
Adaptive Realtime Terrain Triangulation

Andreas Paul

�

, Klaus Dobler

y

Technische Universit�at M�unchen

Abstract

A system for realtime terrain triangulation is presented which allows

fully user controllable and smooth level of detail transitions. To accomplish

this as well as to o�er the possibility of data compression, the terrain

elevation data is hierarchically interpolated. The interpolation error, the

so called hierarchical surplus, is used as a criterion to detect redundant

data and serves as a way to control the error of the terrain approximation.

1 Introduction

The system is designed to be used by a
ight guidance system applying computer

generated synthetic vision for improving poor visibility guidance capabilities of

aircraft. The basic idea of this guidance system is to o�er a 3{dimensional com-

puter generated pictorial representation of the terrain to the pilot, when the

natural range of sight is reduced at night or due to bad weather conditions like

fog or rain. (For further information see references [1], [2] and [3].)

In order to generate this synthetic vision of the surrounding terrain the �rst

step is to determine the position and orientation of the aircraft using an inte-

grated precision navigation system which couples data of a di�erential satellite

navigation system (DGPS) and an inertial navigation system (INS) ([4]). Using

this information in connection with a terrain database (DTED/DFAD) it is pos-

sible to generate the current out{the{window scene and present it to the pilot

via a suitable display (Head Down, Head Up or Head Mounted Display).

The terrain databases available to us are DTED (Digital Terrain Elevation

Data) and DFAD (Digital Feature Analysis Data). The part of DTED database

�

Dipl.{Inform. Andreas Paul, Department for Engineering Applications in Computer Science

and Numerical Programming

y

Dipl.{Ing. Klaus Dobler, Institute of Flight Mechanics and Flight Control

currently used by our system consists of elevation data given in form of a regular

grid with a mesh resolution of approximately 60m � 90m. Since we use a grid of

1025�1025 grid points the area covered is approximately 61.5km � 92.3km. The

most detailed elevation data in DTED is given at a resolution of approximately

20m�30m. The DFAD database contains information about areal, linear and

point features. Areal features are given as polygons marking areas of certain

surface qualities like water (=lakes), trees (=woods) or buildings (=towns). This

kind of features is used to create a texture map that is drawn on the surface,

thus coloring the elevation data from the DTED database. Linear features given

as linestrips indicate objects like streets, rivers or railroad tracks. Finally point

features mark the position of outstanding buildings such as churches, towers,

power lines or bridges. The latter two kinds of feature are currently drawn in

a separate pass from the terrain, therefore they do not directly relate to the

problem of terrain triangulation and will not be further mentioned.

Given the intended use of the system as a realtime
ight guidance aid cer-

tain design goals become obvious. First, since the system has to operate under

realtime conditions a framerate of not less than 25 frames per second has to be

achieved. The actual goal was set to be 30 frames per second. Next, the rendered

terrain should be as close to reality as possible, in order to not alienate the pilot

and to improve both his situational awareness and his guidance capabilities. The

range of sight is set to be at least 25 km. To accomplish this at a framerate of 30

Hz, less important features of the landscape (=more distant features) have to be

rendered at a lower level of detail than features very close to the aircraft. This

level of detail has to be comfortably controllable, for example by setting an error

margin " (given in meters of elevation) for features at various distances from the

observer. Finally the system should include the possibility of compressing data

as well as working directly with the compressed data in order to reduce disk space

and memory requirements.

2 Procedure

To achieve these goals, especially data compression and the comfortably control-

lable level of detail, we decided to use a hierarchical interpolation approach for

the terrain triangulation that was originally evaluated in [5] and is closely related

to [6]. Other works dealing with hierarchical techniques for datacompression are

Level 4Level 0 Level 1 Level 2 Level 3

Figure 1: Hierarchical level of a 5� 5 grid

[7], [8] or [9]. Unlike other methods for terrain triangulation as presentend e.g.

in [10], our system is more suitable for realtime triangulation and comfortably

controllable level of detail.

2.1 Hierarchical Interpolation

For a hierarchical interpolation of the data the regular grid of the DTED database

is split into rectangular areas of (2

n

+1)� (2

n

+1) grid points. The next step is to

implicitly subdivide those (2

n

+1)� (2

n

+1) grids into hierarchical levels (Figure

1 shows the levels for a 5� 5 grid, hierarchical predecessors are marked grey).

Note that no actual splitting of the data is necessary, the access to the di�erent

level can be hardcoded into the algorithm that accesses the elevation data. This

avoids the trouble of dealing with complicated, pointer based data structures such

as lists or trees. Since the elevation data is stored in a linear memory segment

cache and prefetch mechanisms usually used by workstations still have a chance

to improve performance.

Of course hierarchical access to the twodimensional array means large jumps

forward and backward within the memory which usually defeat every cache or

prefetch strategies. But it is possible to reorganize the array in a hierarchical

manner so that jumps only occur forward in memory, this way prefetch mecha-

nisms can be reapplied. However this hierarchical organization of the array data

has only been evaluated on a theoretical level.

Figures 2 and 3 show the immediate predecessor and successor relationship

within the hierarchical structure.

In order to gain an indicator for the importance of each elevation value within

the above described hierarchy, every value is interpolated linear of its hierarchical

predecessors. Figure 4 shows which points are used to interpolate the values of

each level.

The di�erence between interpolated and actual value, the hierarchical surplus

Level 4Level 3Level 2Level 1Level 0

Figure 2: Hierarchical predecessors of each node

Level 4Level 3Level 2Level 1Level 0

Figure 3: Hierarchical successor of each node

is stored for each node in a second array. This array of interpolation errors is

then hierarchically traversed bottom{up level by level, storing the maximum of

the currently examined node and its immediate hierarchical successors in each

node. After that the highest interpolation error of the entire array can be found

in the central node of the grid. Note that the computation of the interpolation

errors and storing of the maximum of those errors can both be done in one pass

at startup time.

2.2 Recursive Triangulation

One advantage and the most important reason why exactly this hierarchy was

chosen is the fact that it allows a simple, straight forward, adaptive triangulation

based on a classic divide&conquer scheme. The recursive algorithm used for the

triangulation is basically as follows:

Level 4Level 3Level 2Level 1Level 0

Figure 4: Predecessors of each node from which it is interpolated

examine triangle(a,b,c)

f

if(interpolation error at node (b+c)/2 < ")

draw triangle(a,b,c);

else f

examine triangle((b+c)/2, a, b);

examine triangle((b+c)/2, c, a);

g

g

Figure 5 shows a sequence of triangles that are examined during an adaptive

triangulation of a 5�5 grid. The function examine triangle() is called two

times. Once for the triangle between the northwest, northeast and the southwest

corner of the array and once for the triangle of the southeast, southwest and

northeast corner. Black grid points mark nodes that contain interpolation errors

higher than a given error margin ", white nodes contain interpolation errors below

". Nodes that are examined at a certain level are marked by a circle. Figure 6

shows the resulting triangulation of the entire array. In this example the error

margin " does not depend on the distance from the observer and is the same for

all points.

examine_triangle(NW,NE,SW);

SW

NENW

Level 4Level 3Level 2Level 1Level 0

examine_triangle(SE,SW,NE);

NE

SW SE
Level 4Level 3Level 2Level 1Level 0

Figure 5: Sequence of triangles examined during a triangulation

Figure 6: the resulting triangulation of the grid

In order to apply this triangulation scheme in our synthetic vision environment

it is useful to supplement the function examine triangle() with a termination

rule that checks whether the currently examined triangle is within the observer's

�eld of view. This way super
uous work can be avoided and most of the recursive

function calls can be terminated at an early stage.

The method used to determine if a triangle is within the �eld of view is

derived from a 3D{version of the well known Cohen{Sutherland line clipping

algorithm ([11]) applied to triangles instead of lines. It requires a 4�4{matrix{

vector multiplication for each examined node during the triangulation. These

matrix{vector multiplications are the main computational overhead occurring at

runtime. The alternative, not to check for visibility, would result in a much more

signi�cant overhead of work examining invisible triangles.

The next thing necessary for our synthetic vision environment is that the

error margin " depends on the distance between the examined triangle and the

observer. In order to achieve this " is simply replaced by a function eps() that

is designed to depend on the distance between the observer and a gridpoint. The

if{statement in examine triangle() changes as follows:

if(error at node (b+c)/2 < eps(distance to((b+c)/2)))

The intended consequence of this change is that di�erent error margins will be

applied to the triangles examined by the recursive calls to examine triangle().

This means it is now possible that one triangle is recursively traced to a deeper

level than the other. This situation will lead to T{junctions in the triangulation

which result in so called vertical holes in the landscape. One simple way to

avoid this is to mark the nodes of each examined and drawn triangle in a bit�eld

corresponding to the array of elevation data and supplement the if{statement

in examine triangle() as follows:

if(error at node (b+c)/2 < eps(distance to((b+c)/2))

&& node (b+c)/2 is not marked in the bitfield)

In order for this approach to work, the triangle that will be traced to a deeper

level has to be examined �rst. So the problem now is to decide which of the

triangles ((b+c)/2, a, b) and ((b+c)/2, c, a) to examine �rst.

We have not yet found a simple and save way to decide how deep a triangle

will be traced. Several mechanisms were developed, but all of them showed to

lead to vertical holes in the terrain.

To completely avoid the problem of vertical holes we have decided to use a

two{pass approach for the triangulation. During the �rst pass the nodes of the

triangles are marked in a bit�eld instead of being drawn. The drawing takes

place in a second pass where only the bit�eld is examined. The two{pass version

of examine triangle(), that also incorporates the check for visibility follows:

examine and mark triangle(a,b,c)

f

if(triangle is not visible(a,b,c)) return();

if(error at node (b+c)/2 < eps(distance to((b+c)/2)))

mark nodes(a,b,c);

else f

examine and mark triangle((b+c)/2, a, b);

examine and mark triangle((b+c)/2, c, a);

g

g

examine and draw triangle(a,b,c)

f

if(node (b+c)/2 is not marked)

draw triangle(a,b,c);

else f

examine and draw triangle((b+c)/2, a, b);

examine and draw triangle((b+c)/2, c, a);

g

g

Some examples of what a useful eps(){function might look like are shown in

�gure 7. The left function is the one we currently use. Here the admissible error

margin is zero within a distance of 1-5 km from the observer, which results in

an exact representation of the terrain within that range. After that the margin

of error increases linearly to a value of 600 m at a distance of 25 km. The

er
ro

r
m

ar
g

in

distance distance

er
ro

r
m

ar
g

in

Figure 7: Examples of margin of error(){functions

Figure 8: Observer approaching a mountain

right function could be used to simulate three separate level{of{detail areas. The

advantage is that the triangulation of the terrain changes only at the borders of

those areas which is under some circumstances more pleasing to the eye. However

from those examples it should become clear that the level{of{detail is easily

controllable and no constraints are imposed on the shape of the eps(){function.

Figure 8 shows a sequence of images as they occur when the observer ap-

proaches a mountain. The �rst and the second picture were created from the

same point of view, only the �rst was triangulated at a much lower error mar-

gin in order to show what the landscape would look like if it was approximated

exactly. The rest of the sequence shows that the closer the observer gets to the

mountain, the more detailed the triangulation of the mountain becomes.

3 Results

The here described system was developed to run on a Indigo

2

Silicon Graphics

Workstation with a R10000 CPU, 128MB of main memory and a Maximum

IMPACT graphics board equipped with 4MB of texture memory. The designgoals

of a range of sight of 25 km at a frame rate of 30 frames per second are met on

this rather costly system. But since the program was written in C++ using the

OpenGL and Motif libraries, it is fairly independent of the hardware it runs on.

It is conceivable, that within a few years a low cost system using a multiprocessor

board and a graphics board developed for the PC market supporting OpenGL on

a hardware level can be developed. Under these circumstances the system will

be a�ordable to owners of small private aircraft which was a design target from

the very beginning of the project.

Besides the hierarchical reorganization of the array data previously mentioned

some other ideas will be implemented in order to improve performance and image

quality. One is to consider a local maximum in the elevation array a point of

interest that must not be skipped during a triangulation. This way mountains

would not pop up as they do now but only the slopes would become increasingly

detailed when approaching a mountain. This event is much less detectable by the

eye than a mountain suddenly popping up from a level horizon. This popping{up

may sound dangerous in the context of a navigation aid for aircraft, but it occurs

at a much too large distance, so it only causes an esthetical disturbance.

One idea to increase the performance of the triangulation is to use an in-

cremental visibility check instead of the computational costly 3D{version of the

Cohen{Sutherland algorithm currently used.

Another, as yet unconsidered problem is loading the next part of the database

in
ight while the aircraft is
ying toward the edge of the terrain currently in

memory. This obviously must not lead to any signi�cant delay in terrain render-

ing. A slight reduction of the framerate may be acceptable, while a message to

please stand by while new data is being loaded and processed is clearly unaccept-

able.

References

[1] U. Rathmann. K�unstliche Sicht. In Carl-Cranz-Gesellschaft, CCG-Kurs LR

4.05 "Moderne Unterst�utungssysteme f�ur Piloten", volume 9. Oberpfa�en-

hofen, 1992.

[2] G. Sachs, K. Dobler, G. Sch�anzer, and M. Diero�. Precision Navigation and

Synthetic Vision for Poor Visibility Guidance. In AGARD Flight Vehicle

Integration Panel, Lissabon, September 1996. AGARD.

[3] H. M�oller and G. Sachs. Synthetic Vision for Enhancing Poor Visibility

Operation. IEEE Aerospace and Electonics Magazine, 9:27{33, 1994.

[4] G. Sch�anzer S. Vieweg. Pr�azise Flugnavigation durch Integration von

Satelliten-Navigationssystemen mit Inertialsensoren. In DGLR-Jahrbuch

1992, pages 171{177, 1992.

[5] T. Gerstner. Ein adaptives hierarchisches Verfahren zur Approximation und

e�zienten Visualisierung von Funktionen und seine Anwendung auf digitale

3{D H�ohenmodelle. Master's thesis, Institut f�ur Informatik, TU M�unchen,

1995.

[6] W.F. Mitchell. Adaptive re�nement for arbitrary �nite element spaces with

hierarchical bases. J.Comp.Appl.Math, 36:65{78, 1991.

[7] K. Hiller. Datenkompression mit dem D�unn{Gitter{Verfahren. Master's

thesis, Institut f�ur Informatik, TU M�unchen, 1993.

[8] A. Frank. Hierarchische Polynombasen zum Einsatz in der Datenkompres-

sion mit Anwendung auf Audiodaten. Master's thesis, Institut f�ur Infor-

matik, TU M�unchen, 1995.

[9] A. Paul. Kompression von Bildfolgen mit hierarchischen Basen. Master's

thesis, Institut f�ur Informatik, TU M�unchen, 1995.

[10] M.H. Gross, O.G. Staadt, and R. Gatti. E�cient Triangular Surface Approx-

imations using Wavelets and Quadtree Data Structures. IEEE Transactions

on Visualization and Computer Graphics, 2(2), June 1996.

[11] J.D. Foley, A. van Dam, S.K. Feiner, and J.F. Hughes. Computer Graphics

{ Principle and Practice. Addison-Wesley Publishing Company, 2. edition,

1992.

Some of the above references are available via the World Wide Web:

http://www5.informatik.tu-muenchen.de/publikat/publikat e.html

