
WEEK 7 
ASSEMBLY OF TEARS



TODAYS PLAN

 Tutor Task 

 Factorial

 Toolbox

 Quicksort

 Assembly



TUTOR TASKS



FACTORIAL



FACTORIAL – HEAD VS TAIL RECURSION



FACTORIAL – HEAD VS TAIL RECURSION

 Tail Recursion: Recursion call is at the end of the method

 Head Recursion: Recursion call is at the start of the method



FACTORIAL – HEAD VS TAIL RECURSION

 Tail Recursion: Recursion call is at the end of the method

 Head Recursion: Recursion call is at the start of the method



FACTORIAL – HEAD VS TAIL RECURSION

 How to Remember:

Tail Recursion: Nothing comes after the tail



FACTORIAL – HEAD VS TAIL RECURSION

 More Reading: https://www.cs.cmu.edu/~adamchik/15-

121/lectures/Recursions/recursions.html

https://www.cs.cmu.edu/~adamchik/15-121/lectures/Recursions/recursions.html


FACTORIAL

 Implement factorial using

 Iterative

 Head Recursion

 Tail Recursion

 Advisable to use a help method:

 private static int facTailRecHelper(int n, int k)



TOOLBOX 



TOOLBOX 

 No loops allowed

 No while

 No for

 Use Recursion



TOOLBOX – ISEVEN

 Boolean isEven(int n)

 True if Even

 False if Odd



TOOLBOX – EVEN SUM 

Public static int evenSum(int n)

 Sum all even numbers from n to 0 (also negatives)

 F(8):= 8+6+4+2(+0) = 20

 F(-8):= -8+-6+-4+-2(+-0) = -20

 No *, /, % allowed

 Do use isEven



TOOLBOX – MULTIPLICATION 

Public static int multiplication(int x, int y)

 Implement multiplication via addition recursively



TOOLBOX – ARRAY REVERSION 

Public static void reverse(int[] m)

 Reverse an array recursively

 Without the creation of temporary arrays



TOOLBOX – ARRAY REVERSION 

Public static int numberofOddIntegers(int[] m)

 Count recursively how many integers are odd



TOOLBOX – ARRAY REVERSION 

Public static int filterOdd(int[] m)

 Create a new array with only the odd numbers

 In order of the original array



QUICKSORT



QUICKSORT – DEMO

 Doing Quicksort with [5 1 3 9 1 5 3] 



QUICKSORT – IMPLEMENTATION 

 Void swap(int[] numbers, int i, int j)

 Int partition (int[] numbers, int left, int right)

 Numbers[right] = pivot element

 Array between left and right inclusive of pivot should be swapped according to 
quicksort

 Implements Quicksort

 Write a suitable main method that generates a random array

 Math.random()

 ran Random = new Random();

 From java.util.Random



ASSEMBLY



ASSEMBLY

 10 Minutes Reading time for the homework

 Most details on assembly are written there



ASSEMBLY – LINE BY LINE

 In gets input via a method like Read() and is placed 

in the stack

 A 16 Bit Address of ggt is loaded onto the stack

 Call the function with the two parameters (the 

order of which is the stack order)

 Output value at top of stack

 End Program



ASSEMBLY – LINE BY LINE

 Function declaration

 Reserves space for 1 variable (1x 16 bits)



ASSEMBLY – LINE BY LINE

 Copy variable 1 into the stack

 Copy variable 2 into the stack

 If var1<var2 Jump to Next Step

 Else 

 Copy Var2 into the stack

 Copy Var1 into the stack

 Save Var2 to Var1’s location

 Save Var1 to Var2’s location



ASSEMBLY – LINE BY LINE

 Loop: Begins here

 Setup for modulo operation

 B = b%a

 Setup for Jump Not Equal

 If Not Equal, jump back to line 20

 Copy the result into the stack


