## WEEK 3

YOU'RE STILL HERE?

## **TODAYS PLAN**

# Administrative Stuff

- Structural Changes
- Submission
- Homework Correction
- Note to UTF8

## Tutor Tasks

- Syntax Trees
- Flow Charts
- MinMax
- Pascals Triangle

## **ADMINISTRATIVE**

## ADMINISTRATIVE – STRUCTURAL CHANGES

| Time    | Beginners                                                | Experienced                                    |  |  |  |
|---------|----------------------------------------------------------|------------------------------------------------|--|--|--|
| 15 Mins | Admin + Homework Discussion Time                         |                                                |  |  |  |
| 30 Mins | Task 1: General non-programming skills                   |                                                |  |  |  |
| 30 Mins | Task 2: General non-programming skills                   |                                                |  |  |  |
| 15 Mins | General Explanation to Tasks 3 and 4 (Programming Tasks) |                                                |  |  |  |
| 15 Mins | Theory Explanation Task 3                                |                                                |  |  |  |
| 30 Mins | Programming Time Task 3                                  | Own Programming Time                           |  |  |  |
| 15 Mins | Theory Explanation Task 4                                | Questions can be asked during Programming Time |  |  |  |
| 30 Mins | Programming Time Task 4                                  |                                                |  |  |  |

## ADMIN – SUBMISSIONS

## ADMIN – SUBMISSIONS

- 3 Instances in Moodle has been disabled
  - See your email
- Submit in the Main Instance

## **ADMIN – HOMEWORK CORRECTION**

- Thursday Afternoon I shall begin correcting
  - Model Solutions uploaded
  - Most questions have been asked in the tutor group

## ADMIN – LAST WEEK'S HOMEWORK

Any Questions?

## ADMIN – UTF8

## **ADMIN – UTF8**

- Linux → To be absolutely sure use "file -bi <filename>"
- Mac → Probably the same as Linux
- Windows → Atom Text Editor

## **TUTOR TASKS**

01

Syntax Trees 02

Flow Charts 03

MinMax

04

Pascals Triangle

# **SYNTAX TREES**

## SYNTAX TREES

A lot of effort, but easy exam points

## **SYNTAX TREES**

Grammar on Moodle

## SYNTAX – TREES DEMO

- Sum Function
- Absolute Value Function

## SYNTAX TREES – YOUR TURN

```
int prod, x, n;
x = read();
if (0 < x) {
 prod = 1;
 n = 0;
  while (prod <= x) {
   n = n + 1;
    prod = prod * (-n);
  write(prod);
} else {
  write(n);
```

# FLOW CHARTS

## FLOW CHARTS – SYMBOLS











# FLOW CHART

## **EXAMPLE**

## FLOW CHART – SITE

www.draw.io

```
int prod, x, n;
x = read();
if (0 < x) {
  prod = 1;
  \mathbf{n} = 0;
  while (prod <= x) {</pre>
    n = n + 1;
    prod = prod * (-n);
  write(prod);
} else {
  write(n);
```

## FLOW CHART

CODE

# MIN-MAX

## MINMAX – ARRAYS

Essentially an Array is a list of Objects of a certain type

| val[0] | val[1] | val[2] | val[3] | val[4] | val[5] | val[6] |
|--------|--------|--------|--------|--------|--------|--------|
| 11     | 22     | 33     | 44     | 55     | 66     | 77     |

## MINMAX – DECLARING AN ARRAY

- int[] arr = new int[5]  $\rightarrow$  {0, 0, 0, 0, 0}
- int[] arr =  $\{1, 2, 3, 4, 5\} \rightarrow \{1, 2, 3, 4, 5\}$

## MINMAX – USEFULL ARRAY FUNCTIONS

Say int[] n = new int[arrlength];

■ n.length() → returns arrlength

## MINMAX – ARRAY DEMO

## MINMAX – YOUR TASK

Find the smallest and largest elements of an array

## MINMAX – YOUR TASK

- I. Ask user for array length
- 2. Ask user for all values
- 3. In one pass through the smallest & largest numbers should be found
- 4. Output the largest and smallest numbers



Binomial Coefficient

$$egin{pmatrix} n \ k \end{pmatrix} = rac{n!}{k!(n-k)!}$$

$$\begin{pmatrix}
0 \\
0
\end{pmatrix}$$

$$\begin{pmatrix}
1 \\
0
\end{pmatrix}
\begin{pmatrix}
1 \\
1
\end{pmatrix}$$

$$\begin{pmatrix}
2 \\
0
\end{pmatrix}
\begin{pmatrix}
2 \\
1
\end{pmatrix}
\begin{pmatrix}
2 \\
2
\end{pmatrix}$$

$$\begin{pmatrix}
3 \\
0
\end{pmatrix}
\begin{pmatrix}
3 \\
1
\end{pmatrix}
\begin{pmatrix}
3 \\
2
\end{pmatrix}
\begin{pmatrix}
3 \\
3
\end{pmatrix}$$

$$\begin{pmatrix}
4 \\
0
\end{pmatrix}
\begin{pmatrix}
4 \\
1
\end{pmatrix}
\begin{pmatrix}
4 \\
2
\end{pmatrix}
\begin{pmatrix}
4 \\
3
\end{pmatrix}
\begin{pmatrix}
4 \\
4
\end{pmatrix}$$

$$\begin{pmatrix}
5 \\
0
\end{pmatrix}
\begin{pmatrix}
5 \\
1
\end{pmatrix}
\begin{pmatrix}
5 \\
2
\end{pmatrix}
\begin{pmatrix}
5 \\
3
\end{pmatrix}
\begin{pmatrix}
5 \\
4
\end{pmatrix}
\begin{pmatrix}
5 \\
5
\end{pmatrix}$$

■ Binomial Coefficient  $n \ge k \ge 0$ 

$$inom{n!}{k} = rac{n!}{k!(n-k)!}$$

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \\ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \begin{pmatrix} 2 \\ 0 \end{pmatrix} \\ \begin{pmatrix} 2 \\ 1 \end{pmatrix} \\ \begin{pmatrix} 2 \\ 2 \end{pmatrix} \\ \begin{pmatrix} 3 \\ 0 \end{pmatrix} \\ \begin{pmatrix} 3 \\ 1 \end{pmatrix} \\ \begin{pmatrix} 3 \\ 2 \end{pmatrix} \\ \begin{pmatrix} 3 \\ 2 \end{pmatrix} \\ \begin{pmatrix} 3 \\ 3 \end{pmatrix} \\ \begin{pmatrix} 4 \\ 0 \end{pmatrix} \\ \begin{pmatrix} 4 \\ 1 \end{pmatrix} \\ \begin{pmatrix} 4 \\ 2 \end{pmatrix} \\ \begin{pmatrix} 4 \\ 2 \end{pmatrix} \\ \begin{pmatrix} 5 \\ 0 \end{pmatrix} \\ \begin{pmatrix} 5 \\ 1 \end{pmatrix} \\ \begin{pmatrix} 5 \\ 2 \end{pmatrix} \\ \begin{pmatrix} 5 \\ 2 \end{pmatrix} \\ \begin{pmatrix} 5 \\ 2 \end{pmatrix} \\ \begin{pmatrix} 5 \\ 3 \end{pmatrix} \\ \begin{pmatrix} 5 \\ 4 \end{pmatrix} \\ \begin{pmatrix} 5 \\ 5 \end{pmatrix} \\ \begin{pmatrix} 5$$

How many of you still remember how to calculate factorials? What is 5!

Binomial Coefficient  $n \ge k \ge 0$ 

$$\binom{n}{k} = rac{n!}{k!(n-k)!}$$

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \\ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \begin{pmatrix} 2 \\ 0 \end{pmatrix} \\ \begin{pmatrix} 2 \\ 1 \end{pmatrix} \\ \begin{pmatrix} 2 \\ 2 \end{pmatrix} \\ \begin{pmatrix} 3 \\ 0 \end{pmatrix} \\ \begin{pmatrix} 3 \\ 1 \end{pmatrix} \\ \begin{pmatrix} 3 \\ 2 \end{pmatrix} \\ \begin{pmatrix} 3 \\ 2 \end{pmatrix} \\ \begin{pmatrix} 3 \\ 3 \end{pmatrix} \\ \begin{pmatrix} 4 \\ 0 \end{pmatrix} \\ \begin{pmatrix} 4 \\ 1 \end{pmatrix} \\ \begin{pmatrix} 4 \\ 2 \end{pmatrix} \\ \begin{pmatrix} 4 \\ 2 \end{pmatrix} \\ \begin{pmatrix} 4 \\ 3 \end{pmatrix} \\ \begin{pmatrix} 4 \\ 4 \end{pmatrix} \\ \begin{pmatrix} 5 \\ 0 \end{pmatrix} \\ \begin{pmatrix} 5 \\ 1 \end{pmatrix} \\ \begin{pmatrix} 5 \\ 2 \end{pmatrix} \\ \begin{pmatrix} 5 \\ 2 \end{pmatrix} \\ \begin{pmatrix} 5 \\ 2 \end{pmatrix} \\ \begin{pmatrix} 5 \\ 3 \end{pmatrix} \\ \begin{pmatrix} 5 \\ 4 \end{pmatrix} \\ \begin{pmatrix} 5 \\ 5 \end{pmatrix} \\ \begin{pmatrix} 5$$

How many of you still remember how to calculate factorials?

Binomial Coefficient  $n \ge k \ge 0$ 

$$\binom{n}{k} = rac{n!}{k!(n-k)!}$$

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \\ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \begin{pmatrix} 2 \\ 0 \end{pmatrix} \\ \begin{pmatrix} 2 \\ 1 \end{pmatrix} \\ \begin{pmatrix} 2 \\ 2 \end{pmatrix} \\ \begin{pmatrix} 3 \\ 0 \end{pmatrix} \\ \begin{pmatrix} 3 \\ 1 \end{pmatrix} \\ \begin{pmatrix} 3 \\ 2 \end{pmatrix} \\ \begin{pmatrix} 3 \\ 2 \end{pmatrix} \\ \begin{pmatrix} 3 \\ 3 \end{pmatrix} \\ \begin{pmatrix} 4 \\ 0 \end{pmatrix} \\ \begin{pmatrix} 4 \\ 1 \end{pmatrix} \\ \begin{pmatrix} 4 \\ 2 \end{pmatrix} \\ \begin{pmatrix} 4 \\ 2 \end{pmatrix} \\ \begin{pmatrix} 4 \\ 3 \end{pmatrix} \\ \begin{pmatrix} 4 \\ 4 \end{pmatrix} \\ \begin{pmatrix} 5 \\ 0 \end{pmatrix} \\ \begin{pmatrix} 5 \\ 1 \end{pmatrix} \\ \begin{pmatrix} 5 \\ 2 \end{pmatrix} \\ \begin{pmatrix} 5 \\ 2 \end{pmatrix} \\ \begin{pmatrix} 5 \\ 2 \end{pmatrix} \\ \begin{pmatrix} 5 \\ 3 \end{pmatrix} \\ \begin{pmatrix} 5 \\ 4 \end{pmatrix} \\ \begin{pmatrix} 5 \\ 5 \end{pmatrix} \\ \begin{pmatrix} 5$$

How many of you still remember how to calculate factorials?

Pascalsches Dreieck mit 5 Zeilen:

- 1. Get a row value for n from the user
- 2. Generate pascals triangle rows from 0 to n-1 Each row shall be put into an array
- 3. Output the array in a sensible fashion

Prompt the user a new input if the number is smaller than I

## PASCALS TRIANGLE – TIPS

First and Last element of an array is always I