} \quad\binom{3}{2} \quad\binom{3}{3} \\
& \left.\binom{4}{0} \quad\binom{4}{1} \quad\binom{4}{2} \quad\binom{4}{3} \quad \begin{array}{l}
4 \\
4
\end{array}\right) \\
& \begin{array}{llll}
\binom{5}{0}
\end{array}\binom{5}{1} \quad\binom{5}{2} \quad\binom{5}{3} \quad\binom{5}{4} \quad\binom{5}{5}
\end{aligned}
$$

How many of you still remember how to calculate factorials?
What is 5 !

PASCALS TRIANGLE

$$
n \geq k \geq 0
$$

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

$$
\begin{gathered}
\binom{0}{0} \\
\binom{1}{0}\binom{1}{1} \\
\binom{2}{0} \quad\binom{2}{1} \quad\binom{2}{2} \\
\binom{3}{0}\binom{3}{1}\binom{3}{2} \quad\binom{3}{3} \\
\binom{4}{0}\binom{4}{1}\binom{4}{2}\binom{4}{3}\binom{4}{4}
\end{gathered}
$$

How many of you still remember how to calculate factorials?
$5!=5 * 4 * 3 * 2 *$ I $=120$

PASCALS TRIANGLE

$$
n \geq k \geq 0
$$

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

$$
\begin{gathered}
\binom{0}{0} \\
\binom{1}{0}\binom{1}{1} \\
\binom{2}{0} \quad\binom{2}{1} \quad\binom{2}{2} \\
\binom{3}{0}\binom{3}{1}\binom{3}{2} \quad\binom{3}{3} \\
\binom{4}{0}\binom{4}{1}\binom{4}{2}\binom{4}{3}\binom{4}{4}
\end{gathered}
$$

How many of you still remember how to calculate factorials?
$5!=5 * 4 * 3 * 2 *$ I $=120$

PASCALS TRIANGLE

Pascalsches Dreieck mit 5 Zeilen:
I. Get a row value for n from the user

2. Generate pascals triangle rows from 0 to n - I

Each row shall be put into an array
3. Output the array in a sensible fashion

PASCALS TRIANGLE

- Prompt the user a new input if the number is smaller than I

PASCALS TRIANGLE - TIPS

- First and Last element of an array is always I

