WEEK 4

TABLE OF CONTENTS

- Homework discussion
- Useful Functions
- Tutor Tasks
- Number Base
- Caesar Encryption
- Vowel Replacing
- Inverse Capitalization

HOMEWORK

HOMEWORK

- Should be corrected faster next time
- Please double check your scoring \rightarrow late night math's doesn't always work that well

HOMEWORK

- Any Questions to Week 3?

USEFUL METHODS AND CLASSES FOR THIS WEEK

CHARS

- Char is a digit between 0 and I27
- Each char is mapped to a letter
- A string is comprised of multiple chars
- ' A ' == 65
- char $\mathrm{c}=65$ is equivalent to $\mathrm{c}=$ ' A '

Code	Char										
32	[space]	48	0	64	@	80	P	96	-	112	p
33	!	49	1	65	A	81	Q	97	a	113	q
34	"	50	2	66	B	82	R	98	b	114	
35	\#	51	3	67	C	83	S	99	c	115	s
36	\$	52	4	68	D	84	T	100	d	116	t
37	\%	53	5	69	E	85	U	101	e	117	u
38	\&	54	6	70	F	86	V	102	f	118	v
39	,	55	7	71	G	87	W	103	g	119	w
40	(56	8	72	H	88	X	104	h	120	x
41)	57	9	73	I	89	Y	105	i	121	y
42	+	58	:	74	J	90	Z	106	j	122	z
43	+	59	;	75	K	91	[107	k	123	\{
44	,	60	$<$	76	L	92	1	108	I	124	1
45	$-$	61	$=$	77	M	93]	109	m	125	\}
46	.	62	>	78	N	94	\wedge	110	n	126	
47	1	63	?	79	0	95		111	0	127	[backspace]

USEFUL STRING METHODS

String s = "Demo";
s.charAt(2); // 'm' First Letter is Index 0
s.length(); // 4 Starts at 0 being an empty string

BINARY OPERATORS

- These are the operators for Java
- Differ in DS and ERA

Funktion	Opeator	Beispiel
bitweises und	$\&$	$1001_{2} \& 1010_{2}=1000_{2}$
bitweises oder	\mid	$1001_{2} \mid 1010_{2}=1011_{2}$
bitweises not	\sim	$\sim 1010_{2}=0101_{2}$
bitweises xor (\oplus)	\wedge	$1001_{2} \wedge 1010_{2}=0011_{2}$

BINARY OPERATORS - CARLOS DS TRAINER

Semantik aussagenlogischer Formeln als Tabellen

Für den unären Junktor \neg gilt:

F	$\neg F$
0	$\sim F$
1	0

Für die binären Junktoren $\wedge, \vee, \rightarrow, \leftrightarrow, \otimes, \bar{\Lambda}$ und $\bar{\vee}$ gilt:

F	G	$F \wedge G$	$F \vee G$	$F \rightarrow G$	$F \leftrightarrow G$	$F \otimes G$	$F \bar{\wedge} G$	$F \bar{\vee} G$
0	0	0	0	1	1	0	1	1
0	1	0	1	1	0	1	1	0
1	0	0	1	0	0	1	1	0
1	1	1	1	1	1	0	0	0

BINARY OPERATORS - PRACTICE

- $0010 \& 1111$
- 0000|1100
- ~1010
- 0011 ^ 0110

BINARY OPERATORS - PRACTICE EXAMPLES

- $0010 \&|I| I=0010$
- $0000 \mid 1100=1100$
- ~ $1010=0101$
- 0011^01IO = 0101

TUTOR TASKS

NUMBER BASE

- Binary
- Octal
- Decimal
- Hexadecimal

Base 2
Base 8
Base 10
Base 16

NUMBER BASE

What numbers are valid in:

- Binary

NUMBER BASE

What numbers are valid in:

- Binary (0 and I)

NUMBER BASE

What numbers are valid in:

- Octal

NUMBER BASE

What numbers are valid in:

- Octal (0-7)

NUMBER BASE

What numbers are valid in:

- Hexadecimal

NUMBER BASE

What numbers are valid in:

- Hexadecimal (0-F)

NUMBER BASE - APPROACH

- Draw a multiplication/addition table

Binary Multiplication Table

NUMBER BASE - APPROACH

- How would a binary addition table look like?

NUMBER BASE - APPROACH

- Draw a Base 5 Addition and Multiplication Table

NUMBER BASE - APPROACH

- Draw a Base 5 Addition and Multiplication Table
- $33+14+13$ in Base 5
- $22 * 3$ in Base 5

NUMBER BASE - TASKS

- $1010101100_{2} * 110001 \mathrm{II}_{2}$
- $120022_{3} * 22210_{3}$

NUMBER BASE - TASKS

- 323478 + 111202337,
- $1010101100_{2} * 1100011 I_{2}$
- $120022_{3} * 222 \mathrm{IO}_{3}$

Base 16 Multiplication

- cOldcOffe ${ }_{16} *$ deadaffe $_{16}$

	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
2	0	2	4	6	8	A	C	E	10	12	14	16	18	1 A	1 C	1 E
3	0	3	6	9	C	F	12	15	18	1 B	1 E	21	24	27	2 A	2 D
4	0	4	8	C	10	14	18	1 C	20	24	28	2 C	30	34	38	3 C
5	0	5	A	F	14	19	1 E	23	28	2 D	32	37	3 C	41	46	4 B
6	0	6	C	12	18	1 E	24	2 A	30	36	3 C	42	48	4 E	54	5 A
7	0	7	E	15	1 C	23	2 A	31	38	3 F	46	4 D	54	5 B	62	69
8	0	8	10	18	20	28	30	38	40	48	50	58	60	68	70	78
9	0	9	12	1 B	24	2 D	36	3 F	48	51	5 A	63	6 C	75	7 E	87
A	0	A	14	1 E	28	32	3 C	46	50	5 A	64	6 E	78	82	8 C	96
B	0	B	16	21	2 C	37	42	4 D	58	63	6 E	79	84	8 F	9 A	A 5
C	0	C	18	24	30	3 C	48	54	60	6 C	78	84	90	9 C	A 8	B 4
D	0	D	1 A	27	34	41	4 E	5 B	68	75	82	8 F	9 C	A 9	B 6	C 3
E	0	E	1 C	2 A	38	46	54	62	70	7 E	8 C	9 A	A 8	B 6	C 4	D 2
F	0	F	1 E	2 D	3 C	4 B	5 A	69	78	87	96	A 5	B 4	C 3	D 2	E 1

NUMBER BASE CONVERSION - DEMO

- 100 in Binary
- IIOI IIII Ob in Hexadecimal
- IIOI IOIO IIIIb in Decimal

NUMBER BASE CONVERSION - TUTOR TASKS

- $1010101 \mathrm{IOO}_{2}$ in Basel0
- 1010101100_{2} in Basel6
- 354347357_{10} in Base 2

NUMBER BASE - CONVERSION DEMO FOR HOMEWORK

- 2143 in base 5 to base 7
- 21432 in base 5 to base 9
- Double check your solutions using Wolfram Alpha "2I432_5 in base 9"

CAESAR ENCRYPTION

CAESAR ENCRYPTION

- Only encrypts Letters, not symbols
- "Hello Students! .aAbBcC? >wWxXyYzZ<" becomes "KhoorVwxghqwv! .dDeEff! >zZaAbBcC<" with a shift of 3

CAESAR ENCRYPTION

- Input a String to be encrypted
- Input a cipher as an int
- Can be negative or greater than 26
- Encrypt the string
- Case should remain the same
- Output the String via write()

VOWEL REPLACEMENT

VOWEL REPLACEMENT

- Write a program that replaces all vowels (a, e, i, ou) with a specified letter
- Ä, ö, ü are not considered vowels
- Must keep capitalization
- Only uses length and charAt library functions

EX: "Exenmeister" to "Oxonmoostor" if O/o is inputted

VOWEL REPLACEMENT - APPROACH

- Use code interface provided
- Input a letter to replace all vowels with
- Output the new String

INVERSE CAPITALIZATION

INVERSE CAPITALIZATION

- Read String
- Swap Upper and Lower Case
- Outputs via Write

Only uses length and charAt library functions

EX: "Hello Students!" to "hELLO sTUDENTS!"

INVERSE CAPITALIZATION

- Challenge for the experienced programmers:
- Convert uppercase to lowercase and vice versa via binary operators
- Tip: Look at the ASCII table in Binary and compare a letters uppercase and lowercase number

