(P)REVIEW OF THE FEEC COLDPLASMA
PROJECT

Frederik Schnack (ffrederik.schnack@tum.de

17.04.2019

PROBLEM SETTING

Our aim is the implementation of a finite element method (FEM) for the following linearized

plasma fluid model for electrons in a static ion background,

OE 1
—— +AVxB=-J (Ampere's law) ,
8t €0
0B
— +VXxE=0 (Faraday’s law) ,
ot (1)
oJ 9
i wp BE—J X we —ved (electron momentum balance) ,
V-B=0 (divergence constraint) ,

whereas, for v, = 0, this system has a Hamiltonian structure:

oEP B TP 5
H = P L) g3k 2
0 < 2 o 22) % 2)

In order to get a geometry conserving code, we build our discretization upon the idea of the
finite element exterior calculus (FEEC). In other words, the finite dimensional subspaces and

discrete differential operators have to fulfill the commuting diagram as seen in figure

srad . i
ot £ H(curl) 61411”1» H{(div) div L2
Iy I I, I3
Vo Vi Va , Va
grad curl div

Figure 1: 3D De-Rham differential complex.



THEORETICAL ASPECTS

At first, we write the system in the weak formulation. Where we can read of the according
vectorspace for each unknown, which on the other hand tells us in what finite dimensional
subspace the corresponding discrete version lives.

Next up, we introduce the basis functions for the finite dimensional subspaces. We decided,
that we start in Vjy with a basis function consisting of B-Splines (Nik)ggign_l of degree k in z—

A in the z—direction. From that starting

and y—direction, and a single Fourier mode E(z) = e
point, we can calculate all the other basis functions and the relation of the coefficients among
themselves. These relations define the discrete differential operators, which we need for the
commuting diagram.

Inserting the discrete functions into the weak formulation leads to the definition of the mass
matrices. Furthermore, we are now able to write the system as a system of ODEs. Considering
the Hamiltonian , we can transfer it to our semi-discretization. This allows us to embed the
ODE-system into a Hamiltonian system defined by a Poisson bracket.

In order to solve this system and preserve different desired properties, we develop a 2-step
Poisson splitting, via the average vector field, and a 4—step Hamiltonian splitting. Both

give similar satisfying results in practice so far.

PRACTICAL ASPECTS

The first task is the basis creation, where we used the scipy.interpolate.BSpline routine.

The next part, where we assemble the mass matrices, is more complicated. Here, we go
really into detail in order to build up the structure from the one dimensional case: We want
to write our code with help of the Kronecker-product structure, which allows very efficient
computation. Hence, we have to express our mass matrices and unknowns in this framework.
After some calculation, we are able to write these matrices as block-matrices of tensor-products
of mass matrices, which are build by the basis functions of a single direction. But here, we have
to make our first assumption: Since in general, we have a additional function in two arising
stiffness matrices, c.f. w.,wp, we have to be careful as this may deny the option to write these
matrices in the Kronecker-framework. Hence, we assumed that such functions are always prod-
ucts of functions depending on only one variable x,y or z. Another assumption we made, was
we being of the form: we = (0,0, Wz (2)wey (y)we, 2 (2)) L.

Obviously, we assemble all matrices in a sparse format, otherwise it wouldn’t be even possible to
run the code. We also utilize other optimization to make the code more efficient. Beginning with
the ,small“ mass matrices, which have no additional function in the integral, we can assemble
them by calculating one row of the matrix and then augment the rest with help of the circulant
structure. This structure also allows us to easily invert the matrix, which is very helpful as we
need to invert one of the , big* mass matrices. Since we can write the inverse of this matrix again
as blocks of tensor-products of the smaller inverted matrices, we get a very cheap and stable
way to calculate this inverse. Furthermore, we pre-calculate all matrix products occurring in

the time-stepping.



For the Poisson Splitting, we have to solve a linear system in every step, where the matrices are
constant if we choose a constant step-size. Hence, we calculate the LU-decomposition of both
matrices once and solve two triangular systems in every step. The Hamiltonian Splitting
involves a matrix exponential and another matrix inversion, which can both be pre-calculated
and also yield a cheap time stepping. Here, one has to be careful as the matrix that needs to
be inverted is ill-conditioned, this leads to numerical problems. We use a Strang splitting for
these steps, which is applicable as both methods are self-adjoint.

At this point, we are able to propagate the coefficients of our discrete functions through time.

In order to get the function values, we introduce the standard collocation matrix.

NUMERICAL RESULTS

In order to test the stiffness matrices and the collocation matrix, we implemented a simple L2-
projection problem. As this test was successful, we went a step further and tested the discrete
curl matrix with it, which also was successful. This led us to considering the whole system,
where first tests were done with the dispersion relation.

Here, we ran into first problems. The biggest flaw right now is the instability for A # 0, where
the coefficients grow exponentially. For A = 0, both methods show (the same) reasonable results,
although for some initial coefficients the coefficients corresponding to the B-field have a linear
growth (in x and y component) which looks quite weird at the moment. Note that A\ = 0
corresponds to the 2D embedding of our implementation, but this means that in V5, where B
lives, the first two components have no influence in the system. Still, in this case, when we
check the frequencies of the different oscillating function values, we always get a clear peak in
frequencies that belong to the dispersion relation. This marks a small success on the way to

reach our goal.

OUTLOOK

Different things have yet to be considered, need a closer look or have to be fixed. This is for

example:
o Derivation and implementation of the projectors. (Were not required yet.)

o Checking why the B-field is growing linearly for some initial conditions. (Is this a problem?

coeff. not considered anyways.)
e Finding the reason for the instability with A # 0.

e How to deal with the assumption for general functions in the stiffness matrix? Can the

tensor product framework still hold? What about w.?



