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Chapter 1

Decomposition numbers of Hecke
algebras of type A

1.1 Description

Hecke is a port of the GAP 3-package Specht 2.4 to GAP 4.
This package contains functions for computing the decomposition matrices for Iwahori-Hecke

algebras of the symmetric groups. As the (modular) representation theory of these algebras closely
resembles that of the (modular) representation theory of the symmetric groups (indeed, the latter is
a special case of the former) many of the combinatorial tools from the representation theory of the
symmetric group are included in the package.

These programs grew out of the attempts by Gordon James and Andrew Mathas [JM96] to un-
derstand the decomposition matrices of Hecke algebras of type A when q =−1. The package is now
much more general and its highlights include:

1. Hecke provides a means of working in the Grothendieck ring of a Hecke algebra H using the
three natural bases corresponding to the Specht modules, projective indecomposable modules,
and simple modules.

2. For Hecke algebras defined over fields of characteristic zero, the algorithm of Lascoux, Leclerc,
and Thibon [LLT96] for computing decomposition numbers and “crystallized decomposition
matrices” has been implemented. In principle, this gives all of the decomposition matrices of
Hecke algebras defined over fields of characteristic zero.

3. Hecke provides a way of inducing and restricting modules. In addition, it is possible to “in-
duce” decomposition matrices; this function is quite effective in calculating the decomposition
matrices of Hecke algebras for small n.

4. The q-analogue of Schaper’s theorem [JM97] is included, as is Kleshchev’s [Kle96] algorithm
of calculating the Mullineux map. Both are used extensively when inducing decomposition
matrices.

5. Hecke can be used to compute the decomposition numbers of q-Schur algebras (and the general
linear groups), although there is less direct support for these algebras. The decomposition
matrices for the q-Schur algebras defined over fields of characteristic zero for n < 11 and all e
are included in Hecke.
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6. The Littlewood-Richard rule, its inverse, and functions for many of the standard operations on
partitions (such as calculating cores, quotients, and adding and removing hooks), are included.

7. The decomposition matrices for the symmetric groups Sn are included for n < 15 and for all
primes.

1.2 The modular representation theory of Hecke algebras

The “modular” representation theory of the Iwahori-Hecke algebras of type A was pioneered by Dip-
per and James [DJ86] [DJ87]; here the theory is briefly outlined, referring the reader to the references
for details.

Given a commutative integral domain R and a non-zero unit q in R, let H = HR,q be the Hecke
algebra of the symmetric group Sn on n symbols defined over R and with parameter q. For each
partition µ of n, Dipper and James defined a Specht module S(µ). Let rad S(µ) be the radical of S(µ)
and define D(µ) = S(µ)/rad S(µ). When R is a field, D(µ) is either zero or absolutely irreducible.
Henceforth, we will always assume that R is a field.

Given a non-negative integer i, let [i]q = 1+q+ . . .+qi−1. Define e to be the smallest non-negative
integer such that [e]q = 0; if no such integer exists, we set e equal to 0. Many of the functions in this
package depend upon e; the integer e is the Hecke algebras analogue of the characteristic of the field
in the modular representation theory of finite groups.

A partition µ = (µ1,µ2, . . .) is e-singular if there exists an integer i such that µi = µi+1 = · · · =
µi+e−1 > 0; otherwise, µ is e-regular. Dipper and James [DJ86] showed that D(ν) 6= 0 if and only if
ν is e-regular and that the D(ν) give a complete set of non-isomorphic irreducible H-modules as ν

runs over the e-regular partitions of n. Further, S(µ) and S(ν) belong to the same block if and only if
µ and ν have the same e-core [DJ87][JM97]. Note that these results depend only on e and not directly
on R or q.

Given two partitions µ and ν , where ν is e -regular, let dµν be the composition multiplicity of
D(ν) in S(ν). The matrix D = (dµν) is the decomposition matrix of H. When the rows and columns
are ordered in a way compatible with dominance, D is lower unitriangular.

The indecomposable H-modules P(ν) are indexed by e -regular partitions ν . By general argu-
ments, P(ν) has the same composition factors as ∑µ dµνS(µ); so these linear combinations of modules
become identified in the Grothendieck ring of H. Similarly, D(ν) = ∑µ d−1

νµ S(µ) in the Grothendieck
ring. These observations are the basis for many of the computations in Hecke.

1.3 Two small examples

Because of the algorithm of [LLT96], in principle, all of decomposition matrices for all Hecke algebras
defined over fields of characteristic zero are known and available using Hecke. The algorithm is
recursive; however, it is quite quick and, as with a car, you need never look at the engine:

Example
gap> H:=Specht(4); # e=4, 'R' a field of characteristic 0

<Hecke algebra with e = 4>

gap> RInducedModule(MakePIM(H,12,2));

<direct sum of 5 P-modules>

gap> Display(last);

P(13,2) + P(12,3) + P(12,2,1) + P(10,3,2) + P(9,6)
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The [LLT96] algorithm was applied 24 times during this calculation.
For Hecke algebras defined over fields of positive characteristic the major tool provided by Hecke,

apart from the decomposition matrices contained in the libraries, is a way of “inducing” decomposition
matrices. This makes it fairly easy to calculate the associated decomposition matrices for “small” n.
For example, the Hecke libraries contain the decomposition matrices for the symmetric groups Sn over
fields of characteristic 3 for n < 15. These matrices were calculated by Hecke using the following
commands:

Example
gap> H:=Specht(3,3); # e=3, 'R' field of characteristic 3

<Hecke algebra with e = 3>

gap> d:=DecompositionMatrix(H,5); # known for n<2e

<7x5 decomposition matrix>

gap> Display(last);

5 | 1

4,1 | . 1

3,2 | . 1 1

3,1^2| . . . 1

2^2,1| 1 . . . 1

2,1^3| . . . . 1

1^5 | . . 1 . .

gap> for n in [6..14] do

> d:=InducedDecompositionMatrix(d); SaveDecompositionMatrix(d);

> od;

The function InducedDecompositionMatrix contains almost every trick for computing decompo-
sition matrices (except using the spin groups).

Hecke can also be used to calculate the decomposition numbers of the q-Schur algebras; al-
though, as yet, here no additional routines for calculating the projective indecomposables indexed by
e-singular partitions. Such routines may be included in a future release, together with the (conjec-
tural) algorithm [LT96] for computing the decomposition matrices of the q-Schur algebras over fields
of characteristic zero.

1.4 Overview over this manual

Chapter 2 describes the installation of this package. Chapter 3 shows instructive examples for the
usage of this package.

1.5 Credits

I would like to thank Anne Henke for offering me the interesting project of porting Specht 2.4 to the
current GAP version, Max Neunhöffer for giving me an excellent introduction to the GAP 4-style
of programming and Benjamin Wilson for supporting the project and helping me to understand the
mathematics behind Hecke.

Also I thank Andrew Mathas for allowing me to use his GAP 3-code of the Specht 2.4 package.
The lastest version of Hecke can be obtained from
http://home.in.tum.de/~traytel/hecke/.
Dmitriy Traytel
traytel@in.tum.de

http://home.in.tum.de/~traytel/hecke/
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Technische Universität München, 2010.



Chapter 2

Installation of the hecke-Package

To install this package just extract the package’s archive file to the GAP pkg directory.
By default the hecke package is not automatically loaded by GAP when it is installed. You must

load the package with LoadPackage("hecke"); before its functions become available.
Please, send me an e-mail if you have any questions, remarks, suggestions, etc. concerning this

package. Also, I would like to hear about applications of this package.
Dmitriy Traytel
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Chapter 3

Specht functionality

3.1 Porting notes

Porting the Specht 2.4 package to GAP 4 did not influence the algorithms but required a completely
new object oriented design of the underlying data structures. In GAP 3 records were used to represent
algebra objects, modules and decomposition matrices of Specht 2.4. Further functions were stored
inside of such records to provide name safety.

In Hecke objects represent all the data that was named above. The overloading mechanism the
former record-internal functions to be available on the toplevel. The operation selection mechanism of
GAP 4 allows one to concentrate on the computation code instead of dealing with different possible
argument inputs.

Since variable argument length operations are not yet supported by GAP 4, we introduced our
own dispatcher facility to enable the former possibility of passing patrition arguments as sequences of
integers (see 3.3).

3.1.1 Structure of Hecke

The data structure hierarchy in GAP 4 is defined through filters and their dependencies.
. IsAlgebraObj (filter)

. IsHecke (filter)

. IsSchur (filter)

IsAlgebraObj is a generic filter for the objects returned by the functions Specht (3.2.1)
and Schur (3.2.7). Concretely, Specht (3.2.1) returns an IsHecke object (automatically also an
IsAlgebraObj object). For design reasons IsSchur is a subfilter of IsHecke. This allows to use the
same functions for Schur-algebras as for Hecke-algebras with minor restrictions.
. IsAlgebraObjModule (filter)

. IsHeckeModule (filter)

. IsHeckeSpecht (filter)

. IsHeckePIM (filter)

. IsHeckeSimple (filter)

. IsFockModule (filter)

. IsFockSpecht (filter)

. IsFockPIM (filter)

. IsFockSimple (filter)

9
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. IsSchurModule (filter)

. IsSchurWeyl (filter)

. IsSchurPIM (filter)

. IsSchurSimple (filter)

. IsFockSchurModule (filter)

. IsFockSchurWeyl (filter)

. IsFockSchurPIM (filter)

. IsFockSchurSimple (filter)

The hierarchy of module objects is more complex. On top we have the filter
IsAlgebraObjModule. Its direct descendant IsHeckeModule has IsHeckeSpecht, IsHeckePIM,
IsHeckeSimple, IsFockModule and IsSchurModule as subfilters. Again the last two subfilter
relations have no mathematical sense but are technically comfortable. The filter IsFockModule

is superfilter of IsFockSpecht, IsFockPIM, IsFockSimple and IsFockSchurModule. Anal-
ogously, IsSchurModule is superfilter of IsSchurWeyl, IsSchurPIM, IsSchurSimple and
IsFockSchurModule which itself is superfilter of IsFockSchurWeyl, IsFockSchurPIM,
IsFockSchurSimple. Further, there are subfilter relations between IsFockSpecht and
IsHeckeSpecht etc., IsFockSchurWeyl and IsFockSpecht etc., IsFockSchurWeyl and
IsSchurWeyl etc., IsSchurWeyl and IsHeckeSpecht etc. filters.
. IsDecompositionMatrix (filter)

. IsCrystalDecompositionMatrix (filter)

For decomposition matrices we use the filter IsDecompositionMatrix and its subfilter
IsCrystalDecompositionMatrix.

3.1.2 Renamings

To keep things as backwards compatible as possible, we tried not to change names and function
signatures. But for the former H.***- and H.operations.***-style functions it makes more sense
to use toplevel functions (especially when the H is not explicitly needed inside of the called operation).
Here is an overview of some important changes:

GAP 3 GAP 4
H.S MakeSpecht (3.2.3)
H.P MakePIM (3.2.3)
H.D MakeSimple (3.2.3)
H.Sq MakeFockSpecht (3.2.6)
H.Pq MakeFockPIM (3.2.6)
S.W MakeSpecht (3.2.3)
S.F MakeSimple (3.2.3)

InducedModule RInducedModule (3.4.1)
RestrictedModule RRestrictedModule (3.4.3)
H.operations.New Module

H.operations.Collect Collect
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3.2 Specht functions

3.2.1 Specht (for an integer)

. Specht(e) (method)

. Specht(e, p) (method)

. Specht(e, p, val) (method)

. Specht(e, p, val, ring) (method)

Returns: object belonging to the filter IsHecke (3.1.1)
Let R be a field of characteristic 0, q a non-zero element of R, and let e be the smallest positive

integer such that 1+ q+ . . .+ qe−1 = 0 (we set e = 0 if no such integer exists). The object returned
by Specht(e) allows calculations in the Grothendieck rings of the Hecke algebras H of type A which
are defined over R and have parameter q. Below we also describe how to consider Hecke algebras
defined over fields of positive characteristic.

Specht returns an object which contains information about the the family of Hecke algebras
determined by R and q. This object needs to be passed to the most of the Hecke functions as an
argument.

Example
gap> H:=Specht(5);

<Hecke algebra with e = 5>

gap> Display(last);

Specht(e=5, S(), P(), D())

gap> IsZeroCharacteristic(last);

true

There is also a method Schur (3.2.7) for doing calculations with the q-Schur algebra. See
DecompositionMatrix (3.2.8), and CrystalDecompositionMatrix (3.2.9). This function requires
the package hecke (see LoadPackage (Reference: LoadPackage)).

3.2.2 Simple information access

We allow to read/store some information from/in the algebra object returned by Specht (3.2.1) using
the following functions.
. OrderOfQ(H) (method)

Returns: e.
. Characteristic(H) (method)

Returns: p.
. SetOrdering(H, Ordering) (method)

Provides writing access to Ordering that is stored in H. The ordering influences the way how
decomposition matrices are printed.
. SpechtDirectory (global variable)

Setting this global variable the user can tell Hecke where to find decomposition matrices that are
not in the library and also not in the current directory. By default this variable is set to the current
directory.
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3.2.3 The functions MakeSpecht, MakePIM and MakeSimple

The functions MakeSpecht, MakePIM and MakeSimple return objects belonging to the filter
IsAlgebraObjModule (3.1.1) which correspond to Specht modules (IsHeckeSpecht (3.1.1)), pro-
jective indecomposable modules (IsHeckePIM (3.1.1)) and simple modules (IsHeckeSimple (3.1.1))
respectively. Hecke allows manipulation of arbitrary linear combinations of these “modules”, as well
as a way of inducing and restricting them, “multiplying” them and converting between these three
natural bases of the Grothendieck ring. Multiplication of modules corresponds to taking a tensor pro-
ductand then inducing (thus giving a module for a larger Hecke algebra). Each of these three functions
can be called in four different ways, as we now describe.
. MakeSpecht(H, mu) (method)

. MakePIM(H, mu) (method)

. MakeSimple(H, mu) (method)

In the first form, µ is a partition (either a list, or a sequence of integers) and the corresponding
Specht module, PIM, or simple module (respectively), is returned.

Example
gap> H:=Specht(5);; MakePIM(H,4,3,2);; Display(last);

P(4,3,2)

. MakeSpecht(x) (method)

. MakePIM(x) (method)

. MakeSimple(x) (method)

Here, x is an H-module. In this form, MakeSpecht rewrites x as a linear combination of Specht
modules, if possible. Similarly, MakePIM and MakeSimple rewrite x as a linear combination of PIMs
and simple modules respectively. These conversions require knowledge of the relevant decomposition
matrix of H; if this is not known then fail is returned (over fields of characteristic zero, all of
the decomposition matrices are known via the algorithm of [LLT96]; various other decomposition
matrices are included with Hecke). For example, MakeSpecht(MakePIM(H,µ)) returns ∑ν dνµS(ν)
or fail if some of these decomposition multiplicities are not known.

Example
gap> Display( MakeSimple( MakePIM(H,4,3,2) ) );

D(5,3,1) + 2D(4,3,2) + D(2^4,1)

gap> Display( MakeSpecht( MakeSimple( MakeSpecht(H,1,1,1,1,1) ) ) );

- S(5) + S(4,1) - S(3,1^2) + S(2,1^3)

As the last example shows, Hecke does not always behave as expected. The reason for this is that
Specht modules indexed by e-singular partitions can always be written as a linear combination of
Specht modules which involve only e-regular partitions. As such, it is not always clear when two
elements are equal in the Grothendieck ring. Consequently, to test whether two modules are equal
you should first rewrite both modules in the D-basis; this is not done by Hecke because it would be
very inefficient.
. MakeSpecht(d, mu) (method)

. MakePIM(d, mu) (method)

. MakeSimple(d, mu) (method)

In the third form, d is a decomposition matrix and µ is a partition. This is useful when you are
trying to calculate a new decomposition matrix d because it allows you to do calculations using the
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known entries of d to deduce information about the unknown ones. When used in this way, MakePIM
and MakeSimple use d to rewrite P(µ) and D(µ) respectively as a linear combination of Specht
modules and MakeSpecht uses d to write S(µ) as a linear combination of simple modules. If the
values of the unknown entries in d are needed, fail is returned.

Example
gap> H:=Specht(3,3);; # e = 3, p = 3 = characteristic of 'R'

gap> d:=InducedDecompositionMatrix(DecompositionMatrix(H,14));;

# Inducing....

The following projectives are missing from <d>:

[ 15 ] [ 8, 7 ]

gap> Display(MakePIM(d,4,3,3,2,2,1));

S(4,3^2,2^2,1) + S(4,3^2,2,1^3) + S(4,3,2^3,1^2) + S(3^3,2^2,1^2)

gap> Display(MakeSpecht(d,7, 3, 3, 2));

D(11,2,1^2) + D(10,3,1^2) + D(8,5,1^2) + D(8,3^2,1) + D(7,6,1^2) + D(7,3^2,2)

gap> Display(MakeSimple(d,14,1));

fail

The final example returned fail because the partitions (14,1) and (15) have the same 3-core (and
P(15) is missing from d).
. MakeSpecht(d, x) (method)

. MakePIM(d, x) (method)

. MakeSimple(d, x) (method)

In the final form, d is a decomposition matrix and x is a module. All three functions rewrite
x in their respective basis using d. Again this is only useful when you are trying to calculate a
new decomposition matrix because, for any “known” decomposition matrix d, MakeSpecht(x) and
MakeSpecht(d,x) are equivalent (and similarly for MakePIM and MakeSimple).

Example
gap> Display(MakeSpecht(d, MakeSimple(d,10,5) ));

- S(13,2) + S(10,5)

3.2.4 Decomposition numbers of the symmetric groups

The last example looked at Hecke algebras with parameter q = 1 and R a field of characteristic 3
(so e = 3); that is, the group algebra of the symmetric group over a field of characteristic 3. More
generally, the command Specht(p, p) can be used to consider the group algebras of the symmetric
groups over fields of characteristic p (i.e. e = p and R a field of characteristic p). For example, the
dimensions of the simple modules of S6 over fields of characteristic 5 can be computed as follows:

Example
gap> H:=Specht(5,5);; SimpleDimension(H,6);

6 : 1

5,1 : 5

4,2 : 8

4,1^2 : 10

3^2 : 5

3,2,1 : 8

3,1^3 : 10

2^3 : 5

2^2,1^2 : 1

2,1^4 : 5

true
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3.2.5 Hecke algebras over fields of positive characteristic

To consider Hecke algebras defined over arbitrary fields, Specht (3.2.1) must also be supplied with
a valuation map val as an argument. The function val is a map from some PID into the natural
numbers; at present it is needed only by functions which rely (at least implicitly), upon the q-analogue
of Schaper’s theorem. In general, val depends upon q and the characteristic of R; full details can be
found in [JM97]. Over fields of characteristic zero and in the symmetric group case, the function val
is automatically defined by Specht (3.2.1). When R is a field of characteristic zero, val([i]q) is 1 if
e divides i and 0 otherwise (this is the valuation map associated to the prime ideal in C[v] generated
by the e-th cyclotomic polynomial). When q = 1 and R is a field of characteristic p, val is the usual
p-adic valuation map. As another example, if q = 4 and R is a field of characteristic 5 (so e = 2), then
the valuation map sends the integer x to ν5([4]x) where [4]x is interpreted as an integer and ν5 is the
usual 5-adic valuation. To consider this Hecke algebra one could proceed as follows:

Example
gap> val:=function(x) local v;

> x:=Sum([0..x-1],v->4^v); # x->[x]_q

> v:=0; while x mod 5=0 do x:=x/5; v:=v+1; od;

> return v;

> end;;

gap> H:=Specht(2,5,val,"e2q4");; Display(H);

Specht(e=2, p=5, S(), P(), D(), HeckeRing="e2q4")

Notice the string “e2q4” which was also passed to Specht (3.2.1) in this example. Although it is
not strictly necessary, it is a good idea when using a “non-standard” valuation map val to specify the
value of HeckeRing. This string is used for internal bookkeeping by Hecke; in particular, it is used
to determine filenames when reading and saving decomposition matrices. If a “standard” valuation
map is used then HeckeRing is set to the string “e<e>p<p>”; otherwise it defaults to “unknown”. The
function SaveDecompositionMatrix (3.5.5) will not save any decomposition matrix for any Hecke
algebra H with HeckeRing =“unknown”.

3.2.6 The Fock space and Hecke algebras over fields of characteristic zero

For Hecke algebras H defined over fields of characteristic zero Lascoux, Leclerc and Thibon [LLT96]
have described an easy, inductive, algorithm for calculating the decomposition matrices of H. Their
algorithm really calculates the canonical basis, or (global) crystal basis of the Fock space; results of
Grojnowski-Lusztig [Gro94] show that computing this basis is equivalent to computing the decompo-
sition matrices of H (see also [Ari96]).

The Fock space F is an (integrable) module for the quantum group Uq(ŝle) of the affine special
linear group. F is a free C[v]-module with basis the set of all Specht modules S(µ) for all partitions
µ of all integers:

F =
⊕

n≥0
⊕

µ`nC[v]S(µ)
Here v is an indeterminate over the integers (or strictly, C) that is stored in the algebra object

produced by Specht (3.2.1). The canonical basis elements Pq(µ) for the Uq(ŝle)-submodule of F
generated by the 0-partition are indexed by e-regular partitions µ . Moreover, under specialization,
Pq(µ) maps to P(µ). An eloquent description of the algorithm for computing Pq(µ) can be found in
[LLT96].

To access the elements of the Fock space Hecke provides the functions:
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. MakeFockPIM(H, mu) (method)

. MakeFockSpecht(H, mu) (method)

Notice that, unlike MakePIM (3.2.3) and MakeSpecht (3.2.3), the only arguments which
MakeFockPIM and MakeFockSpecht accept are partitions.

The function MakeFockPIM computes the canonical basis element Pq(µ) of the Fock space cor-
responding to the e-regular partition µ (there is a canonical basis – defined using a larger quantum
group – for the whole of the Fock space [LT96]; conjecturally, this basis can be used to compute
the decomposition matrices for the q-Schur algebra over fields of characteristic zero). The second
function returns a standard basis element Sq(µ) of F .

Example
gap> H:=Specht(4);; MakeFockPIM(H,6,2);; Display(last);

Sq(6,2) + vSq(5,3)

gap> RRestrictedModule(last); Display(last);

Sq(6,1) + (v+v^-1)Sq(5,2) + vSq(4,3)

gap> MakePIM(last);; Display(last);

Pq(6,1) + (v+v^-1)Pq(5,2)

gap> Specialized(last);; Display(last);

P(6,1) + 2P(5,2)

gap> MakeFockSpecht(H,5,3,2);; Display(last);

Sq(5,3,2)

gap> RInducedModule(last,0);; Display(last);

v^-1Sq(5,3^2)

The modules returned by MakeFockPIM and MakeFockSpecht behave very much like elements of
the Grothendieck ring of H; however, they should be considered as elements of the Fock space. The
key difference is that when induced or restricted “quantum” analogues of induction and restriction are
used. These analogues correspond to the action of Uq(ŝle) on F [LLT96].

In effect, the functions MakeFockPIM and MakeFockSpecht allow computations in the Fock
space, using the functions RInducedModule (3.4.1) and RRestrictedModule (3.4.3). The functions
MakeSpecht (3.2.3), MakePIM (3.2.3) and MakeSimple (3.2.3) can also be applied to elements of the
Fock space, in which case they have the expected effect. In addition, any element of the Fock space
can be specialized to give the corresponding element of the Grothendieck ring of H (it is because of
this correspondence that we do not make a distinction between elements of the Fock space and the
Grothendieck ring of H).

When working over fields of characteristic zero Hecke will automatically calculate any canonical
basis elements that it needs for computations in the Grothendieck ring of H. If you are not interested
in the canonical basis elements you need never work with them directly.

3.2.7 Schur (for an integer)

. Schur(e) (method)

. Schur(e, p) (method)

. Schur(e, p, val) (method)

. Schur(e, p, val, ring) (method)

Returns: object belonging to the filter IsSchur (3.1.1)
This function behaves almost identically to the function Specht (3.2.1), the only difference being

that the belonging modules are printed as “W”, “P”, “F” and that they correspond to the q-Weyl
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modules, the projective indecomposable modules, and the simple modules of the q-Schur algebra
respectively. Note that the Make***-functions (i.e. MakeSpecht (3.2.3) is used to generate q-Weyl
modules). Further, note that our labeling of these modules is non-standard, following that used by
James in [Jam90]. The standard labeling can be obtained from ours by replacing all partitions by their
conjugates.

Almost all of the functions in Hecke which accept a Hecke algebra object H will also accept the
object S returned by Schur .

In the current version of Hecke the decomposition matrices of q -Schur algebras are not fully sup-
ported. The InducedDecompositionMatrix (3.5.1) function can be applied to these matrices; how-
ever there are no additional routines available for calculating the columns corresponding to e-singular
partitions. The decomposition matrices for the q-Schur algebras defined over a field of characteristic
0 for n≤ 10 are in the Hecke libraries.

Example
gap> S:=Schur(2);

<Schur algebra with e = 2>

gap> InducedDecompositionMatrix(DecompositionMatrix(S,3));

# The following projectives are missing from <d>:

# [ 2, 2 ]

<5x5 decomposition matrix>

gap> Display(last);

4 | 1 # DecompositionMatrix(S,4) returns the

3,1 | 1 1 # full decomposition matrix. The point

2^2 | . 1 . # of this example is to emphasize the

2,1^2| 1 1 . 1 # current limitations of Schur.

1^4 | 1 . . 1 1

Note that when S is defined over a field of characteristic zero then the functions MakeFockSpecht

(3.2.6) and MakeFockPIM (3.2.6) will calculate the canonical basis elements (see Specht (3.2.1));
currently MakeFockPIM(µ) is implemented only for e-regular partitions.

See also Specht (3.2.1). This function requires the package hecke (see LoadPackage

(Reference: LoadPackage)).

3.2.8 DecompositionMatrix (for an algebra and an integer)

. DecompositionMatrix(H, n[, Ordering]) (method)

. DecompositionMatrix(H, file[, Ordering]) (method)

Returns: the decomposition matrix D of H(Sn) where H is a Hecke algebra object returned by
the function Specht (3.2.1) (or Schur (3.2.7) ).

DecompositionMatrix first checks whether the required decomposition matrix exists as
a library file (checking first in the current directory, next in the directory specified by
SpechtDirectory (3.2.2), and finally in the Hecke libraries). If the base field of H has char-
acteristic zero, DecompositionMatrix next looks for crystallized decomposition matrices (see
CrystalDecompositionMatrix (3.2.9)). If the decomposition matrix d is not stored in the library
DecompositionMatrix will calculate d when H is a Hecke algebra with a base field of characteristic
zero, and will return fail otherwise (in which case the function CalculateDecompositionMatrix

(3.5.6) can be used to force Hecke to try and calculate this matrix).
For Hecke algebras defined over fields of characteristic zero, Hecke uses the algorithm of [LLT96]

to calculate decomposition matrices The decomposition matrices for the q-Schur algebras for n ≤
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10 are contained in the Hecke library, as are those for the symmetric group over fields of positive
characteristic when n < 15.

Once a decomposition matrix is known, Hecke keeps an internal copy of it which is used by the
functions MakeSpecht (3.2.3), MakePIM (3.2.3), and MakeSimple (3.2.3); these functions also read
decomposition matrix files as needed.

If you set the variable SpechtDirectory (3.2.2), then Hecke will also search for decomposition
matrix files in this directory. The files in the current directory override those in SpechtDirectory

(3.2.2) and those in the Hecke libraries.
In the second form of the function, when a f ilename is supplied, DecompositionMatrix will

read the decomposition matrix in the file f ilename, and this matrix will become Hecke’s internal
copy of this matrix.

By default, the rows and columns of the decomposition matrices are ordered
DecompositionMatrix with an ordering function such as LengthLexicographic (3.8.13) or
ReverseDominance (3.8.15). You do not need to specify the ordering you want every time you call
DecompositionMatrix; Hecke will keep the same ordering until you change it again. This ordering
can also be set “by hand” using the operation SetOrdering (3.2.2)

Example
gap> DecompositionMatrix(Specht(3),6,LengthLexicographic);

<11x7 decomposition matrix>

gap> Display(last);

6 | 1

5,1 | 1 1

4,2 | . . 1

3^2 | . 1 . 1

4,1^2 | . 1 . . 1

3,2,1 | 1 1 . 1 1 1

2^3 | 1 . . . . 1

3,1^3 | . . . . 1 1

2^2,1^2| . . . . . . 1

2,1^4 | . . . 1 . 1 .

1^6 | . . . 1 . . .

Once you have a decomposition matrix it is often nice to be able to print it. The on screen
version is often good enough; There are also functions for converting Hecke decomposition
matrices into GAP matrices and vice versa (see MatrixDecompositionMatrix (3.5.7) and
DecompositionMatrixMatrix (3.5.8)).

Using the function InducedDecompositionMatrix (3.5.1), it is possible to induce a decom-
position matrix. See also SaveDecompositionMatrix (3.5.5) and IsNewIndecomposable (3.5.2),
Specht (3.2.1), Schur (3.2.7), and CrystalDecompositionMatrix (3.2.9). This function requires
the package hecke (see LoadPackage (Reference: LoadPackage)).

3.2.9 CrystalDecompositionMatrix

. CrystalDecompositionMatrix(H, n[, Ordering]) (method)

. CrystalDecompositionMatrix(H, file[, Ordering]) (method)

Returns: the crystal decomposition matrix D of H(Sn) where H is a Hecke algebra object re-
turned by the function Specht (3.2.1) (or Schur (3.2.7) ).

This function is similar to DecompositionMatrix (3.2.8). The columns of decomposition ma-
trices correspond to projective indecomposables; the columns of crystallized decomposition matrices



GAP 4 Package hecke 18

correspond to the canonical basis elements of the Fock space (see Specht (3.2.1)). Consequently,
the entries in these matrices are polynomials (in v), and by specializing (i.e. setting v equal to 1; see
Specialized (3.9.1)), the decomposition matrices of H are obtained (see Specht (3.2.1)). Crystal-
lized decomposition matrices are defined only for Hecke algebras over a base field of characteristic
zero. Unlike “normal” decomposition matrices, crystallized decomposition matrices cannot be in-
duced.

Example
gap> CrystalDecompositionMatrix(Specht(3), 6);

<11x7 decomposition matrix>

gap> Display(last);

6 | 1

5,1 | v 1

4,2 | . . 1

4,1^2 | . v . 1

3^2 | . v . . 1

3,2,1 | v v^2 . v v 1

3,1^3 | . . . v^2 . v

2^3 | v^2 . . . . v

2^2,1^2| . . . . . . 1

2,1^4 | . . . . v v^2 .

1^6 | . . . . v^2 . .

gap> Specialized(last); # set v equal to 1.

<11x7 decomposition matrix>

gap> Display(last);

6 | 1

5,1 | 1 1

4,2 | . . 1

4,1^2 | . 1 . 1

3^2 | . 1 . . 1

3,2,1 | 1 1 . 1 1 1

3,1^3 | . . . 1 . 1

2^3 | 1 . . . . 1

2^2,1^2| . . . . . . 1

2,1^4 | . . . . 1 1 .

1^6 | . . . . 1 . .

See also Specht (3.2.1), Schur (3.2.7), DecompositionMatrix (3.2.8) and Specialized (3.9.1).
This function requires the package hecke (see LoadPackage (Reference: LoadPackage)).

3.2.10 DecompositionNumber

. DecompositionNumber(H, mu, nu) (method)

. DecompositionNumber(d, mu, nu) (method)

This function attempts to calculate the decomposition multiplicity of D(ν) in S(µ) (equiva-
lently, the multiplicity of S(µ) in P(ν)). If P(ν) is known, we just look up the answer; if not
DecompositionNumber tries to calculate the answer using “row and column removal” (see [Jam90,
Theorem 6.18]).

Example
gap> H:=Specht(6);; DecompositionNumber(H,[6,4,2],[6,6]);

0
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This function requires the package hecke (see LoadPackage (Reference: LoadPackage)).

3.3 Partitions in Hecke

Many of the functions in Hecke take partitions as arguments. Partitions are usually represented by
lists in GAP. In Hecke, all the functions which expect a partition will accept their argument either as
a list or simply as a sequence of numbers. So, for example:

Example
gap> H:=Specht(4);; Print(MakeSpecht(MakePIM(H,6,4)),"\n");

S(6,4) + S(6,3,1) + S(5,3,1,1) + S(3,3,2,1,1) + S(2,2,2,2,2)

gap> Print(MakeSpecht(MakePIM(H,[6,4])),"\n");

S(6,4) + S(6,3,1) + S(5,3,1,1) + S(3,3,2,1,1) + S(2,2,2,2,2)

Some functions require more than one argument, but the convention still applies.
Example

gap> ECore(3, [6,4,2]);

[ 6, 4, 2 ]

gap> ECore(3, 6,4,2);

[ 6, 4, 2 ]

gap> GoodNodes(3, 6,4,2);

[ false, false, 3 ]

gap> GoodNodes(3, [6,4,2], 2);

3

Basically, it never hurts to put the extra brackets in, and they can be omitted so long as this is not
ambiguous. One function where the brackets are needed is DecompositionNumber (3.2.10) this is
clear because the function takes two partitions as its arguments.

3.4 Inducing and restricting modules

Hecke provides four functions RInducedModule (3.4.1), RRestrictedModule (3.4.3),
SInducedModule (3.4.2) and SRestrictedModule (3.4.4) for inducing and restricting mod-
ules. All functions can be applied to Specht modules, PIMs, and simple modules. These functions all
work by first rewriting all modules as a linear combination of Specht modules (or q-Weyl modules),
and then inducing and restricting. Whenever possible the induced or restricted module will be written
in the original basis.

All of these functions can also be applied to elements of the Fock space (see Specht (3.2.1)); in
which case they correspond to the action of the generators Ei and Fi of Uq(ŝle) on F . There is also a
function InducedDecompositionMatrix (3.5.1) for inducing decomposition matrices.

3.4.1 RInducedModule

. RInducedModule(x) (method)

. RInducedModule(x, r1[, r2, ...]) (method)

Returns: the induced modules of the Specht modules, principal indecomposable modules, and
simple modules (more accurately, their image in the Grothendieck ring).

There is an natural embedding of H(Sn) in H(Sn+1) which in the usual way lets us define an
induced H(Sn+1)-module for every H(Sn)-module.
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There is also a function SInducedModule (3.4.2) which provides a much faster way of r-inducing
s times (and inducing s times).

Let µ be a partition. Then the induced module RInducedModule(S(µ)) is easy to describe: it
has the same composition factors as ∑S(ν) where ν runs over all partitions whose diagrams can be
obtained by adding a single node to the diagram of µ .

Example
gap> H:=Specht(2,2);;

gap> Display(RInducedModule(MakeSpecht(H,7,4,3,1)));

S(8,4,3,1) + S(7,5,3,1) + S(7,4^2,1) + S(7,4,3,2) + S(7,4,3,1^2)

gap> Display(RInducedModule(MakePIM(H,5,3,1)));

P(6,3,1) + 2P(5,4,1) + P(5,3,2)

gap> Display(RInducedModule(MakeSimple(H,11,2,1)));

# D(<x>), unable to rewrite <x> as a sum of simples

S(12,2,1) + S(11,3,1) + S(11,2^2) + S(11,2,1^2)

When inducing indecomposable modules and simple modules, RInducedModule first rewrites these
modules as a linear combination of Specht modules (using known decomposition matrices), and then
induces this linear combination of Specht modules. If possible Hecke then rewrites the induced
module back in the original basis. Note that in the last example above, the decomposition matrix for
S15 is not known by Hecke this is why RInducedModule was unable to rewrite this module in the
D-basis.

r-Induction
Two Specht modules S(µ) and S(ν) belong to the same block if and only if the corresponding

partitions µ and ν have the same e-core [JM97] (see ECore (3.8.1)). Because the e-core of a partition
is determined by its (multiset of) e -residues, if S(µ) and S(ν) appear in RInducedModule(S(τ)), for
some partition τ , then S(µ) and S(nu) belong to the same block if and only if µ and ν can be obtained
by adding a node of the same e-residue to the diagram of τ . The second form of RInducedModule
allows one to induce “within blocks” by only adding nodes of some fixed e-residue r; this is known
as r-induction. Note that 0≤ r < e.

Example
gap> H:=Specht(4);; Display(RInducedModule(MakeSpecht(H,5,2,1)));

S(6,2,1) + S(5,3,1) + S(5,2^2) + S(5,2,1^2)

gap> Display(RInducedModule(MakeSpecht(H,5,2,1),0));

0S()

gap> Display(RInducedModule(MakeSpecht(H,5,2,1),1));

S(6,2,1) + S(5,3,1) + S(5,2,1^2)

gap> Display(RInducedModule(MakeSpecht(H,5,2,1),2));

0S()

gap> Display(RInducedModule(MakeSpecht(H,5,2,1),3));

S(5,2^2)

The function EResidueDiagram (3.7.13), prints the diagram of µ , labeling each node with its e-
residue. A quick check of this diagram confirms the answers above.

Example
gap> EResidueDiagram(H,5,2,1);

0 1 2 3 0

3 0

2

true
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“Quantized” induction
When RInducedModule is applied to the canonical basis elements MakeFockPIM(µ) (or more

generally elements of the Fock space; see Specht (3.2.1)), a “quantum analogue” of induction is ap-
plied. More precisely, the function RInducedModule(∗, i) corresponds to the action of the generator
Fi of the quantum group Uq(ŝle) on F [LLT96].

Example
gap> H:=Specht(3);; x:=RInducedModule(MakeFockPIM(H,4,2),1,2);;

gap> Display(x); Display(MakePIM(x));

Sq(6,2) + vSq(4^2) + v^2Sq(4,2^2)

Pq(6,2)

See also SInducedModule (3.4.2), RRestrictedModule (3.4.3) and SRestrictedModule (3.4.4).
This function requires the package hecke (see LoadPackage (Reference: LoadPackage)).

3.4.2 SInducedModule

. SInducedModule(x, s) (method)

. SInducedModule(x, s, r) (method)

The function SInducedModule, standing for “string induction”, provides a more efficient way of
r-inducing s times (and a way of inducing s times if the residue r is omitted); r-induction is explained
in "RInducedModule (3.4.1).

Example
gap> SizeScreen([80,20]);;

gap> H:=Specht(4);; Display(SInducedModule(MakePIM(H,5,2,1),3));

P(8,2,1) + 3P(7,3,1) + 2P(7,2^2) + 6P(6,3,2) + 6P(6,3,1^2) + 3P(6,2,1^3) + 2P(\

5,3^2) + P(5,2^2,1^2)

gap> Display(SInducedModule(MakePIM(H,5,2,1),3,1));

P(6,3,1^2)

gap> Display(RInducedModule(MakePIM(H,5,2,1),1,1,1));

6P(6,3,1^2)

Note that the multiplicity of each summand of RInducedModule(x,r, . . . ,r) is divisible by s! and that
SInducedModule divides by this constant.

As with RInducedModule (3.4.1) this function can also be applied to elements of the Fock space
(see Specht (3.2.1)), in which case the quantum analogue of induction is used.

See also RInducedModule (3.4.1). This function requires the package hecke (see LoadPackage
(Reference: LoadPackage)).

3.4.3 RRestrictedModule

. RRestrictedModule(x) (method)

. RRestrictedModule(x, r1[, r2, ...]) (method)

Returns: the corresponding module for H(Sn−1) when given a module x for H(Sn)
The restriction of the Specht module S(µ) is the linear combination of Specht modules ∑S(ν)

where ν runs over the partitions whose diagrams are obtained by deleting a node from the diagram of
µ . If only nodes of residue r are deleted then this corresponds to first restricting S(µ) and then taking
one of the block components of the restriction; this process is known as r-restriction (cf. r-induction
in RInducedModule (3.4.1)).
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There is also a function SRestrictedModule (3.4.4) which provides a faster way of r-restricting
s times (and restricting s times).

When more than one residue if given to RRestrictedModule

it returns RRestrictedModule(x,r1,r2, . . . ,rk)= RRestrictedModule(

RRestrictedModule(x,r1),r2, . . . ,rk) (cf. RInducedModule (3.4.1)).
Example

gap> H:=Specht(6);; Display(RRestrictedModule(MakePIM(H,5,3,2,1),4));

2P(4,3,2,1)

gap> Display(RRestrictedModule(MakeSimple(H,5,3,2),1));

D(5,2^2)

“Quantized” restriction
As with RInducedModule (3.4.1), when RRestrictedModule is applied to the canoni-

cal basis elements MakeFockPIM(µ) a quantum analogue of restriction is applied; this time,
RRestrictedModule(∗, i) corresponds to the action of the generator Ei of Uq(ŝle) on F [LLT96].

See also RInducedModule (3.4.1), SInducedModule (3.4.2) and SRestrictedModule (3.4.4).
This function requires the package hecke (see LoadPackage (Reference: LoadPackage)).

3.4.4 SRestrictedModule

. SRestrictedModule(x, s) (method)

. SRestrictedModule(x, s, r) (method)

As with SInducedModule (3.4.2) this function provides a more efficient way of r-restricting s
times, or restricting s times if the residue r is omitted (cf. SInducedModule (3.4.2)).

Example
gap> H:=Specht(6);; Display(SRestrictedModule(MakeSpecht(H,4,3,2),3));

3S(4,2) + 2S(4,1^2) + 3S(3^2) + 6S(3,2,1) + 2S(2^3)

gap> Display(SRestrictedModule(MakePIM(H,5,4,1),2,4));

P(4^2)

See also RInducedModule (3.4.1), SInducedModule (3.4.2) and RRestrictedModule (3.4.3). This
function requires the package hecke (see LoadPackage (Reference: LoadPackage)).

3.5 Operations on decomposition matrices

Hecke is a package for computing decomposition matrices; this section describes the functions avail-
able for accessing these matrices directly. In addition to decomposition matrices, Hecke also calcu-
lates the “crystallized decomposition matrices” of [LLT96] and the “adjustment matrices” introduced
by James [Jam90] (and Geck [Gec92]).

Throughout Hecke we place an emphasis on calculating the projective indecomposable module-
sand hence upon the columns of decomposition matrices. This approach seems more efficient than the
traditional approach of calculating decomposition matrices by rows; ideally both approaches should
be combined (as is done by IsNewIndecomposable (3.5.2)).

In principle, all decomposition matrices for all Hecke algebras defined over a field of characteristic
zero are available from within Hecke. In addition, the decomposition matrices for all q-Schur algebras
with n ≤ 10 and all values of e and the p-modular decomposition matrices of the symmetric groups
Sn for n < 15 are in the Hecke library files.
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If you are using Hecke regularly to do calculations involving certain values of e it would be
advantageous to have Hecke calculate and save the first 20 odd decomposition matrices that you are
interested in. So, for e = 4 use the commands:

Example
gap> H:=Specht(4);; for n in [8..20] do

> SaveDecompositionMatrix(DecompositionMatrix(H,n));

> od;

Alternatively, you could save the crystallized decomposition matrices. Note that for n < 2e the de-
composition matrices are known (by Hecke) and easy to compute.

3.5.1 InducedDecompositionMatrix

. InducedDecompositionMatrix(d) (method)

If d is the decomposition matrix of H(Sn), then InducedDecompositionMatrix(d) attempts
to calculate the decomposition matrix of H(Sn+1). It does this by extracting each projective
indecomposable from d and inducing these modules to obtain projective modules for H(Sn+1).
InducedDecompositionMatrix then tries to decompose these projectives using the function
IsNewIndecomposable (3.5.2). In general there will be columns of the decomposition matrix which
InducedDecompositionMatrix is unable to decompose and these will have to be calculated “by
hand”. InducedDecompositionMatrix prints a list of those columns of the decomposition matrix
which it is unable to calculate (this list is also printed by the function MissingIndecomposables

(3.5.11)).
Example

gap> d:=DecompositionMatrix(Specht(3,3),14);

<135x57 decomposition matrix>

gap> InducedDecompositionMatrix(d);

# Inducing....

The following projectives are missing from <d>:

[ 15 ] [ 8, 7 ]

<176x70 decomposition matrix>

Note that the missing indecomposables come in “pairs” which map to each other under the Mullineux
map (see MullineuxMap (3.7.3)).

Almost all of the decomposition matrices included in Hecke were calculated directly
by InducedDecompositionMatrix. When n is “small” InducedDecompositionMatrix is
usually able to return the full decomposition matrix for H(Sn). Finally, although the
InducedDecompositionMatrix can also be applied to the decomposition matrices of the q-Schur
algebras (see Schur (3.2.7)), InducedDecompositionMatrix is much less successful in inducing
these decomposition matrices because it contains no special routines for dealing with the indecom-
posable modules of the q-Schur algebra which are indexed by e-singular partitions. Note also that we
use a non-standard labeling of the decomposition matrices of q-Schur algebras; see Schur (3.2.7).

3.5.2 IsNewIndecomposable

. IsNewIndecomposable(d, x[, mu]) (method)

Returns: true if it is able to show that x is indecomposable (and this indecomposable is not
already listed in d), and false otherwise.
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IsNewIndecomposable is the function which does all of the hard work when the
function InducedDecompositionMatrix (3.5.1) is applied to decomposition matrices.
IsNewIndecomposable will also print a brief description of its findings, giving an upper and
lower bound on the first decomposition number µ for which it is unable to determine the multiplicity
of S(µ) in x.

IsNewIndecomposable works by running through all of the partitions ν such that P(ν) could be
a summand of x and it uses various results, such as the q-Schaper theorem of [JM97] (see Schaper

(3.7.1)), the Mullineux map (see MullineuxMap (3.7.3)) and inducing simple modules, to deter-
mine if P(ν) does indeed split off. In addition, if d is the decomposition matrix for H(Sn) then
IsNewIndecomposable will probably use some of the decomposition matrices of H(Sm) for m ≤ n,
if they are known. Consequently it is a good idea to save decomposition matrices as they are calculated
(see SaveDecompositionMatrix (3.5.5)).

For example, in calculating the 2-modular decomposition matrices of Sr the first projective which
InducedDecompositionMatrix (3.5.1) is unable to calculate is P(10).

Example
gap> H:=Specht(2,2);;

gap> d:=InducedDecompositionMatrix(DecompositionMatrix(H,9));;

# Inducing.

# The following projectives are missing from <d>:

# [ 10 ]

(In fact, given the above commands, Hecke will return the full decomposition matrix for S10 because
this matrix is in the library; these were the commands that were used to calculate the decomposition
matrix in the library.)

By inducing P(9) we can find a projective H-module which contains P(10). We can then use
IsNewIndecomposable to try and decompose this induced module into a sum of PIMs.

Example
gap> SizeScreen([80,20]);; x:=RInducedModule(MakePIM(H,9),1);; Display(x);

# P(<x>), unable to rewrite <x> as a sum of projectives

S(10) + S(9,1) + S(8,2) + 2S(8,1^2) + S(7,3) + 2S(7,1^3) + 3S(6,3,1) + 3S(6,2^\

2) + 4S(6,2,1^2) + 2S(6,1^4) + 4S(5,3,2) + 5S(5,3,1^2) + 5S(5,2^2,1) + 2S(5,1^\

5) + 2S(4^2,2) + 2S(4^2,1^2) + 2S(4,3^2) + 5S(4,3,1^3) + 2S(4,2^3) + 5S(4,2^2,\

1^2) + 4S(4,2,1^4) + 2S(4,1^6) + 2S(3^3,1) + 2S(3^2,2^2) + 4S(3^2,2,1^2) + 3S(\

3^2,1^4) + 3S(3,2^2,1^3) + 2S(3,1^7) + S(2^3,1^4) + S(2^2,1^6) + S(2,1^8) + S(\

1^10)

gap> IsNewIndecomposable(d,x);

# The multiplicity of S(6,3,1) in P(10) is at least 1 and at most 2.

false

gap> Display(x);

S(10) + S(9,1) + S(8,2) + 2S(8,1^2) + S(7,3) + 2S(7,1^3) + 2S(6,3,1) + 2S(6,2^\

2) + 3S(6,2,1^2) + 2S(6,1^4) + 3S(5,3,2) + 4S(5,3,1^2) + 4S(5,2^2,1) + 2S(5,1^\

5) + 2S(4^2,2) + 2S(4^2,1^2) + 2S(4,3^2) + 4S(4,3,1^3) + 2S(4,2^3) + 4S(4,2^2,\

1^2) + 3S(4,2,1^4) + 2S(4,1^6) + 2S(3^3,1) + 2S(3^2,2^2) + 3S(3^2,2,1^2) + 2S(\

3^2,1^4) + 2S(3,2^2,1^3) + 2S(3,1^7) + S(2^3,1^4) + S(2^2,1^6) + S(2,1^8) + S(\

1^10)

Notice that some of the coefficients of the Specht modules in x have changed; this is because
IsNewIndecomposable was able to determine that the multiplicity of S(6,3,1) was at most 2 and
so it subtracted one copy of P(6,3,1) from x.



GAP 4 Package hecke 25

In this case, the multiplicity of S(6,3,1) in P(10) is easy to resolve because general theory
says that this multiplicity must be odd. Therefore, x− P(6,3,1) is projective. After subtracting
P(6,3,1) from x we again use IsNewIndecomposable to see if x is now indecomposable. We can tell
IsNewIndecomposable that all of the multiplicities up to and including S(6,3,1) have already been
checked by giving it the addition argument µ = [6,3,1].

Example
gap> x:=x-MakePIM(d,6,3,1);; IsNewIndecomposable(d,x,6,3,1);

true

Consequently, x = P(10) and we add it to the decomposition matrix d (and save it).
Example

gap> AddIndecomposable(d,x); SaveDecompositionMatrix(d);

A full description of what IsNewIndecomposable does can be found by reading the comments in
specht.gi. Any suggestions or improvements on this function would be especially welcome.

See also DecompositionMatrix (3.2.8) and InducedDecompositionMatrix (3.5.1). This func-
tion requires the package hecke (see LoadPackage (Reference: LoadPackage)).

3.5.3 InvertDecompositionMatrix

. InvertDecompositionMatrix(d) (method)

Returns: inverse of the (e-regular part of) d, where d is a decomposition matrix, or crystallized
decomposition matrix, of a Hecke algebra or q-Schur algebra.

If part of the decomposition matrix d is unknown then InvertDecompositionMatrix will invert
as much of d as possible.

Example
gap> H:=Specht(4);; d:=CrystalDecompositionMatrix(H,5);;

gap> Display(InvertDecompositionMatrix(d));

5 | 1

4,1 | . 1

3,2 | -v . 1

3,1^2| . . . 1

2^2,1| v^2 . -v . 1

2,1^3| . . . . . 1

See also DecompositionMatrix (3.2.8) and CrystalDecompositionMatrix (3.2.9). This function
requires the package hecke (see LoadPackage (Reference: LoadPackage)).

3.5.4 AdjustmentMatrix

. AdjustmentMatrix(dp, d) (method)

Returns: the adjustment matrix a
James [Jam90] noticed and Geck [Gec92] proved, that the decomposition matrices d p for Hecke

algebras defined over fields of positive characteristic admit a factorization d p = d · a where d is a
decomposition matrix for a suitable Hecke algebra defined over a field of characteristic zero and a is
the so-called adjustment matrix.

Example
gap> H:=Specht(2);; Hp:=Specht(2,2);;

gap> d:=DecompositionMatrix(H,13);; dp:=DecompositionMatrix(Hp,13);;
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gap> a:=AdjustmentMatrix(dp,d);

<18x18 decomposition matrix>

gap> Display(a);

13 | 1

12,1 | . 1

11,2 | 1 . 1

10,3 | . . . 1

10,2,1 | . . . . 1

9,4 | 1 . 1 . . 1

9,3,1 | 2 . . . . . 1

8,5 | . 1 . . . . . 1

8,4,1 | 1 . . . . . . . 1

8,3,2 | . 2 . . . . . 1 . 1

7,6 | 1 . . . . 1 . . . . 1

7,5,1 | . . . . . . 1 . . . . 1

7,4,2 | 1 . 1 . . 1 . . . . 1 . 1

7,3,2,1| . . . . . . . . . . . . . 1

6,5,2 | . 1 . . . . . 1 . 1 . . . . 1

6,4,3 | 2 . . . 1 . . . . . . . . . . 1

6,4,2,1| . 2 . 1 . . . . . . . . . . . . 1

5,4,3,1| 4 . 2 . . . . . . . . . . . . . . 1

gap> MatrixDecompositionMatrix(dp)=

> MatrixDecompositionMatrix(d)*MatrixDecompositionMatrix(a);

true

In the last line we have checked our calculation.
See also DecompositionMatrix (3.2.8) and CrystalDecompositionMatrix (3.2.9). This func-

tion requires the package hecke (see LoadPackage (Reference: LoadPackage)).

3.5.5 SaveDecompositionMatrix

. SaveDecompositionMatrix(d) (method)

. SaveDecompositionMatrix(d, filename) (method)

The function SaveDecompositionMatrix saves the decomposition matrix d. After a decompo-
sition matrix has been saved, the functions MakeSpecht (3.2.3), MakePIM (3.2.3) and MakeSimple

(3.2.3) will automatically access it as needed. So, for example, before saving d in order to retrieve
the indecomposable P(µ) from d it is necessary to type MakePIM(d,µ); once d has been saved, the
command MakePIM(µ) suffices.

Since InducedDecompositionMatrix (3.5.1) consults the decomposition matrices for smaller
n, if they are available, it is advantageous to save decomposition matrices as they are calculated. For
example, over a field of characteristic 5, the decomposition matrices for the symmetric groups Sn with
n≤ 20 can be calculated as follows:

Example
gap> H:=Specht(5,5);;

gap> d:=DecompositionMatrix(H,9);;

gap> for r in [10..20] do

> d:=InducedDecompositionMatrix(d);

> SaveDecompositionMatrix(d);

> od;

# Inducing...
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# Inducing....

# Inducing....

# Inducing.....

# Inducing......

# Inducing.......

# Inducing........

# Inducing..........

# Inducing............

# Inducing..............

# Inducing.................

If your Hecke algebra object H is defined using a non-standard valuation map (see Specht (3.2.1))
then it is also necessary to set the string HeckeRing, or to supply the function with a f ilename before
it will save your matrix. SaveDecompositionMatrix will also save adjustment matrices and the
various other matrices that appear in Hecke (they can be read back in using DecompositionMatrix

(3.2.8)). Each matrix has a default filename which you can over ride by supplying a f ilename. Us-
ing non-standard file names will stop Hecke from automatically accessing these matrices in future.
See also DecompositionMatrix (3.2.8) and CrystalDecompositionMatrix (3.2.9). This function
requires the package hecke (see LoadPackage (Reference: LoadPackage)).

3.5.6 CalculateDecompositionMatrix

. CalculateDecompositionMatrix(H, n) (method)

CalculateDecompositionMatrix is similar to the function DecompositionMatrix (3.2.8) in
that both functions try to return the decomposition matrix d of H(Sn); the difference is that this
function tries to calculate this matrix whereas the latter reads the matrix from the library files (in char-
acteristic zero both functions apply the algorithm of [LLT96] to compute d). In effect this function is
only needed when working with Hecke algebras defined over fields of positive characteristic (or when
you wish to avoid the libraries). For example, if you want to do calculations with the decomposition
matrix of the symmetric group S15 over a field of characteristic two, DecompositionMatrix (3.2.8)
returns fail whereas CalculateDecompositionMatrix returns a part of the decomposition matrix.

Example
gap> H:=Specht(2,2);; d:=DecompositionMatrix(H,15);

# This decomposition matrix is not known; use CalculateDecompositionMatrix()

# or InducedDecompositionMatrix() to calculate with this matrix.

fail

gap> d:=CalculateDecompositionMatrix(H,15);;

# Projective indecomposable P(6,4,3,2) not known.

# Projective indecomposable P(6,5,3,1) not known.

# Projective indecomposable P(6,5,4) not known.

# Projective indecomposable P(7,4,3,1) not known.

# Projective indecomposable P(7,5,2,1) not known.

# Projective indecomposable P(7,5,3) not known.

# Projective indecomposable P(7,6,2) not known.

# Projective indecomposable P(8,4,2,1) not known.

# Projective indecomposable P(8,4,3) not known.

# Projective indecomposable P(8,5,2) not known.

# Projective indecomposable P(8,6,1) not known.

# Projective indecomposable P(8,7) not known.
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# Projective indecomposable P(9,3,2,1) not known.

# Projective indecomposable P(9,4,2) not known.

# Projective indecomposable P(9,5,1) not known.

# Projective indecomposable P(9,6) not known.

# Projective indecomposable P(10,3,2) not known.

# Projective indecomposable P(10,4,1) not known.

# Projective indecomposable P(10,5) not known.

# Projective indecomposable P(11,3,1) not known.

# Projective indecomposable P(11,4) not known.

# Projective indecomposable P(12,2,1) not known.

# Projective indecomposable P(12,3) not known.

# Projective indecomposable P(13,2) not known.

# Projective indecomposable P(14,1) not known.

# Projective indecomposable P(15) not known.

gap> SizeScreen([80,20]);; MissingIndecomposables(d);

The following projectives are missing from <d>:

[ 15 ] [ 14, 1 ] [ 13, 2 ] [ 12, 3 ] [ 12, 2, 1 ] [ 11, 4 ]

[ 11, 3, 1 ] [ 10, 5 ] [ 10, 4, 1 ] [ 10, 3, 2 ] [ 9, 6 ] [ 9, 5, 1 ]

[ 9, 4, 2 ] [ 9, 3, 2, 1 ] [ 8, 7 ] [ 8, 6, 1 ] [ 8, 5, 2 ] [ 8, 4, 3 ]

[ 8, 4, 2, 1 ] [ 7, 6, 2 ] [ 7, 5, 3 ] [ 7, 5, 2, 1 ] [ 7, 4, 3, 1 ]

[ 6, 5, 4 ] [ 6, 5, 3, 1 ] [ 6, 4, 3, 2 ]

Actually, you are much better starting with the decomposition matrix of S14 and then applying
InducedDecompositionMatrix (3.5.1) to this matrix. See also DecompositionMatrix (3.2.8).
This function requires the package hecke (see LoadPackage (Reference: LoadPackage)).

3.5.7 MatrixDecompositionMatrix

. MatrixDecompositionMatrix(d) (method)

Returns: the GAP matrix corresponding to the Hecke decomposition matrix d
The rows and columns of d are sorted by the ordering stored in the internal algebra object of the

matrix d.
Example

gap> SizeScreen([80,20]);;

gap> MatrixDecompositionMatrix(DecompositionMatrix(Specht(3),5));

[ [ 1, 0, 0, 0, 0 ], [ 0, 1, 0, 0, 0 ], [ 0, 1, 1, 0, 0 ], [ 0, 0, 0, 1, 0 ],

[ 1, 0, 0, 0, 1 ], [ 0, 0, 0, 0, 1 ], [ 0, 0, 1, 0, 0 ] ]

See also DecompositionMatrix (3.2.8) and DecompositionMatrixMatrix (3.5.8). This function
requires the package hecke (see LoadPackage (Reference: LoadPackage)).

3.5.8 DecompositionMatrixMatrix

. DecompositionMatrixMatrix(H, m, n) (method)

Returns: the Hecke decomposition matrix corresponding to the GAP matrix m
If p is the number of partitions of n and r the number of e-regular partitions of n, then m must be

either r× r, p× r or p× p. The rows and columns of m are assumed to be indexed by partitions sorted
by the ordering stored in the algebra object H (see Specht (3.2.1)).

Example
gap> H:=Specht(3);;

gap> m:=[ [ 1, 0, 0, 0 ], [ 0, 1, 0, 0 ], [ 1, 0, 1, 0 ],
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> [ 0, 0, 0, 1 ], [ 0, 0, 1, 0 ] ];;

gap> Display(DecompositionMatrixMatrix(H,m,4));

4 | 1

3,1 | . 1

2^2 | 1 . 1

2,1^2| . . . 1

1^4 | . . 1 .

See also DecompositionMatrix (3.2.8) and MatrixDecompositionMatrix (3.5.7). This function
requires the package hecke (see LoadPackage (Reference: LoadPackage)).

3.5.9 AddIndecomposable

. AddIndecomposable(d, x) (method)

AddIndecomposable inserts the indecomposable module x into the decomposition matrix d. If d
already contains the indecomposable d then a warning is printed. The function AddIndecomposable

also calculates MullineuxMap( x) (see MullineuxMap (3.7.3)) and adds this indecomposable to d
(or checks to see that it agrees with the corresponding entry of d if this indecomposable is already in
d).

See IsNewIndecomposable (3.5.2) for an example. See also DecompositionMatrix (3.2.8)
and CrystalDecompositionMatrix (3.2.9). This function requires the package hecke (see
LoadPackage (Reference: LoadPackage)).

3.5.10 RemoveIndecomposable

. RemoveIndecomposable(d, mu) (method)

The function RemoveIndecomposable removes the column from d which corresponds to P(µ).
This is sometimes useful when trying to calculate a new decomposition matrix using Hecke and want
to test a possible candidate for a yet to be identified PIM.

See also DecompositionMatrix (3.2.8) and CrystalDecompositionMatrix (3.2.9). This func-
tion requires the package hecke (see LoadPackage (Reference: LoadPackage)).

3.5.11 MissingIndecomposables

. MissingIndecomposables(d) (method)

The function MissingIndecomposables prints the list of partitions corresponding to the inde-
composable modules which are not listed in d.

See also DecompositionMatrix (3.2.8) and CrystalDecompositionMatrix (3.2.9). This func-
tion requires the package hecke (see LoadPackage (Reference: LoadPackage)).

3.6 Calculating dimensions

Hecke has two functions for calculating the dimensions of modules of Hecke algebras;
SimpleDimension (3.6.1) and SpechtDimension (3.6.2). As yet, Hecke does not know how to
calculate the dimensions of modules for q-Schur algebras (these depend up on q).
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3.6.1 SimpleDimension

. SimpleDimension(d) (method)

. SimpleDimension(H, n) (method)

. SimpleDimension(H|d, mu) (method)

In the first two forms, SimpleDimension prints the dimensions of all of the simple modules
specified by d or for the Hecke algebra H(Sn) respectively. If a partition µ is supplied, as in the
last form, then the dimension of the simple module D(µ) is returned. At present the function is not
implemented for the simple modules of the q-Schur algebras.

Example
gap> H:=Specht(6);;

gap> SimpleDimension(H,11,3);

272

gap> d:=DecompositionMatrix(H,5);; SimpleDimension(d,3,2);

5

gap> SimpleDimension(d);

5 : 1

4,1 : 4

3,2 : 5

3,1^2 : 6

2^2,1 : 5

2,1^3 : 4

1^5 : 1

true

This function requires the package hecke (see LoadPackage (Reference: LoadPackage)).

3.6.2 SpechtDimension

. SpechtDimension(mu) (method)

Returns: the dimension of the Specht module S(µ)
dimS(µ) is equal to the number of standard µ-tableaux; the answer is given by the hook length

formula (see [JK81]).
Example

gap> SpechtDimension(6,3,2,1);

5632

See also SimpleDimension (3.6.1). This function requires the package hecke (see LoadPackage

(Reference: LoadPackage)).

3.7 Combinatorics on Young diagrams

These functions range from the representation theoretic q-Schaper theorem and Kleshchev’s algorithm
for the Mullineux map through to simple combinatorial operations like adding and removing rim
hooks from Young diagrams.
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3.7.1 Schaper

. Schaper(H, mu) (method)

Returns: a linear combination of Specht modules which have the same composition factors as
the sum of the modules in the “Jantzen filtration ” of S(µ); see [JM97]. In particular, if ν strictly
dominates µ then D(ν) is a composition factor of S(µ) if and only if it is a composition factor of
Schaper(µ).

Schaper uses the valuation map attached to H (see Specht (3.2.1) and [JM97]).
One way in which the q-Schaper theorem can be applied is as follows. Suppose that we have a

projective module x, written as a linear combination of Specht modules and suppose that we are trying
to decide whether the projective indecomposable P(µ) is a direct summand of x. Then, providing that
we know that P(ν) is not a summand of x for all (e-regular) partitions ν which strictly dominate µ (see
Dominates (3.8.12)), P(µ) is a summand of x if and only if InnerProduct(Schaper( H,µ),x) is
non-zero (note, in particular, that we don’t need to know the indecomposable P(µ) in order to perform
this calculation).

The q-Schaper theorem can also be used to check for irreduciblity; in fact, this is the basis for the
criterion employed by IsSimpleModule (3.7.2).

Example
gap> SizeScreen([80,20]);; H:=Specht(2);;

gap> Display(Schaper(H,9,5,3,2,1));

S(17,2,1) - S(15,2,1^3) + S(13,2^3,1) - S(11,3^2,2,1) + S(10,4,3,2,1) - S(9,8,\

3) - S(9,8,1^3) + S(9,6,3,2) + S(9,6,3,1^2) + S(9,6,2^2,1)

gap> Display(Schaper(H,9,6,5,2));

0S()

The last calculation shows that S(9,6,5,2) is irreducible when R is a field of characteristic zero and e=
2 (cf. IsSimpleModule(H,9,6,5,2)). This function requires the package hecke (see LoadPackage
(Reference: LoadPackage)).

3.7.2 IsSimpleModule

. IsSimpleModule(H, mu) (method)

Returns: true if S(µ) is simple and false otherwise.
µ an e-regular partition.
This calculation uses the valuation function of H; see Specht (3.2.1). Note that the criterion used

by IsSimpleModule is completely combinatorial; it is derived from the q-Schaper theorem [JM97].
Example

gap> H:=Specht(3);;

gap> IsSimpleModule(H,45,31,24);

false

See also Schaper (3.7.1). This function requires the package hecke (see LoadPackage (Reference:
LoadPackage)).

3.7.3 MullineuxMap

. MullineuxMap(e|H, mu) (method)
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The sign representation D(1n) of the Hecke algebra is the (one dimensional) representation send-
ing Tw to (−1)l(w). The Hecke algebra H is not a Hopf algebra so there is no well defined action
of H upon the tensor product of two H-modules; however, there is an outer automorphism # of H
which corresponds to tensoring with D(1n). This sends an irreducible module D(µ) to an irreducible
D(µ)# ∼= D(µ#) for some e-regular partition µ#. In the symmetric group case, Mullineux gave a con-
jectural algorithm for calculating µ#; consequently the map sending µ to µ# is known as the Mullineux
map.

Deep results of Kleshchev [Kle96] for the symmetric group give another (proven) algorithm for
calculating the partition µ# (Ford and Kleshchev have deduced Mullineux’s conjecture from this).
Using the canonical basis, it was shown by [LLT96] that the natural generalization of Kleshchev’s
algorithm to H gives the Mullineux map for Hecke algebras over fields of characteristic zero. The
general case follows from this, so the Mullineux map is now known for all Hecke algebras.

Kleshchev’s map is easy to describe; he proved that if gns is any good node sequence for µ , then
the sequence obtained from gns by replacing each residue r by −r mod e is a good node sequence for
µ# (see GoodNodeSequence (3.7.8)).

Example
gap> MullineuxMap(Specht(2),12,5,2);

[ 12, 5, 2 ]

gap> MullineuxMap(Specht(4),12,5,2);

[ 4, 4, 4, 2, 2, 1, 1, 1 ]

gap> MullineuxMap(Specht(6),12,5,2);

[ 4, 3, 2, 2, 2, 2, 2, 1, 1 ]

gap> MullineuxMap(Specht(8),12,5,2);

[ 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1 ]

gap> MullineuxMap(Specht(10),12,5,2);

[ 3, 3, 3, 3, 2, 1, 1, 1, 1, 1 ]

Returns: the image of µ under the Mullineux map
. MullineuxMap(d, mu) (method)

The Mullineux map can also be calculated using a decomposition matrix. To see this recall that
“tensoring” a Specht module S(µ) with the sign representation yields a module isomorphic to the dual
of S(λ ), where λ is the partition conjugate to µ . It follows that dµν = dλν# for all e-regular partitions
ν . Therefore, if µ is the last partition in the lexicographic order such that dµν 6= 0 then we must have
ν# = λ . The second form of MullineuxMap uses d to calculate µ# rather than the Kleshchev-[LLT96]
result. . MullineuxMap(x) (method)

Returns: returns x#, the image of x under #.
Note that the above remarks show that P(µ) is mapped to P(µ#) via the Mullineux map;

this observation is useful when calculating decomposition matrices (and is used by the function
InducedDecompositionMatrix (3.5.1)).

See also GoodNodes (3.7.6) and GoodNodeSequence (3.7.8). This function requires the package
hecke (see LoadPackage (Reference: LoadPackage)).

3.7.4 MullineuxSymbol

. MullineuxSymbol(e|H, mu) (method)

Returns: the Mullineux symbol of the e-regular partition µ .
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Example
gap> MullineuxSymbol(5,[8,6,5,5]);

[ [ 10, 6, 5, 3 ], [ 4, 4, 3, 2 ] ]

See also PartitionMullineuxSymbol (3.7.5). This function requires the package hecke (see
LoadPackage (Reference: LoadPackage)).

3.7.5 PartitionMullineuxSymbol

. PartitionMullineuxSymbol(e|H, ms) (method)

Returns: the e-regular partition corresponding to the given Mullineux symbol ms
Example

gap> PartitionMullineuxSymbol(5, MullineuxSymbol(5,[8,6,5,5]) );

[ 8, 6, 5, 5 ]

See also MullineuxSymbol (3.7.4). This function requires the package hecke (see LoadPackage

(Reference: LoadPackage)).

3.7.6 GoodNodes

. GoodNodes(e|H, mu) (method)

Returns: a list of the rows of µ which end in a good node. The good node of residue r (if it
exists) is the (r+1)-st element in this list.
. GoodNodes(e|H, mu, r) (method)

Returns: the number of the row which ends with the good node of residue r or fail if there is
no good node of residue r.

Given a partition and an integer e, Kleshchev [K] defined the notion of good node for each residue
r (0 ≤ r < e). When e is prime and µ is e-regular, Kleshchev showed that the good nodes describe
the restriction of the socle of D(µ) in the symmetric group case. Brundan [Bru98] has recently
generalized this result to the Hecke algebra.

By definition, there is at most one good node for each residue r and this node is a removable node
(in the diagram of µ).

Example
gap> GoodNodes(5,[5,4,3,2]);

[ fail, fail, 2, fail, 1 ]

gap> GoodNodes(5,[5,4,3,2],0);

fail

gap> GoodNodes(5,[5,4,3,2],4);

1

The good nodes also determine the Kleshchev-Mullineux map (see GoodNodeSequence (3.7.8) and
MullineuxMap (3.7.3)). This function requires the package hecke (see LoadPackage (Reference:
LoadPackage)).

3.7.7 NormalNodes

. NormalNodes(e|H, mu) (method)

Returns: the numbers of the rows of µ which end in one of Kleshchev’s [Kle96] normal nodes.
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. NormalNodes(e|H, mu, r) (method)

Returns: the rows corresponding to normal nodes of the specified residue.
Example

gap> NormalNodes(5,[6,5,4,4,3,2,1,1,1]);

[ [ 1, 4 ], [ ], [ ], [ 2, 5 ], [ ] ]

gap> NormalNodes(5,[6,5,4,4,3,2,1,1,1],0);

[ 1, 4 ]

See also GoodNodes (3.7.6). This function requires the package hecke (see LoadPackage

(Reference: LoadPackage)).

3.7.8 GoodNodeSequence

. GoodNodeSequence(e|H, mu) (method)

Given an e-regular partition µ of n, a good node sequence for µ is a sequence gns of n residues
such that µ has a good node of residue r, where r is the last residue in gns and the first n−1 residues in
gns are a good node sequence for the partition obtained from µ by deleting its (unique) good node with
residue r (see GoodNodes (3.7.6)). In general, µ will have more than one good node sequence; how-
ever, any good node sequence uniquely determines µ (see PartitionGoodNodeSequence (3.7.9)).

Example
gap> H:=Specht(4);; GoodNodeSequence(H,4,3,1);

[ 0, 3, 1, 0, 2, 2, 1, 3 ]

gap> GoodNodeSequence(H,4,3,2);

[ 0, 3, 1, 0, 2, 2, 1, 3, 3 ]

gap> GoodNodeSequence(H,4,4,2);

[ 0, 3, 1, 0, 2, 2, 1, 3, 3, 2 ]

gap> GoodNodeSequence(H,5,4,2);

[ 0, 3, 1, 0, 2, 2, 1, 3, 3, 2, 0 ]

. GoodNodeSequences(e|H, mu) (method)

Returns: list of all good node sequences for µ

Example
gap> H:=Specht(4);; GoodNodeSequences(H,5,2,1);

[ [ 0, 1, 2, 3, 3, 2, 0, 0 ], [ 0, 3, 1, 2, 2, 3, 0, 0 ],

[ 0, 1, 3, 2, 2, 3, 0, 0 ], [ 0, 1, 2, 3, 3, 0, 2, 0 ],

[ 0, 1, 2, 3, 0, 3, 2, 0 ], [ 0, 1, 2, 3, 3, 0, 0, 2 ],

[ 0, 1, 2, 3, 0, 3, 0, 2 ] ]

The good node sequences determine the Mullineux map (see GoodNodes (3.7.6) and MullineuxMap

(3.7.3)). This function requires the package hecke (see LoadPackage (Reference: LoadPackage)).

3.7.9 PartitionGoodNodeSequence

. PartitionGoodNodeSequence(e|H, gns) (method)

Returns: the unique e-regular partition corresponding to gns (or fail if in fact gns is not a good
node sequence).
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Example
gap> H:=Specht(4);;

gap> PartitionGoodNodeSequence(H,0, 3, 1, 0, 2, 2, 1, 3, 3, 2);

[ 4, 4, 2 ]

See also GoodNodes (3.7.6), GoodNodeSequence (3.7.8) and MullineuxMap (3.7.3). This function
requires the package hecke (see LoadPackage (Reference: LoadPackage)).

3.7.10 GoodNodeLatticePath

. GoodNodeLatticePath(e|H, mu) (method)

Returns: a sequence of partitions which give a path in the e-good partition lattice from the empty
partition to µ .
. GoodNodeLatticePaths(e|H, mu) (method)

Returns: the list of all paths in the e-good partition lattice which end in µ .
. LatticePathGoodNodeSequence(e|H, gns) (method)

Returns: the path corresponding to a given good node sequence gns
Example

gap> GoodNodeLatticePath(3,3,2,1);

[ [ 1 ], [ 1, 1 ], [ 2, 1 ], [ 2, 1, 1 ], [ 2, 2, 1 ], [ 3, 2, 1 ] ]

gap> GoodNodeLatticePaths(3,3,2,1);

[ [ [ 1 ], [ 1, 1 ], [ 2, 1 ], [ 2, 1, 1 ], [ 2, 2, 1 ], [ 3, 2, 1 ] ],

[ [ 1 ], [ 1, 1 ], [ 2, 1 ], [ 2, 2 ], [ 2, 2, 1 ], [ 3, 2, 1 ] ] ]

gap> GoodNodeSequence(4,6,3,2);

[ 0, 3, 1, 0, 2, 2, 3, 3, 0, 1, 1 ]

gap> LatticePathGoodNodeSequence(4,last);

[ [ 1 ], [ 1, 1 ], [ 2, 1 ], [ 2, 2 ], [ 3, 2 ], [ 3, 2, 1 ], [ 4, 2, 1 ],

[ 4, 2, 2 ], [ 5, 2, 2 ], [ 6, 2, 2 ], [ 6, 3, 2 ] ]

See also GoodNodes (3.7.6). This function requires the package hecke (see LoadPackage

(Reference: LoadPackage)).

3.7.11 LittlewoodRichardsonRule

. LittlewoodRichardsonRule(mu, nu) (method)

. LittlewoodRichardsonCoefficient(mu, nu, tau) (method)

Given partitions µ of n and ν of m the module S(µ)⊗ S(ν) is naturally an H(Sn× Sm)- mod-
ule and, by inducing, we obtain an H(Sn+m)-module. This module has the same composition fac-
tors as ∑ν aλ

µνS(λ ), where the sum runs over all partitions λ of n + m and the integers aλ
µν are

the Littlewood-Richardson coefficients. The integers aλ
µν can be calculated using a straightfor-

ward combinatorial algorithm known as the Littlewood-Richardson rule (see [JK81]). The function
LittlewoodRichardsonRule returns an (unordered) list of partitions of n+m in which each parti-
tion λ occurs aλ

µν times. The Littlewood-Richardson coefficients are independent of e; they can be
read more easily from the computation S(µ)⊗S(ν).

Example
gap> SizeScreen([80,20]);;

gap> H:=Specht(0);; # the generic Hecke algebra with R=C[q]

gap> LittlewoodRichardsonRule([3,2,1],[4,2]);
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[ [ 4, 3, 2, 2, 1 ], [ 4, 3, 3, 1, 1 ], [ 4, 3, 3, 2 ], [ 4, 4, 2, 1, 1 ],

[ 4, 4, 2, 2 ], [ 4, 4, 3, 1 ], [ 5, 2, 2, 2, 1 ], [ 5, 3, 2, 1, 1 ],

[ 5, 3, 2, 2 ], [ 5, 4, 2, 1 ], [ 5, 3, 2, 1, 1 ], [ 5, 3, 3, 1 ],

[ 5, 4, 1, 1, 1 ], [ 5, 4, 2, 1 ], [ 5, 5, 1, 1 ], [ 5, 3, 2, 2 ],

[ 5, 3, 3, 1 ], [ 5, 4, 2, 1 ], [ 5, 4, 3 ], [ 5, 5, 2 ], [ 6, 2, 2, 1, 1 ],

[ 6, 3, 1, 1, 1 ], [ 6, 3, 2, 1 ], [ 6, 4, 1, 1 ], [ 6, 2, 2, 2 ],

[ 6, 3, 2, 1 ], [ 6, 4, 2 ], [ 6, 3, 2, 1 ], [ 6, 3, 3 ], [ 6, 4, 1, 1 ],

[ 6, 4, 2 ], [ 6, 5, 1 ], [ 7, 2, 2, 1 ], [ 7, 3, 1, 1 ], [ 7, 3, 2 ],

[ 7, 4, 1 ] ]

gap> Display(MakeSpecht(H,3,2,1)*MakeSpecht(H,4,2));

S(7,4,1) + S(7,3,2) + S(7,3,1^2) + S(7,2^2,1) + S(6,5,1) + 2S(6,4,2) + 2S(6,4,\

1^2) + S(6,3^2) + 3S(6,3,2,1) + S(6,3,1^3) + S(6,2^3) + S(6,2^2,1^2) + S(5^2,2\

) + S(5^2,1^2) + S(5,4,3) + 3S(5,4,2,1) + S(5,4,1^3) + 2S(5,3^2,1) + 2S(5,3,2^\

2) + 2S(5,3,2,1^2) + S(5,2^3,1) + S(4^2,3,1) + S(4^2,2^2) + S(4^2,2,1^2) + S(4\

,3^2,2) + S(4,3^2,1^2) + S(4,3,2^2,1)

gap> LittlewoodRichardsonCoefficient([3,2,1],[4,2],[5,4,2,1]);

3

The function LittlewoodRichardsonCoefficient returns a single Littlewood-Richardson coef-
ficient (although you are really better off asking for all of them, since they will all be calculated
anyway).

See also RInducedModule (3.4.1) and InverseLittlewoodRichardsonRule (3.7.12). This
function requires the package hecke (see LoadPackage (Reference: LoadPackage)).

3.7.12 InverseLittlewoodRichardsonRule

. InverseLittlewoodRichardsonRule(tau) (method)

Returns: a list of all pairs of partitions [µ,ν ] such that the Littlewood-Richardson coefficient
aτ

µν is non-zero (see LittlewoodRichardsonRule (3.7.11)). The list returned is unordered and
[µ,ν ] will appear aτ

µν times in it.

Example
gap> SizeScreen([80,20]);; InverseLittlewoodRichardsonRule(3,2,1);

[ [ [ ], [ 3, 2, 1 ] ], [ [ 1 ], [ 3, 2 ] ], [ [ 1 ], [ 2, 2, 1 ] ],

[ [ 1 ], [ 3, 1, 1 ] ], [ [ 1, 1 ], [ 2, 2 ] ], [ [ 1, 1 ], [ 3, 1 ] ],

[ [ 1, 1 ], [ 2, 1, 1 ] ], [ [ 1, 1, 1 ], [ 2, 1 ] ], [ [ 2 ], [ 2, 2 ] ],

[ [ 2 ], [ 3, 1 ] ], [ [ 2 ], [ 2, 1, 1 ] ], [ [ 2, 1 ], [ 3 ] ],

[ [ 2, 1 ], [ 2, 1 ] ], [ [ 2, 1 ], [ 2, 1 ] ], [ [ 2, 1 ], [ 1, 1, 1 ] ],

[ [ 2, 1, 1 ], [ 2 ] ], [ [ 2, 1, 1 ], [ 1, 1 ] ], [ [ 2, 2 ], [ 2 ] ],

[ [ 2, 2 ], [ 1, 1 ] ], [ [ 2, 2, 1 ], [ 1 ] ], [ [ 3 ], [ 2, 1 ] ],

[ [ 3, 1 ], [ 2 ] ], [ [ 3, 1 ], [ 1, 1 ] ], [ [ 3, 1, 1 ], [ 1 ] ],

[ [ 3, 2 ], [ 1 ] ], [ [ 3, 2, 1 ], [ ] ] ]

See also LittlewoodRichardsonRule (3.7.11). This function requires the package hecke (see
LoadPackage (Reference: LoadPackage)).

3.7.13 EResidueDiagram

. EResidueDiagram(H|e, mu) (method)

. EResidueDiagram(x) (method)
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The e-residue of the (i, j)-th node in the diagram of a partition µ is ( j − i) mod e.
EResidueDiagram(e,µ) prints the diagram of the partition µ replacing each node with its e-residue.
If x is a module then EResidueDiagram(x) prints the e-residue diagrams of all of the e-regular par-
titions appearing in x (such diagrams are useful when trying to decide how to restrict and induce
modules and also in applying results such as the “Scattering theorem” of [JM96]). It is not necessary
to supply the integer e in this case because x “knows” the value of e.

Example
gap> H:=Specht(2);; EResidueDiagram(MakeSpecht(MakePIM(H,7,5)));

[ 7, 5 ]

0 1 0 1 0 1 0

1 0 1 0 1

[ 6, 5, 1 ]

0 1 0 1 0 1

1 0 1 0 1

0

[ 5, 4, 2, 1 ]

0 1 0 1 0

1 0 1 0

0 1

1

# There are 3 2-regular partitions.

true

This function requires the package hecke (see LoadPackage (Reference: LoadPackage)).

3.7.14 HookLengthDiagram

. HookLengthDiagram(mu) (method)

Prints the diagram of µ , replacing each node with its hook length (see [JK81]).
Example

gap> HookLengthDiagram(11,6,3,2);

14 13 11 9 8 7 5 4 3 2 1

8 7 5 3 2 1

4 3 1

2 1

true

This function requires the package hecke (see LoadPackage (Reference: LoadPackage)).

3.7.15 RemoveRimHook

. RemoveRimHook(mu, row, col) (method)

Returns: the partition obtained from µ by removing the (row,col)-th rim hook from (the diagram
of) µ .

Example
gap> RemoveRimHook([6,5,4],1,2);

[ 4, 3, 1 ]

gap> RemoveRimHook([6,5,4],2,3);

[ 6, 3, 2 ]
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gap> HookLengthDiagram(6,5,4);

8 7 6 5 3 1

6 5 4 3 1

4 3 2 1

true

See also AddRimHook (3.7.16). This function requires the package hecke (see LoadPackage

(Reference: LoadPackage)).

3.7.16 AddRimHook

. AddRimHook(mu, r, h) (method)

Returns: a list [ν , l] where ν is the partition obtained from µ by adding a rim hook of length h
with its “foot” in the r-th row of (the diagram of) µ and l is the leg length of the wrapped on rim hook
(see, for example, [JK81]). If the resulting diagram ν is not the diagram of a partition then fail is
returned.

Example
gap> AddRimHook([6,4,3],1,3);

[ [ 9, 4, 3 ], 0 ]

gap> AddRimHook([6,4,3],2,3);

fail

gap> AddRimHook([6,4,3],3,3);

[ [ 6, 5, 5 ], 1 ]

gap> AddRimHook([6,4,3],4,3);

[ [ 6, 4, 3, 3 ], 0 ]

gap> AddRimHook([6,4,3],5,3);

fail

See also RemoveRimHook (3.7.15). This function requires the package hecke (see LoadPackage

(Reference: LoadPackage)).

3.8 Operations on partitions

This section contains functions for manipulating partitions and also several useful orderings on the set
of partitions.

3.8.1 ECore

. ECore(e|H, mu) (method)

Returns: the e-core of the partition µ .
. EAbacus(e|H, mu) (method)

The e-core of a partition µ is what remains after as many rim e-hooks as possible have been
removed from the diagram of µ (that this is well defined is not obvious; see [JK81]).

Example
gap> H:=Specht(6);; ECore(H,16,8,6,5,3,1);

[ 4, 3, 1, 1 ]
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The e-core is calculated here using James’; notation of an abacus there is also an EAbacus function;
but it is more “pretty” than useful.

See also IsECore (3.8.2), EQuotient (3.8.3) and EWeight (3.8.5). This function requires the
package hecke (see LoadPackage (Reference: LoadPackage)).

3.8.2 IsECore

. IsECore(e|H, mu) (method)

Returns: true if µ is an e-core and false otherwise.
See also ECore (3.8.1). This function requires the package hecke (see LoadPackage (Reference:

LoadPackage)).

3.8.3 EQuotient

. EQuotient(e|H, mu) (method)

Returns: the e-quotient of µ; this is a sequence of e partitions whose definition can be found in
[JK81].

Example
gap> H:=Specht(8);; EQuotient(H,22,18,16,12,12,1,1);

[ [ 1, 1 ], [ ], [ ], [ ], [ ], [ 2, 2 ], [ ], [ 1 ] ]

See also ECore (3.8.1) and CombineEQuotientECore (3.8.4). This function requires the package
hecke (see LoadPackage (Reference: LoadPackage)).

3.8.4 CombineEQuotientECore

. CombineEQuotientECore(e|H, q, C) (method)

Returns: the partition which has e-quotient q and e -core C.
A partition is uniquely determined by its e-quotient and its e -core (see EQuotient (3.8.3) and

ECore (3.8.1)).
Example

gap> H:=Specht(11);; mu:=[100,98,57,43,12,1];;

gap> Q:=EQuotient(H,mu);

[ [ 9 ], [ ], [ ], [ ], [ ], [ ], [ 3 ], [ 1 ], [ 9 ], [ ], [ 5 ] ]

gap> C:=ECore(H,mu);

[ 7, 2, 2, 1, 1, 1 ]

gap> CombineEQuotientECore(H,Q,C);

[ 100, 98, 57, 43, 12, 1 ]

See also ECore (3.8.1) and EQuotient (3.8.3). This function requires the package hecke (see
LoadPackage (Reference: LoadPackage)).

3.8.5 EWeight

. EWeight(e|H, mu) (method)

The e-weight of a partition is the number of e-hooks which must be removed from the partition to
reach the e-core (see ECore (3.8.1)).
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Example
gap> EWeight(6,[16,8,6,5,3,1]);

5

This function requires the package hecke (see LoadPackage (Reference: LoadPackage)).

3.8.6 ERegularPartitions

. ERegularPartitions(e|H, n) (method)

Returns: the list of e-regular partitions of n, ordered reverse lexicographically (see
Lexicographic (3.8.14)).

A partition µ =(µ1,µ2, . . .) is e-regular if there is no integer i such that µi = µi+1 = · · ·= µi+e−1 >
0.

Example
gap> H:=Specht(3);; ERegularPartitions(H,6);

[ [ 2, 2, 1, 1 ], [ 3, 2, 1 ], [ 3, 3 ], [ 4, 1, 1 ], [ 4, 2 ], [ 5, 1 ],

[ 6 ] ]

This function requires the package hecke (see LoadPackage (Reference: LoadPackage)).

3.8.7 IsERegular

. IsERegular(e|H, mu) (method)

Returns: true if µ is e-regular and false otherwise.
This functions requires the package hecke (see LoadPackage (Reference: LoadPackage)).

3.8.8 ConjugatePartition

. ConjugatePartition(mu) (method)

Returns: the partition whose diagram is obtained by interchanging the rows and columns in the
diagram of µ .

Example
gap> ConjugatePartition(6,4,3,2);

[ 4, 4, 3, 2, 1, 1 ]

This function requires the package hecke (see LoadPackage (Reference: LoadPackage)).

3.8.9 BetaSet

. BetaSet(mu) (method)

Returns: a set of beta numbers (i.e. first column hook lengths; see [JK81]) corresponding to the
partition µ .

Example
gap> BetaSet([5,4,2,2]);

[ 2, 3, 6, 8 ]

See also PartitionBetaSet (3.8.10). This function requires the package hecke (see LoadPackage
(Reference: LoadPackage)).
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3.8.10 PartitionBetaSet

. PartitionBetaSet(bn) (method)

Returns: the partitions corresponding to the given set of beta numbers bn.Note in particular that
bn must be a set of integers.

Example
gap> PartitionBetaSet([ 2, 3, 6, 8 ]);

[ 5, 4, 2, 2 ]

This function requires the package hecke (see LoadPackage (Reference: LoadPackage)).

3.8.11 ETopLadder

. ETopLadder(e|H, mu) (method)

The ladders in the diagram of a partition are the lines connecting nodes of constant e-residue,
having slope e− 1 (see [JK81]). A new partition can be obtained from µ by sliding all nodes up to
the highest possible rungs on their ladders. Returns: the partition obtained in this way; it is
automatically e-regular (this partition is denoted µR in [JK81]).

Example
gap> H:=Specht(4);;

gap> ETopLadder(H,1,1,1,1,1,1,1,1,1,1);

[ 4, 3, 3 ]

gap> ETopLadder(6,1,1,1,1,1,1,1,1,1,1);

[ 2, 2, 2, 2, 2 ]

This function requires the package hecke (see LoadPackage (Reference: LoadPackage)).

3.8.12 Dominates

. Dominates(mu, nu) (method)

Returns: true if either µ=ν or ∀i≥ 1 : ∑
i
j=1 µ j ≥ ∑

i
j=1 ν j and false otherwise.

The dominance ordering is an important partial order in the representation theory of Hecke algebra
because dµν = 0 unless ν dominates µ .

Example
gap> Dominates([5,4],[4,4,1]);

true

This function requires the package hecke (see LoadPackage (Reference: LoadPackage)).

3.8.13 LengthLexicographic

. LengthLexicographic(mu, nu) (method)

Returns: true if the length of µ is less than the length of ν or if the length of µ equals the length
of ν and Lexicographic(µ,ν).

Example
gap> p:=Partitions(6);;Sort(p,LengthLexicographic); p;

[ [ 6 ], [ 5, 1 ], [ 4, 2 ], [ 3, 3 ], [ 4, 1, 1 ], [ 3, 2, 1 ], [ 2, 2, 2 ],

[ 3, 1, 1, 1 ], [ 2, 2, 1, 1 ], [ 2, 1, 1, 1, 1 ], [ 1, 1, 1, 1, 1, 1 ] ]

This function requires the package hecke (see LoadPackage (Reference: LoadPackage)).
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3.8.14 Lexicographic

. Lexicographic(mu, nu) (method)

Returns: true if µ is lexicographically greater than or equal to ν .
Example

gap> p:=Partitions(6);;Sort(p,Lexicographic); p;

[ [ 6 ], [ 5, 1 ], [ 4, 2 ], [ 4, 1, 1 ], [ 3, 3 ], [ 3, 2, 1 ],

[ 3, 1, 1, 1 ], [ 2, 2, 2 ], [ 2, 2, 1, 1 ], [ 2, 1, 1, 1, 1 ],

[ 1, 1, 1, 1, 1, 1 ] ]

This function requires the package hecke (see LoadPackage (Reference: LoadPackage)).

3.8.15 ReverseDominance

. ReverseDominance(mu, nu) (method)

Returns: true if ∀i > 0 : ∑ j≥i µ j > ∑ j≥i ν j.
This is another total order on partitions which extends the dominance ordering (see Dominates

(3.8.12)).
Example

gap> p:=Partitions(6);;Sort(p,ReverseDominance); p;

[ [ 6 ], [ 5, 1 ], [ 4, 2 ], [ 3, 3 ], [ 4, 1, 1 ], [ 3, 2, 1 ], [ 2, 2, 2 ],

[ 3, 1, 1, 1 ], [ 2, 2, 1, 1 ], [ 2, 1, 1, 1, 1 ], [ 1, 1, 1, 1, 1, 1 ] ]

This is the ordering used by James in the appendix of his Springer lecture notes book.
This function requires the package hecke (see LoadPackage (Reference: LoadPackage)).

3.9 Miscellaneous functions on modules

This section contains some functions for looking at the partitions in a given module for the Hecke
algebras. Most of them are used internally by Hecke.

3.9.1 Specialized

. Specialized(x[, q]) (method)

. Specialized(d[, q]) (method)

Returns: the corresponding element of the Grothendieck ring or the corresponding decomposi-
tion matrix of the Hecke algebra when given an element of the Fock space x (see Specht (3.2.1)), or
a crystallized decomposition matrix (see CrystalDecompositionMatrix (3.2.9)), respectively.

By default the indeterminate v is specialized to 1; however v can be specialized to any (integer) q
by supplying a second argument.

Example
gap> SizeScreen([80,20]);; H:=Specht(2);; x:=MakeFockPIM(H,6,2);; Display(x);

Sq(6,2) + vSq(6,1^2) + vSq(5,3) + v^2Sq(5,1^3) + vSq(4,3,1) + v^2Sq(4,2^2) + (\

v^3+v)Sq(4,2,1^2) + v^2Sq(4,1^4) + v^2Sq(3^2,1^2) + v^3Sq(3,2^2,1) + v^3Sq(3,1\

^5) + v^3Sq(2^3,1^2) + v^4Sq(2^2,1^4)

gap> Display(Specialized(x));

S(6,2) + S(6,1^2) + S(5,3) + S(5,1^3) + S(4,3,1) + S(4,2^2) + 2S(4,2,1^2) + S(\

4,1^4) + S(3^2,1^2) + S(3,2^2,1) + S(3,1^5) + S(2^3,1^2) + S(2^2,1^4)

gap> Display(Specialized(x,2));
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S(6,2) + 2S(6,1^2) + 2S(5,3) + 4S(5,1^3) + 2S(4,3,1) + 4S(4,2^2) + 10S(4,2,1^2\

) + 4S(4,1^4) + 4S(3^2,1^2) + 8S(3,2^2,1) + 8S(3,1^5) + 8S(2^3,1^2) + 16S(2^2,\

1^4)

An example of Specialized being applied to a crystallized decomposition matrix can be found
in CrystalDecompositionMatrix (3.2.9). This function requires the package hecke (see
LoadPackage (Reference: LoadPackage)).

3.9.2 ERegulars

. ERegulars(x) (method)

. ERegulars(d) (method)

. ListERegulars(x) (method)

ERegulars(x) prints a list of the e-regular partitions, together with multiplicities, which occur in
the module x. ListERegulars(x) returns an actual list of these partitions rather than printing them.

Example
gap> H:=Specht(8);;

gap> x:=MakeSpecht(RInducedModule(MakePIM(H,8,5,3)));; Display(x);

S(9,5,3) + S(8,6,3) + S(8,5,4) + S(8,5,3,1) + S(6,5,3^2) + S(5^2,4,3) + S(5^2,3^2,1)

gap> ERegulars(x);

[ 9, 5, 3 ] [ 8, 6, 3 ] [ 8, 5, 4 ] [ 8, 5, 3, 1 ]

[ 6, 5, 3, 3 ] [ 5, 5, 4, 3 ] [ 5, 5, 3, 3, 1 ]

gap> Display(MakePIM(x));

P(9,5,3) + P(8,6,3) + P(8,5,4) + P(8,5,3,1)

This example shows why these functions are useful: given a projective module x, as aboveand the list
of e-regular partitions in x we know the possible indecomposable direct summands of x.

Note that it is not necessary to specify what e is when calling this function because x “knows” the
value of e.

The function ERegulars can also be applied to a decomposition matrix d; in this case it returns
the unitriangular submatrix of d whose rows and columns are indexed by the e-regular partitions.

These function requires the package hecke (see LoadPackage (Reference: LoadPackage)).

3.9.3 SplitECores

. SplitECores(x) (method)

Returns: a list [b1, . . . ,bk] where the Specht modules in each bi all belong to the same block (i.e.
they have the same e-core).
. SplitECores(x, mu) (method)

Returns: the component of x which is in the same block as µ .
. SplitECores(x, y) (method)

Returns: the component of x which is in the same block as y.
Example

gap> H:=Specht(2);;

gap> Display(SplitECores(RInducedModule(MakeSpecht(H,5,3,1))));

[ S(6,3,1) + S(5,3,2) + S(5,3,1,1), S(5,4,1) ]

gap> Display(RInducedModule(MakeSpecht(H,5,3,1),0));

S(5,4,1)
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gap> Display(RInducedModule(MakeSpecht(H,5,3,1),1));

S(6,3,1) + S(5,3,2) + S(5,3,1^2)

See also ECore (3.8.1), RInducedModule (3.4.1) and RRestrictedModule (3.4.3). This function
requires the package hecke (see LoadPackage (Reference: LoadPackage)).

3.9.4 Coefficient

. Coefficient(x, mu) (method)

Returns: the coefficient of S(µ) in x (resp. D(µ), or P(µ)).
Example

gap> SizeScreen([80,20]);;

gap> H:=Specht(3);; x:=MakeSpecht(MakePIM(H,7,3));; Display(x);

S(7,3) + S(7,2,1) + S(6,2,1^2) + S(5^2) + S(5,2^2,1) + S(4^2,1^2) + S(4,3^2) +\

S(4,3,2,1)

gap> Coefficient(x,5,2,2,1);

1

This function requires the package hecke (see LoadPackage (Reference: LoadPackage)).

3.9.5 InnerProduct

. InnerProduct(x, y) (method)

Here x and y are some modules of the Hecke algebra (i.e. Specht modules, PIMS, or simple
modules). InnerProduct computes the standard inner product of these elements. This is sometimes
a convenient way to compute decomposition numbers (for example).

Example
gap> H:=Specht(2);; InnerProduct(MakeSpecht(H,2,2,2,1), MakePIM(H,4,3));

1

gap> DecompositionNumber(H,[2,2,2,1],[4,3]);

1

This function requires the package hecke (see LoadPackage (Reference: LoadPackage)).

3.10 Semi-standard and standard tableaux

These functions are not really part of Hecke proper; however they are related and may well be of use
to someone. Tableaux are represented by objects, that can be constructed from a list of lists.

3.10.1 Tableau

. Tableau(tab) (method)

Returns: tableau object corresponding to the given list of lists
This is the constructor for tableau objects. The first entry of the given argument list is the list

corresponding to the first row of the tableau.
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3.10.2 SemiStandardTableaux

. SemiStandardTableaux(mu, nu) (method)

Returns: list of the semistandard µ-tableaux of type ν [JK81]
µ a partition, ν a composition.

Example
gap> SizeScreen([80,20]);; Display(SemiStandardTableaux([4,3],[1,1,1,2,2]));

[ Tableau( [ [ 1, 2, 3, 4 ], [ 4, 5, 5 ] ] ),

Tableau( [ [ 1, 2, 3, 5 ], [ 4, 4, 5 ] ] ),

Tableau( [ [ 1, 2, 4, 4 ], [ 3, 5, 5 ] ] ),

Tableau( [ [ 1, 2, 4, 5 ], [ 3, 4, 5 ] ] ),

Tableau( [ [ 1, 3, 4, 4 ], [ 2, 5, 5 ] ] ),

Tableau( [ [ 1, 3, 4, 5 ], [ 2, 4, 5 ] ] ) ]

See also StandardTableaux (3.10.3). This function requires the package hecke (see LoadPackage
(Reference: LoadPackage)).

3.10.3 StandardTableaux

. StandardTableaux(mu) (method)

Returns: list of the standard µ-tableaux
µ a partition

Example
gap> SizeScreen([80,20]);; Display(StandardTableaux(4,2));

[ Tableau( [ [ 1, 2, 3, 4 ], [ 5, 6 ] ] ), Tableau( [ [ 1, 2, 3, 5 ], [ 4, 6 ] ] ),

Tableau( [ [ 1, 2, 3, 6 ], [ 4, 5 ] ] ), Tableau( [ [ 1, 2, 4, 5 ], [ 3, 6 ] ] ),

Tableau( [ [ 1, 2, 4, 6 ], [ 3, 5 ] ] ), Tableau( [ [ 1, 2, 5, 6 ], [ 3, 4 ] ] ),

Tableau( [ [ 1, 3, 4, 5 ], [ 2, 6 ] ] ), Tableau( [ [ 1, 3, 4, 6 ], [ 2, 5 ] ] ),

Tableau( [ [ 1, 3, 5, 6 ], [ 2, 4 ] ] ) ]

See also SemiStandardTableaux (3.10.2). This function requires the package hecke (see
LoadPackage (Reference: LoadPackage)).

3.10.4 ConjugateTableau

. ConjugateTableau(tab) (method)

Returns: tableau obtained from tab by interchangings its rows and columns
Example

gap> Display(ConjugateTableau(Tableau([ [ 1, 3, 5, 6 ], [ 2, 4 ] ])));

Standard Tableau:

1 2

3 4

5

6

This function requires the package hecke (see LoadPackage (Reference: LoadPackage)).
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3.10.5 ShapeTableau

. ShapeTableau(tab) (method)

Returns: the partition (or composition) obtained from tab
Example

gap> ShapeTableau( Tableau([ [ 1, 1, 2, 3 ], [ 4, 5 ] ]) );

[ 4, 2 ]

This function requires the package hecke (see LoadPackage (Reference: LoadPackage)).

3.10.6 TypeTableau

. TypeTableau(tab) (method)

Returns: the type of the (semistandard) tableau tab
The type of a tableau is, the composition σ = (σ1,σ2, . . .) where σi is the number of entries in tab

which are equal to i.
Example

gap> SizeScreen([80,20]);;

gap> List(SemiStandardTableaux([5,4,2],[4,3,0,1,3]),TypeTableau);

[ [ 4, 3, 0, 1, 3 ], [ 4, 3, 0, 1, 3 ], [ 4, 3, 0, 1, 3 ], [ 4, 3, 0, 1, 3 ],

[ 4, 3, 0, 1, 3 ] ]

This function requires the package hecke (see LoadPackage (Reference: LoadPackage)).
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