WEEK 4

TABLE OF CONTENTS

- Homework discussion
- Useful Functions
- Tutor Tasks
 - Number Base
 - Caesar Encryption
 - Vowel Replacing
 - Inverse Capitalization

HOMEWORK

HOMEWORK

- Should be corrected faster next time
 - Please double check your scoring \rightarrow late night math's doesn't always work that well

HOMEWORK

Any Questions to Week 3?

USEFUL METHODS AND CLASSES FOR THIS WEEK

CHARS

- Char is a digit between 0 and 127
- Each char is mapped to a letter
- A string is comprised of multiple chars
- 'A' == 65
 - char c = 65 is equivalent to c = 'A'

Code	Char	Code	Char	Code	Char	Code	Char	Code	Char	Code	Char
32	[space]	48	0	64	@	80	Р	96	`	112	р
33	!	49	1	65	A	81	Q	97	a	113	q
34		50	2	66	В	82	R	98	b	114	r
35	#	51	3	67	С	83	S	99	с	115	s
36	\$	52	4	68	D	84	Т	100	d	116	t
37	%	53	5	69	E	85	U	101	е	117	u
38	&	54	6	70	F	86	V	102	f	118	v
39	· ·	55	7	71	G	87	W	103	g	119	w
40	(56	8	72	н	88	Х	104	h	120	х
41)	57	9	73	I	89	Y	105	i	121	У
42	*	58	:	74	J	90	Z	106	j	122	z
43	+	59	;	75	К	91	[107	k	123	{
44	,	60	<	76	L	92	١	108	1	124	Í
45	-	61	=	77	М	93]	109	m	125	}
46		62	>	78	N	94	^	110	n	126	~
47	/	63	?	79	0	95	_	111	0	127	[backspace]

USEFUL STRING METHODS

String s = "Demo";									
s.charAt(2);	// 'm'	First Letter is Index 0							
s.length();	// 4	Starts at 0 being an empty string							

BINARY OPERATORS

- These are the operators for Java
 - Differ in DS and ERA

Funktion			Opeator	Beispiel
bitweises	und		&	$1001_2 \& 1010_2 = 1000_2$
bitweises	oder			$1001_2 \mid 1010_2 = 1011_2$
bitweises	not		~	$\sim 1010_2 = 0101_2$
bitweises	xor	(⊕)	^	$1001_2 \ \ 1010_2 = 0011_2$

BINARY OPERATORS – CARLOS DS TRAINER

Semantik aussagenlogischer Formeln als Tabellen Für den unären Junktor ¬ gilt:

Für die binären Junktoren \land , \lor , \rightarrow , \leftrightarrow , \otimes , $\overline{\land}$ und $\overline{\lor}$ gilt:

		F & G	F G			F^G		
F	G	$F \wedge G$	$F \lor G$	$F \rightarrow G$	$F \leftrightarrow G$	$F \otimes G$	F⊼G	F⊽G
0	0	0	0	1	1	0	1	1
0	1	0	1	1	0	1	1	0
1	0	0	1	0	0	1	1	0
1	1	1	1	1	1	0	0	0

BINARY OPERATORS – PRACTICE

- 0010 & 1111
- 0000 | 1100
- ► ~|0|0
- 0011 ^ 0110

BINARY OPERATORS – PRACTICE EXAMPLES

- 0010 & 1111 = 0010
- 0000 | 1100 = 1100
- ~|0|0 = 0|0|
- 0011 ^ 0110 = 0101

TUTOR TASKS

- Binary Base 2
- Octal
 Base 8
- Decimal Base 10
- Hexadecimal
 Base 16

What numbers are valid in:

Binary

What numbers are valid in:

Binary (0 and 1)

What numbers are valid in:

Octal

What numbers are valid in:

Octal (0-7)

What numbers are valid in:

Hexadecimal

What numbers are valid in:

Hexadecimal (0 - F)

Draw a multiplication/addition table

Binary Multiplication Table

How would a binary addition table look like?

Draw a Base 5 Addition and Multiplication Table

- Draw a Base 5 Addition and Multiplication Table
 - **33 + 14 + 13 in Base 5**
 - 22*3 in Base 5

NUMBER BASE – TASKS

- 323478, + 111202337,
- I010101100₂ * I1000111₂
- I 20022₃ * 22210₃

NUMBER BASE – TASKS

- 323478, + 111202337,
- 1010101100₂ * 11000111₂
- 120022₃ * 22210₃
- c01dc0f

Base 16 Multiplication

		0	1	2	3	4	5	6	7	8	9	А	В	C	D	E	F
$fe_{16} * deadaffe_{16}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	1	2	3	4	5	6	7	8	9	Α	В	C	D	E	\mathbf{F}
	2	0	2	4	6	8	Α	C	Е	10	12	14	16	18	1A	1C	$1\mathrm{E}$
	3	0	3	6	9	С	F	12	15	18	$1\mathrm{B}$	$1\mathrm{E}$	21	24	27	2A	2D
	4	0	4	8	С	10	14	18	1C	20	24	28	2C	30	34	38	3C
	5	0	5	Α	F	14	19	1E	23	28	2D	32	37	3C	41	46	4B
	6	0	6	С	12	18	$1\mathrm{E}$	24	2A	30	36	3C	42	48	$4\mathrm{E}$	54	5A
	7	0	7	Е	15	1C	23	2A	31	38	3F	46	4D	54	5B	62	69
	8	0	8	10	18	20	28	30	38	40	48	50	58	60	68	70	78
	9	0	9	12	$1\mathrm{B}$	24	2D	36	3F	48	51	5A	63	6C	75	7 E	87
	Α	0	Α	14	$1\mathrm{E}$	28	32	3C	46	50	5A	64	6E	78	82	8C	96
	В	0	В	16	21	2C	37	42	4D	58	63	6E	79	84	8F	9A	A5
	C	0	C	18	24	30	3C	48	54	60	6C	78	84	90	9C	A8	B4
	D	0	D	1A	27	34	41	4E	5B	68	75	82	8F	9C	A9	B6	C3
	Е	0	Е	1C	2A	38	46	54	62	70	$7\mathrm{E}$	8C	9A	A8	B6	C4	D2
	F	0	F	$1\mathrm{E}$	2D	3C	4B	5A	69	78	87	96	A5	B4	C3	D2	E1

NUMBER BASE CONVERSION - DEMO

- I 00 in Binary
- II01 IIII 0b in Hexadecimal
- II01 1010 IIIIb in Decimal

NUMBER BASE CONVERSION - TUTOR TASKS

- I010101100₂ in Base10
- I010101100₂ in Base16
- 354347357₁₀ in Base 2

NUMBER BASE – CONVERSION DEMO FOR HOMEWORK

- 2143 in base 5 to base 7
- 21432 in base 5 to base 9
- Double check your solutions using Wolfram Alpha "21432_5 in base 9"

CAESAR ENCRYPTION

CAESAR ENCRYPTION

- Only encrypts Letters, not symbols
- "Hello Students! .aAbBcC? >wWxXyYzZ<" becomes "Khoor Vwxghqwv! .dDeEfF? >zZaAbBcC<" with a shift of 3</p>

CAESAR ENCRYPTION

- Input a String to be encrypted
- Input a cipher as an int
 - Can be negative or greater than 26
- Encrypt the string
- Case should remain the same
- <u>Output</u> the String via write()

VOWEL REPLACEMENT

VOWEL REPLACEMENT

- Write a program that replaces all vowels (a, e, i, o u) with a specified letter
 - A, ö, ü are not considered vowels
- Must keep capitalization
- Only uses length and charAt library functions

EX: "Exenmeister" to "Oxonmoostor" if O/o is inputted

VOWEL REPLACEMENT – APPROACH

- Use code interface provided
- Input a letter to replace all vowels with
- Output the new String

INVERSE CAPITALIZATION

INVERSE CAPITALIZATION

- Read String
- Swap Upper and Lower Case
- Outputs via Write

Only uses length and charAt library functions

EX: "Hello Students!" to "hELLO sTUDENTS!"

INVERSE CAPITALIZATION

- Challenge for the experienced programmers:
 - Convert uppercase to lowercase and vice versa via binary operators
- Tip: Look at the ASCII table in Binary and compare a letters uppercase and lowercase number