
Formalized Timed Automata

Simon Wimmer?

Institut für Informatik, Technische Universität München

Abstract. Timed automata are a widely used formalism for modeling
real-time systems, which is employed in a class of successful model check-
ers such as UPPAAL. These tools can be understood as trust-multipliers:
we trust their correctness to deduce trust in the safety of systems checked
by these tools. However, mistakes have previously been made. This par-
ticularly regards an approximation operation, which is used by model-
checking algorithms to obtain a finite search space. The use of this op-
eration left a soundness problem in the tools employing it, which was
only discovered years after the first model checkers were devised. This
work aims to provide certainty to our knowledge of the basic theory via
formalization in Isabelle/HOL: we define the main concepts, formalize
the classic decidability result for the language emptiness problem, prove
correctness of the basic forward analysis operations, and finally outline
how both streams of work can be combined to show that forward analysis
with the common approximation operation correctly decides emptiness
for the class of diagonal-free timed automata.

1 Introduction

The foundations of the theory of timed automata are presented in the seminal
work of Alur and Dill [1, 2]. They introduced the formalism as a model for sys-
tems with real-time constraints and showed how to decide the language emptiness
problem via the so-called region construction. Unfortunately, the number of re-
gions explored by this algorithm is exponential in the size of the automaton under
consideration. Moreover, Alur and Dill also showed that the language emptiness
problem for timed automata is PSPACE-hard. Still, the formalism is employed
in practical model checking [12, 13, 19] by means of algorithms based on Dif-
ference Bound Matrices (DBMs). These algorithms (with some more elaborate
optimizations) can cope with many interesting real-life model checking prob-
lems. The search space examined by the DBM algorithms is potentially infinite.
Therefore an approximation is used to obtain a finite search space. The basic
idea is to represent every state (called zone) by the smallest set of regions which
contains the state.

? Supported by DFG project NI 491/16-1

It took nearly a decade after this operation was initially devised, until Patricia
Bouyer discovered [5] that the common algorithmic realization of this operation
diverges from its intended result: the computed result is always a convex union of
regions, whereas the smallest set of regions containing a zone can be non-convex.
This left a soundness problem, which fortunately vanishes for the restricted class
of so-called diagonal-free timed automata [6] (Section 2.1 precisely characterizes
this class). While not as expressive as the full formalism of timed automata, this
class is sufficient for modeling most of the problems of practical interest, which
explains why the problem was not discovered for many years.

This work aims to solidify the theoretical grounds on which real-time model
checking with diagonal-free timed automata stands, by formalizing the basic
theory and algorithms in Isabelle/HOL, and then going the full length to prove
Bouyer’s correctness result. Section 2 will present the formalization of the basic
notions for diagonal-free timed automata. Then Section 3 will show how we
formalized DBMs and obtained soundness and completeness results for their
basic algorithms. This includes a formalization of the Floyd-Warshall algorithm.
Afterwards (Section 4) we define the notion of regions and prove that they
are suitable for deciding the emptiness problem on timed automata. Finally, in
Section 5, a refined version of these regions will be used to precisely formalize
the approximation operation. To tie the ends of our formalization together, this
characterization of approximation will be connected with its algorithmic version.
This enables us to reuse the decidability result on the first region construction
to prove that DBM-based algorithms together with approximation can decide
the language emptiness problem for diagonal-free timed automata. For lack of
space, many of our definitions and proofs are shortened or stated informally. We
refer the reader to the entry in the Archive of Formal Proofs [15] for the full
version (over 18500 lines).

1.1 History and Related Work

As mentioned, the basic theory was devised by Alur and Dill [1, 2]. The use of
DBMs was also proposed by Dill [10] and brought to practical model checking by
Yi et al. [18]. Bouyer’s developments of our main correctness results are spread
over two papers. The first one presents a generalization of timed automata to
updatable timed automata and revisits the basic decidability results for this
class [7]. The second one [6] connects these results with DBMs to prove that
the combination of DBM-based forward analysis operations and approximation
decides the language emptiness problem.

We are aware of one previous proof-assistant formalization of timed automata
using PVS [16,17]. This work has the basic decidability result using regions and
claims to make some attempt to extend the formalization towards DBMs. An-
other line of work [11, 14] aims at modeling the class of p-automata [3] (which
is undecidable in the general case) in Coq and proving properties of concrete
p-automata within Coq. A similar approach was pursued with the help of Is-
abelle/HOL in the CClair project [8]. In contrast, the most important contri-
butions of our work are the full formalization of the relevant DBM algorithms,

and particularly the rather intricate developments towards the correctness proof
for the approximation operation – both of which pertain to practical real-time
model checking.

Unless otherwise stated, our formalizations of the basic notions and DBMs are
based on a popular tutorial by Bengtsson and Yi [4], while the developments for
the region constructions and the final correctness result follow Bouyer’s precise
work.

2 Diagonal-Free Timed Automata in Isabelle/HOL

2.1 Syntactic Definition

Compared to standard finite automata, timed automata introduce a notion of
clocks. We will fix a type ′c for the space of clocks, type ′t for time, and a type
′s for locations. While most of our formalizations only require ′t to belong to a
custom type class for totally ordered dense abelian groups, we worked on the
concrete type real for the region construction for simplicity. Fig. 1 depicts an
example of a diagonal-free timed automaton.

s1

c1 ≤ 3

s2

c1 > 2 ∧ c2 ≤ 2

c1 < 1, a2, c2 := 0
c1 ≤ 3, a1, c1 := 0

a3

Fig. 1: Example of a diagonal-free timed automaton with two clocks.

Locations and transitions are guarded with clock constraints, which have to be
fulfilled to stay in a location or to transition between them. The variants of these
constraints are modeled by

datatype (′c, ′t) cconstraint =
AND ((′c, ′t) cconstraint) ((′c, ′t) cconstraint) |
LT ′c ′t | LE ′c ′t | EQ ′c ′t | GT ′c ′t | GE ′c ′t

where the atomic constraints in the second line represent the constraint c ∼ d
for ∼ = <, ≤, =, >, ≥, respectively. The sole difference to the full class of timed
automata is that those would also allow constraints of the form c1 − c2 ∼ d. We
define a timed automaton A as a pair (T , I) where I :: ′s ⇒ (′c, ′t) cconstraint
is an assignment of clock invariants to locations; T is a set of transitions written
as A ` l −→g ,a,r l ′ where

– l :: ′s and l ′ :: ′s are start and successor location,

– g :: (′c, ′t) cconstraint is the guard of the transition,
– a :: ′a is an action label,
– and r :: ′c list is a list of clocks that will be reset to zero when the transition

is taken.

Standard definitions of timed automata would include a fixed set of locations
with a designated start location and a set of end locations. The language empti-
ness problem usually asks if any number of legal transitions can be taken to reach
an end location from the start location. Thus we can confine ourselves to study
reachability and implicitly assume the set of locations to be given by the tran-
sitions of the automaton. Note that although the definition of clock constraints
allows constants from the whole time space, we will later crucially restrict them
to the natural numbers in order to obtain decidability.

2.2 Operational Semantics

We want to define an operational semantics for timed automata via an inductive
relation. States of timed automata are pairs of a location and a clock valua-
tion of type ′c ⇒ ′t assigning time values to clocks. Time lapse is modeled by
shifting a clock valuation u by a constant value d : u ⊕ d = (λx . u x + d).
Finally, we connect clock valuations and constraints by writing, for instance,
u ` AND (LT c1 1) (EQ c2 2) if u c1 < 1 and u c2 = 2. The precise definition
is standard.

Using these definitions, the operational semantics can be defined as a rela-
tion between pairs of locations and clock valuations. More specifically, we define
action steps

A ` l −→g ,a,r l ′ ∧ u ` g ∧ u ′ ` inv-of A l ′ ∧ u ′ = [r→0]u

A ` 〈l , u〉 →a 〈l ′, u ′〉

and delay steps via
u ` inv-of A l ∧ u ⊕ d ` inv-of A l ∧ 0 ≤ d

A ` 〈l , u〉 →d 〈l , u ⊕ d〉
. Here inv-of

(T , I) = I and the notation [r → 0]u means that we update the clocks in
r to 0 in u. We write A ` 〈l , u〉 → 〈l ′,u ′〉 if either A ` 〈l , u〉 →a 〈l ′, u ′〉 or

A ` 〈l , u〉 →d 〈l ′, u ′〉.

2.3 Zone Semantics

The first conceptual step to get from this abstract operational semantics towards
concrete algorithms on DBMs is to consider zones. Informally, the concept is
simple; a zone is the set of clock valuations fulfilling a clock constraint: (′c, ′t)
zone ≡ (′c ⇒ ′t) set. This allows us to abstract from a concrete state 〈l , u〉 to
a pair of location and zone 〈l , Z 〉. We need the following operations on zones:

Z ↑ = {u ⊕ d | u ∈ Z ∧ 0 ≤ d} and Z r → 0 = {[r→0]u | u ∈ Z}.

Naturally, we define a zone-based semantics by means of another inductive rela-
tion:

A ` 〈l , Z 〉 〈l , (Z ∩ {u | u ` inv-of A l})↑ ∩ {u | u ` inv-of A l}〉

A ` l −→g ,a,r l ′

A ` 〈l , Z 〉 〈l ′, (Z ∩ {u | u ` g})r → 0 ∩ {u | u ` inv-of A l ′}〉

With the help of two easy inductive arguments one can show soundness and
completeness of this semantics w.r.t. the original semantics (where ∗ is the Kleene
star operator):

(Sound) A ` 〈l , Z 〉 ∗ 〈l ′, Z ′〉 ∧ u ′ ∈ Z ′ =⇒ ∃ u∈Z . A ` 〈l , u〉 →∗ 〈l ′, u ′〉
(Complete) A ` 〈l , u〉 →∗ 〈l ′, u ′〉 ∧ u ∈ Z

=⇒ ∃Z ′. A ` 〈l , Z 〉 ∗ 〈l ′, Z ′〉 ∧ u ′ ∈ Z ′

This is an example of where proof assistants really shine. Not only are our Isabelle
proofs shorter to write down than for example the proof given in [18] – we have
also found that the less general version given there (i.e. where Z = {u}) yields
an induction hypothesis that is not strong enough in the completeness proof.
This slight lapse is hard to detect in a human-written proof.

3 Difference Bound Matrices

3.1 Fundamentals

Difference Bound Matrices constrain differences of clocks (or more precisely, the
difference of values assigned to individual clocks by a valuation). The possible
constraints are given by:

datatype ′t DBMEntry = Le ′t | Lt ′t | ∞

This yields a simple definition of DBMs: ′t DBM ≡ nat ⇒ nat ⇒ ′t DBMEntry .
To relate clocks with rows and columns of a DBM, we use a numbering v ::
′c ⇒ nat for clocks. DBMs will regularly be accompanied by a natural number
n, which designates the number of clocks constrained by the matrix. Although
this definition complicates our formalization at times, we hope that it allows us
to easily obtain executable code for DBMs while retaining a flexible “interface”
for applications. To be able to represent the full set of clock constraints with
DBMs, we add an imaginary clock 0, which shall be assigned to 0 in every val-
uation. Zero column and row will always be reserved for 0 (i.e. ∀ c. v c > 0). If
necessary, we assume that v is an injection or surjection for indices less or equal
to n. Informally, the zone [M]v ,n represented by a DBM M is defined as

{u | ∀ c1, c2, d . v c1, v c2 ≤ n −→
(M (v c1) (v c2) = Lt d −→ u c1 − u c2 < d)
∧ (M (v c1) (v c2) = Le d −→ u c1 − u c2 ≤ d)}

assuming that v 0 = 0.

Example 1.

0 c1 c2()
0 ∞ Lt (−3) Le 0
c1 ∞ ∞ ∞
c2 Le 4 ∞ ∞

0 c1 c2()
0 Le 0 Lt (−3) Le 0
c1 ∞ Le 0 ∞
c2 Le 4 Lt 1 Le 0

0 c1 c2()
0 ∞ Le 0 Le 0
c1 ∞ ∞ Lt (−3)
c2 ∞ Le 3 Le 0

The left two DBMs both represent the zone described by the constraint c1 > 3
∧ c2 ≤ 4, while the DBM on the right represents the empty zone. 1

To simplify the subsequent discussion, we will set ′c = nat, v = id and assume
that the set of clocks of the automaton in question is {1 ..n}. We define an
ordering relation ≺ on ′t DBMEntry by means of

a < b

Le a ≺ Le b

a < b

Le a ≺ Lt b

a < b

Lt a ≺ Lt b

a ≤ b

Lt a ≺ Le b Lt ≺ ∞ Le ≺ ∞

and extend it to � in the obvious way. Observe that ≺ and � are total orders.
Additionally, we get the following important ordering property of DBMs (by
nearly automatic proof):

Lemma 1. ∀ i j . i ≤ n −→ j ≤ n −→ M i j � M ′ i j =⇒ [M]v ,n ⊆ [M ′]v ,n

We can interpret DBMs as a graph with clocks as vertices and difference con-
straints as edges between them. To give a concrete meaning to this interpreta-
tion, we first define addition on DBM entries: a � ∞ = ∞; ∞ � b = ∞; and
(∼1 x) � (∼2 y) = ∼ ′ (x + y) where ∼ ′ = Le if ∼1 = ∼2 = Le and ∼ ′ = Lt if
otherwise. Now the length of a path (of DBM indices representing clocks) defined
by 2

len M s t [] = M s t and len M s t (w · ws) = M s w � len M w t ws

gives the key to reasoning about this interpretation: for any u ∈ [M]v ,n and i ,
j , xs with set (i · j · xs) ⊆ {0 ..n},3 we get Lt (u i − u j) ≺ len M i j xs via
induction on xs. Setting i = j, we can immediately conclude that DBMs with
negative cycles are always empty. In the following we will make use of a predicate
expressing that a DBM does not contain any negative cycles which only consist
of vertices less or equal to k for some k :

cycle-free-up-to M k n ≡
∀ i xs. i ≤ n ∧ set xs ⊆ {0 ..k} −→ Le 0 � len M i i xs

We write cycle-free M n if cycle-free-up-to M n n.

1 We assume a default clock numbering, mapping ci to index i, for our examples
2 [] denotes the empty list and x · xs is a list constructed from head x and tail xs
3 set xs is the set of elements contained in xs

3.2 Operations

We define the necessary operations on DBMs to obtain a basic forward analysis
algorithm for reachability.

Floyd-Warshall algorithm From Ex. 1 we can see that to be able to tell if two
DBMs represent the same zone, we first need to put them into some canonical
form. Formally, this canonical form is characterized by the following property:

canonical M n ≡ ∀ i j k . i ≤ n ∧ j ≤ n ∧ k ≤ n −→ M i k � M i j � M j k

The key property of non-empty canonical DBMs is that we can find a valua-
tion u ∈ [M]v ,n with u i − u j = d for any d between −M j i and M i j, or
equivalently:

Lemma 2. Assume Le d � M i j, Le (−d) � M j i for M with cycle-free M n,
canonical M n, and i , j ≤ n with i 6= j. We define M ′ by setting M ′ i j = Le d
and M ′ j i = Le (−d) and M ′ i ′ j ′ = M i ′ j ′ for all (i ′,j ′) where (i ′,j ′) 6= (i ,j),
(j ,i). Then [M ′]v ,n ⊆ [M]v ,n and cycle-free M ′ n.

Proof. From Lemma 1, we get [M ′]v ,n ⊆ [M]v ,n. It remains to show that M ′

does not contain a negative cycle. Suppose there is one. Then we can also
find a smallest negative cycle, which, without loss of generality, is of the form
len M ′ i i (j · xs) ≺ Le 0 for some xs where i , j /∈ set xs. This proof step is
rather intricate in Isabelle. We use a function that explicitly computes smallest
negative cycles. An inductive argument yields a result that allows us to ro-
tate cycles. Now, we get Le d � len M ′ j i xs ≺ Le 0 . We have xs 6= [] as this
would directly give us the contradiction Le d � Le (−d) ≺ Le 0 . This means
that Le d � len M j i xs ≺ Le 0 (by induction on xs), and because M is canon-
ical, M j i ≺ Le (−d), which is a contradiction to our assumption. ut

An important consequence is that any canonical DBM without a negative diag-
onal has at least one valuation, which we can construct by repeatedly applying
the theorem. Observe that this also implies that a DBM in canonical form is
empty iff there is a negative entry on its diagonal.

The canonical form can be computed by the Floyd-Warshall algorithm for
the all-pairs shortest paths problem. A simple HOL formulation of the algorithm
is

fw-upd M k i j ≡ M (i := (M i)(j := min (M i j) (M i k � M k j)))

fw M n 0 0 0 = fw-upd M 0 0 0
fw M n (Suc k) 0 0 = fw-upd (fw M n k n n) (Suc k) 0 0
fw M n k (Suc i) 0 = fw-upd (fw M n k i n) k (Suc i) 0
fw M n k i (Suc j) = fw-upd (fw M n k i j) k i (Suc j)

where f (a := b) ≡ λx . if x = a then b else f x. We abbreviate fw M n n n n
as FW M n. To prove that this algorithm computes the tightest difference con-
straint for all pairs of clocks, we claim:

Theorem 1.
cycle-free-up-to M k n ∧ i ′ ≤ i ∧ j ′ ≤ j ∧ i ≤ n ∧ j ≤ n ∧ k ≤ n =⇒
Min {len M i ′ j ′ xs | set xs ⊆ {0 ..k} ∧ i ′ /∈ set xs ∧ j ′ /∈ set xs ∧ distinct xs}
= fw M n k i j i ′ j ′

The proof is a nested induction, which follows the program structure and uses a
standard argument. The theorem implies that FW computes a canonical form:

Corollary 1. cycle-free M n =⇒ canonical (FW M n) n

The Floyd-Warshall algorithm also detects negative cycles by computing a neg-
ative diagonal entry. The key observation is that a matrix of this kind either
has a negative diagonal entry to start with, or there is a maximal k < n with
cycle-free-up-to M k n. The latter means that the algorithm computes a negative
diagonal entry in iteration k + 1. In either case the negative diagonal entry will
be preserved by monotonicity of the algorithm. This yields an emptiness check
for DBMs.

Intersection The intersection of two DBMs is trivial to compute. It is simply
the point-wise minimum: And A B ≡ λi j . min (A i j) (B i j). The operation is
correct in the following sense: [A]v ,n ∩ [B]v ,n = [And A B]v ,n . The ⊆-direction
can directly be proved by Isabelle’s simplifier, while ⊇ requires a rather lengthy
proof by cases.

Reset We need an operator reset such that u c = d for all u ∈ [reset M n c d]v ,n.
Thus we define (reset M n c d) c 0 = Le d and (reset M n c d) 0 c = Le (−d).
By doing so, all difference constraints involving c are invalidated. Therefore we
set the corresponding DBM entries to ∞. However, this alone does not yield
a correct operation. Consider clocks c1, c2 and c3 and a DBM represented by
the clock constraint c1 ≥ c2 + 1 ∧ c1 ≤ c3. By setting c1 to 0, we will lose
all constraints on c2 and c3. This means that the resulting zone will contain a
valuation u with u c1 = u c2 = u c3 = 0. There is clearly no way to set c1

back to a different value such the resulting valuation would satisfy the original
constraint. The way to resolve this issue is to encode the information we had
about c2 and c3 in the original constraint (or DBM) also in the new DBM. This
is, we derive c2 − c3 ≤ −1. Concretely, we calculate (reset M n i d) j k =
min (M j i + M i k) (M j k) for all j , k ≤ n. Note that this computation does
nothing if M is already in canonical from, allowing a simpler implementation.

For a list of clocks cs and a list of time stamps ts (|cs| = |ts|), set-clocks cs ts u
is the valuation for which (set-clocks cs ts u) csi = tsi and the value of u c is
unchanged for all other clocks c /∈ set cs. We lift reset to reset many clocks at
once by simply folding it over the list of clocks. We proved correctness of the
lifted operation (reset ′):

(Sound) (∀ c∈set cs. 0 < c ∧ c ≤ n) ∧ u ∈ [reset ′ M n cs v d]v ,n
=⇒ ∃ ts. set-clocks cs ts u ∈ [M]v ,n

(Complete) (∀ c∈set cs. 0 < c ∧ c ≤ n) ∧ u ∈ [M]v ,n
=⇒ [cs→d]u ∈ [reset ′ M n cs v d]v ,n

The proofs for these results are among the most complex ones in the whole
formalization. The reason is that manual case analyses have to be combined
with (linear) arithmetic reasoning, which is hard to automate in Isabelle.

Delay We need an operation to compute time lapse, i.e. ([M]v ,n)↑. For canonical
DBMs, this simply amounts to setting M i 0 = ∞ for all i ≤ n. In the general
case, intuitively we can lose information about the difference of two clocks that
was recorded between the upper bound of one of them and the lower bound of
the other. Accounting for this, we arrive at the following general operation:

up M ≡
λi j . if 0 < i then if j = 0 then ∞ else min (M i 0 � M 0 j) (M i j) else M i j

Correctness can be obtained similarly to the reset operation.

Abstraction It is easy to turn an atomic clock constraint into a DBM that rep-
resents the same zone. For instance, the zone {u | u ` EQ c d} is represented
by a DBM M where M c 0 = Le d and M 0 c = Le (−d), and all other entries
are unbounded. Using the already defined intersection operation for constructor
AND, a function abstr, which records entries in this manner while working re-
cursively through a constraint, turns constraints into a DBM-equivalent. Again,
we proved correctness (where collect-clks cc is the set of all clocks appearing in
constraint cc):

∀ c∈collect-clks cc. 0 < c ∧ c ≤ n =⇒ [abstr cc (λi j . ∞) v]v ,n = {u | u ` cc}

3.3 DBM Operational Semantics

In the last section we have elaborated the adequacy of our DBM-equivalents for
all zone operations, allowing us to compute the zone semantics with the help of
DBMs. Indeed we can define a new operational semantics based on DBMs:

M i = abstr (inv-of A l) (λi j . ∞) v

A ` 〈l , M 〉 v ,n 〈l , And (up (And M M i)) M i〉

A ` l −→g ,a,r l ′ ∧ M i = abstr (inv-of A l ′) (λi j . ∞) v

A ` 〈l , M 〉 v ,n 〈l ′, And (reset ′ (And M (abstr g (λi j . ∞) v)) n r v 0) M i〉
Using the correctness results for the DBM operations, it is straightforward to
show that this semantics is equivalent to the zone semantics:

A ` 〈l , [M]v ,n〉 ∗ 〈l ′, Z 〉
←→ ∃M ′. A ` 〈l , M 〉 ∗v ,n 〈l ′, M ′〉 ∧ Z = [M ′]v ,n

However, we are not done yet: while we can practically compute the semantics
of timed automata, the search space could still be infinite. The rest of the paper
is concerned with overcoming this problem.

4 From Classic Decidability to a Correct Approximation

4.1 Regions

In their seminal paper, Alur and Dill showed decidability of the emptiness prob-
lem for timed automata by giving an adequate finite partitioning of the set of
valuations into what they call regions. In this section, we will present our formal-
ization of this result and then show how to apply it to obtain a finite operational
semantics of zones. We use Bouyer’s definition of regions as, for one it is more
formal and thus easier to formalize, and secondly we will have to use a modified
version of it later on.

From now on we will work in a parametric theory (called locale in Isabelle),
which fixes X as the set of clocks of the automaton. Moreover, a clock ceiling k
will define an upper bound k c for the “relevant” range of any clock c ∈ X – this
ought to correspond to the maximal constant appearing for c in any constraint
of the timed automaton, e.g., k c1 = 3 and k c2 = 2 for the automaton of Fig.
1. This is, if ∼ c m is a constraint of the automaton, we postulate that m ≤ k c,
c ∈ X, and that m is a natural number.

A single clock value will always fall into one of three types of intervals from

datatype intv = Const nat | Intv nat | Greater nat

where the set of values they contain is given by the following rules:

u x = d

intv-elem x u (Const d)

d < u x ∧ u x < d + 1

intv-elem x u (Intv d)

d < u x

intv-elem x u (Greater d)

Let I :: ′c ⇒ intv be assigning intervals to clocks and r be a finite total preorder
over X 0 ≡ {x ∈ X | ∃ d . I x = Intv d}. Then we define the corresponding region
region X I r as the set for which 4

u ∈ region X I r iff ∀ x∈X . 0 ≤ u x ∧ intv-elem x u (I x)
and ∀ x∈X 0. ∀ y∈X 0. (x , y) ∈ r ←→ frac (u x) ≤ frac (u y)

We will fix a set of regions Rα ≡ {region X I r | valid-region X k I r} where
valid-region X k I r holds if X is finite, r is a total preorder on X 0, and d ≤ k x
if I x = Const d, d < k x if I x = Intv d, and k x = d if I x = Greater d for all
x ∈ X. Observe that this definition remedies the potential overlap of intervals
that the definition of intv-elem would admit.

It is clear from Fig. 1, and relatively straightforward to prove in Isabelle/HOL,
that Rα is a finite partitioning of

V ≡ {u | ∀ x∈X . 0 ≤ u x} ,

the set of all positive valuations. What is not so obvious (and not mentioned by
Bouyer) but a useful property to work with, is that any valid region is also non-
empty. The crux of this proof is to observe that X 0 can be ordered in equivalence

4 frac r denotes the fractional part of any real number r

c1

c2

c1

c2

c1

c2

Fig. 2: (1) A region and its time successors in Rα, (2) the α-closure of a zone,
and (3) the β-approximation of a zone for X = {c1, c2} with k c1 = 3 and k c2

= 2.

classes according to r such that a valuation u can be chosen for which frac (u x)
≤ frac (u y) iff (x , y) ∈ r . This ordering property of finite total preorders is
non-trivial to formalize and makes this step rather technical.

4.2 Decidability with Regions

How are regions and timed automata connected? We will present three key
properties that connect regions to time lapse, clock resets, and clock constraints,
respectively, allowing us to implement timed automata with the help of regions.
Let [u]Rα

∈ Rα be the unique region containing u. We call [u ⊕ t]Rα a time
successor of [u]Rα for t ≥ 0 and denote by Succ Rα R the set of all such time
successors of all u ∈ R (cf. Fig. 2.1). Now the three key properties are in order
of decreasing difficulty:

(Set of regions) R ∈ Rα ∧ u ∈ R ∧ R ′ ∈ Succ Rα R
=⇒ ∃ t≥0 . [u ⊕ t]Rα

= R ′

(Compatibility with resets) R ∈ Rα ∧ u ∈ R ∧ 0 ≤ d ∧ d ≤ k x ∧ x ∈ X
=⇒ [u(x := d)]Rα

= {u(x := d) | u ∈ R}
(Compatibility with constraints)

R ∈ Rα ∧ ∀ (x , m)∈collect-clock-pairs cc. m ≤ k x ∧ x ∈ X ∧ m ∈ IN
=⇒ R ⊆ {u | u ` cc} ∨ {u | u ` cc} ∩ R = ∅

Proof. We concentrate on the set of regions property as it has the most in-
teresting formalization. Our proof combines elements of the “classic” result as
presented e.g., in [9], and Bouyer’s approach. Let R = region X I r ∈ Rα for some
I, r, let R ′ = [v ⊕ t]Rα

, and assume u, v ∈ R and t ≥ 0. If I x = Greater (k x)
for all x ∈ X (“upper-right region”), we have Succ Rα R = {R} = {R ′} and
the proposition is obvious.

Otherwise observe that there exists a single closest successor Rsucc of R
(depicted as the thick, dark gray line in Fig. 2.1). We refer to Bouyer for a
formal construction of this successor. We can show the characteristic property
of this closest successor:

∀ u ∈ R. ∀ t≥0 . (u ⊕ t) /∈ R −→ (∃ t ′≤t . (u ⊕ t ′) ∈ Rsucc ∧ t ′ ≥ 0)

At this point Bouyer states that the proposition follows by “immediate induc-
tion”. However, regarding formalization, this induction is not quite immediate.
For instance, we attempted induction on the set of successors. This necessi-
tates a proof that this set is monotone, which we did not find ourselves able
to prove without asserting the very property we were about to prove. Instead,
we split the argument in two: one for the case where t < 1 and the other for
the case where t is an integer. For the first case, consider the “critical” set C =
{x ∈ X | ∃ d . I x = Intv d ∧ d + 1 ≤ u x + t}, the set of clocks for which u
⊕ t is shifted beyond R’s interval boundaries. Observe that for the closest suc-
cessor, the critical set is either the same (if {x ∈ X | ∃ d . I x = Const d} 6=
∅) or a strict subset (if otherwise). Thus the proposition follows by induction on
the cardinality of C. The case where t is an integer follows by direct proof over
the structure of regions. Shifting u first by frac t and then by btc, we arrive at
the proposition. ut

This allows us to define a region-based operational semantics for timed au-
tomata:

R ∈ Rα ∧ R ′ ∈ Succ Rα R ∧ R ∪ R ′ ⊆ {u | u ` inv-of A l}
A,Rα ` 〈l , R〉 〈l , R ′〉

A ` l −→g ,a,r l ′ ∧ R ∈ Rα
A,Rα ` 〈l , R〉 〈l ′, {[r→0]u | u ∈ R ∧ u ` g} ∩ {u | u ` inv-of A l ′}〉

From the aforementioned properties, we proved its adequacy w.r.t. to reachabil-
ity:

A,Rα ` 〈l ,[u]Rα〉 ∗ 〈l ′,R ′〉 ∧ R ′ 6= ∅
←→ ∃ u ′. A ` 〈l , u〉 →∗ 〈l ′, u ′〉 ∧ [u ′]Rα

= R ′

Note that it is quite natural that this property is weaker compared to previous
ones: (sets of) regions only approximate zones and thus can contain valuations
that were never reachable in the concrete semantics.

4.3 Approximating Zone Semantics with Regions

From the pure decidability result on regions, we now move back towards zones by
approximating zones with the smallest set of regions that covers them. Formally
we define the α-closure of a zone Z : Closureα Z =

⋃
{R ∈ R | R ∩ Z 6= ∅}.

Observe that this set need not be convex (cf. Fig. 2.2). We use the α-closure
to define an operational semantics on zones that approximates a zone with its
α-closure at the end of each step:

A ` 〈l , Z 〉 〈l ′, Z ′〉 =⇒ A ` 〈l , Z 〉 α 〈l ′, Closureα Z ′〉

Bouyer would now go and prove from the region properties that the α-closure
can be “pushed through” each step:

Z ⊆ V ∧ A ` 〈l , Closureα Z 〉 〈l ′, Z ′〉
=⇒ ∃Z ′′. A ` 〈l , Z 〉 α 〈l ′, Z ′′〉 ∧ Z ′ ⊆ Z ′′

However, we did not find this property strong enough to prove soundness of
 α
∗:

A ` 〈l , Z 〉 α
∗ 〈l ′, Z ′〉 ∧ Z ⊆ V

=⇒ ∃Z ′′. A ` 〈l , Z 〉 ∗ 〈l ′, Z ′′〉 ∧ Closureα Z ′ ⊆ Closureα Z ′′ ∧ Z ′′ ⊆ Z ′

Note that this property is really what one wants to have since Closureα Z = ∅
iff Z = ∅ (assuming that Z ⊆ V). We conceived that instead it is sufficient to
prove monotonicity of the α-closure w.r.t. to steps in the zone semantics:

A ` 〈l , Z 〉 〈l ′, Z ′〉 ∧ Closureα Z = Closureα W ∧ W ⊆ Z ∧ Z ⊆ V
=⇒ ∃W ′. A ` 〈l , W 〉 〈l ′, W ′〉 ∧ Closureα Z ′ = Closureα W ′ ∧ W ′ ⊆ Z ′

Combining this with the fact that α-closure is an involution, we proved soundness
by induction over α

∗. Completeness follows easily from monotonicity of ∗:

A ` 〈l , Z 〉 ∗ 〈l ′, Z ′〉 ∧ Z ⊆ V ∧ Z ′ 6= ∅
=⇒ ∃Z ′′. A ` 〈l , Z 〉 α

∗ 〈l ′, Z ′′〉 ∧ Z ′ ⊆ Z ′′

While these results are nice from a theoretical standpoint, it is not easier to
compute the α-closure than to directly implement timed automata with the
region construction presented in the last section. Therefore, the next section
will present Bouyer’s main insight – that these results can be used to show the
correctness of an easily computable approximation operation.

5 Normalization

Consider Fig. 2.3. In addition to Rα (solid lines), the figure shows a refinement
to what we will call Rβ (dashed lines). Observe that the smallest set of regions
covering the zone painted in dark gray (i.e. its β-closure) is convex, whereas its
α-closure is not (cf. Fig. 2.2). The idea is to use this β-closure to obtain an
effectively computable convex approximation for zones represented by DBMs –
DBMs always represent a convex zone and are always covered by a convex β-
closure – while inheriting the correctness result from the α-closure as we only
refine things.

5.1 β-approximation

Due to a lack of space, we do not present our construction of Rβ and only
say that it is can be adopted from Rα with some modifications. Note that we
do not need to transfer the (rather intricate) properties connecting Rα with

transitions of timed automata since we will infer correctness directly from the
original construction.

We now want to formalize the notion of a convex approximation of zones
with regions from Rβ . We capture the notion of convexity directly with DBMs.
From Example 1, we can see that the types of regions in Rβ also induce a specific
format for our DBMs: for a DBM entry M i j, we do not need constants outside
of [− k i ; k j] because this is precisely the range to which our regions bound the
corresponding values (analogously for constraints involving 0). Thus we use the
following notion of normalized DBMs:

normalized M ≡
(∀ i j . 0 < i ∧ i ≤ n ∧ 0 < j ∧ j ≤ n ∧ M i j 6= ∞ −→

Lt (− k j) � M i j ∧ M i j � Le (k i)) ∧
(∀ i≤n. 0 < i −→ (M i 0 � Le (k i) ∨ M i 0 = ∞) ∧ Lt (− k i) � M 0 i)

Furthermore, all constraints only need to use integer constants, which we denote
by dbm-int M. Building from these ideas, we define for any zone Z :

Approxβ Z ≡
⋂
{[M]v,n |

∃U ⊆ Rβ . [M]v,n =
⋃
U ∧ Z ⊆ [M]v,n ∧ dbm-int M n ∧ normalized M}

5.2 Connecting Approxβ and Closureα

We already argued that is possible to inherit correctness from Closureα because
we only refine regions. Precisely, Bouyer proposed that for any convex zone Z
(i.e. Z = [M]v ,n for some DBM M), we have Approxβ Z ⊆ Closureα Z, or
equivalently:

Theorem 2. R ∈ Rα ∧ Z ⊆ V ∧ R ∩ Z = ∅ ∧ Z = [M]v ,n ∧ dbm-int M n
=⇒ R ∩ Approxβ Z = ∅

The formalization of Bouyer’s proof for this proposition is one of the most com-
plicated parts of our development. As the prose proof is already sufficiently
complicated, we abstain from presenting our formalization of this result.

Analogously to α, we define an approximating semantics β using Approxβ .
The main fact we can derive from the Theorem 2 is that α is an approximation
of β :

Lemma 3.
A ` 〈l , [M]v ,n〉 β 〈l ′, Z ′〉 ∧ dbm-int M n ∧ [M]v ,n ⊆ W ∧ W ⊆ V
=⇒ ∃W ′. A ` 〈l , W 〉 α 〈l ′, W ′〉 ∧ Z ′ ⊆ W ′

Using this result and some additional work, we could infer soundness and com-
pleteness of β

∗ from the corresponding results for α
∗.

5.3 Computing Approxβ

So far, we have shown how to obtain a correct approximation operation from
Rβ , which only produces convex sets. The huge gain from that is that this
approximation can also be easily computed by normalizing DBMs:

norm M k n ≡
λi j . let ub = if 0 < i then k i else 0 ; lb = if 0 < j then − k j else 0

in if i ≤ n ∧ j ≤ n then norm-lower (norm-upper (M i j) ub) lb
else M i j

norm-upper e t = (if Le t ≺ e then ∞ else e)
norm-lower e t = (if e ≺ Lt t then Lt t else e)

Lemma 4. canonical M n ∧ [M]v ,n ⊆ V ∧ dbm-int M n =⇒
Approxβ ([M]v ,n) = [norm M k n]v ,n

Again, we abstain from providing a full presentation of our formalization and
only mention that the main ideas are: (1) to observe that normalized integral
DBMs can always be represented by an equivalent subset of Rβ , and (2) that
norm M k n computes a minimal normalized DBM.

5.4 A Final Semantics

We have assembled all the ingredients to define a semantics for timed automata
which captures the essence of what DBM-based model checkers compute:

A ` 〈l , D〉 v ,n 〈l ′, D ′〉 =⇒ A ` 〈l , D〉 N 〈l ′, norm (FW D ′ n) k n〉

Combining the fact that β-approximation is computable and the correctness
properties of β

∗ and ∗, we have achieved our main result: a timed automaton
can reach a certain location l ′ iff we can compute a valid run (using the DBM
operations and normalization) that ends in l ′.

Theorem 3. Z = [M]v ,n ∧ Z ⊆ V ∧ dbm-int M n =⇒
(∃ u∈Z . ∃ u ′. A ` 〈l , u〉 →∗ 〈l ′, u ′〉)
←→ (∃M ′. A ` 〈l , M 〉 N∗ 〈l ′, M ′〉 ∧ [M ′]v ,n 6= ∅)

6 Conclusion

We have presented a formalization that, beginning with basic definitions and
classic results, closes the loop to show correcntess of the basic DBM-based algo-
rithms that are used in forward analysis of timed automata. However, we have
not yet harvested potential practical fruits of this development. A self-evident
goal is to obtain an executable version for the algorithms above. By combina-
tion with a verified version of e.g., depth-first search, this could already yield a
verified tool for deciding language emptiness of timed automata, which could in
turn be extended to a fully verified model checker. In another direction of devel-
opment, the author has already started to reuse the presented formalization to
formalize first results about decidability of probabilistic timed automata.

Acknowledgement. I would like to thank Tobias Nipkow and the anonymous
reviewers for their helpful comments on earlier versions of this paper.

References

1. R. Alur and D. L. Dill. Automata for modeling real-time systems. In Proceedings
of ICALP’90, LNCS 443, pages 322–335, 1990.

2. R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,
126:183–235, 1994.

3. R. Alur, T. A. Henzinger, and M. Y. Vardi. Parametric real-time reasoning. In
Proc. of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, pages
592–601, 1993.

4. J. Bengtsson and W. Yi. Timed automata: Semantics, algorithms and tools. In
Lectures on Concurrency and Petri Nets: Advances in Petri Nets, LNCS 3098,
pages 87–124, 2004.

5. P. Bouyer. Untameable timed automata! In Proc. of STACS’03, LNCS 2607, pages
620–631, 2003.

6. P. Bouyer. Forward analysis of updatable timed automata. Formal Methods in
System Design, 24(3):281–320, 2004.

7. P. Bouyer, C. Dufourd, E. Fleury, and A. Petit. Are timed automata updatable?
In Proc. of CAV’00, LNCS 1855, pages 464–479, 2000.

8. P. Castéran and D. Rouillard. Towards a generic tool for reasoning about labeled
transition systems. In TPHOLs 2001: Supplemental Proceedings, 2001. http://
www.informatics.ed.ac.uk/publications/report/0046.html.

9. E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. MIT Press, 2001.
10. D. L. Dill. Timing assumptions and verification of finite-state concurrent systems.

In Automatic Verification Methods for Finite State Systems, LNCS 407, pages 197–
212. 1990.

11. M. Garnacho, J. Bodeveix, and M. Filali-Amine. A mechanized semantic frame-
work for real-time systems. In Proc. of FORMATS’13, LNCS 8053, pages 106–120,
2013.

12. T. A. Henzinger, P.-H. Ho, and H. Wong-toi. Hytech: A model checker for hybrid
systems. Software Tools for Technology Transfer, 1(1):460–463, 1997.

13. G. K. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. Software Tools for
Technology Transfer, 1(1):134–152, 1997.

14. C. Paulin-Mohring. Modelisation of timed automata in Coq. In Proc. of STACS’01,
LNCS 2215, pages 298–315, 2001.

15. S. Wimmer. Timed automata. Archive of Formal Proofs, Mar. 2016. http://
isa-afp.org/entries/Timed Automata.shtml, Formal proof development.

16. Q. Xu and H. Miao. Formal verification framework for safety of real-time system
based on timed automata model in PVS. In Proc. of the IASTED International
Conference on Software Engineering, 2006, pages 107–112, 2006.

17. Q. Xu and H. Miao. Manipulating clocks in timed automata using PVS. In Proc.
of SNPD’09, pages 555–560, 2009.

18. W. Yi, P. Pettersson, and M. Daniels. Automatic verification of real-time commu-
nicating systems by constraint-solving. In Proc. of Formal Description Techniques
VII, pages 243–258, 1994.

19. S. Yovine. KRONOS: A verification tool for real-time systems. Software Tools for
Technology Transfer, 1(1):123–133, 1997.

http://www.informatics.ed.ac.uk/publications/report/0046.html
http://www.informatics.ed.ac.uk/publications/report/0046.html
http://isa-afp.org/entries/Timed_Automata.shtml
http://isa-afp.org/entries/Timed_Automata.shtml

	Formalized Timed Automata

