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Abstract

Flex-flex pairs are an old asset of Isabelle that exists due to the
undecidable nature of higher-order unification. While they surface
to users of Isabelle very rarely, Isabelle’s inference kernel has to go
through some effort to accommodate for the existence of flex-flex pairs.
This paper presents an experiment that suggests that flex-flex pairs are
a feature that is hardly ever used by today’s Isabelle users, and dis-
cusses some benefits that could be gained from eliminating flex-flex
pairs from Isabelle.

1 Introduction

From Huet’s seminal paper [3] it is well-known that higher-order unification
for typed λ-calculus is undecidable. Many users of Isabelle are aware that
Isabelle’s answer to this problem is actually two-fold. In order to compute a
unifier of two terms, the inference kernel first tries an algorithm for the easier
problem of pattern unification [4]. If this algorithms fails to find a unifier, a
more powerful algorithm, which is basically Huet’s semi-decision procedure
for higher-order unification [2], is used as a fallback. To ensure termination,
this algorithm uses a maximal search bound, which can be freely configured
by users of Isabelle.

An important property of Huet’s algorithm 1 is that it divides terms into
two types, rigid and flexible. A term is called flexible if its head symbol is
a free variable (a schematic variable in Isabelle-speak), and it is called rigid
if its head symbol is of any other type. Then, equations between terms take
one out of three different shapes:

(Rigid-rigid) λ x 1 . . . xm. f t1 . . . tp ≡ λ x 1 . . . xn. g u1 . . . uq

(Flexible-rigid) λ x 1 . . . xm. ?X t1 . . . tp ≡ λ x 1 . . . xn. f u1 . . . uq

(Flexible-flexible) λ x 1 . . . xm. ?X t1 . . . tp ≡ λ x 1 . . . xn. ?Y u1 . . . uq

1A good presentation can be found in [1]
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Huet’s algorithms tries to resolve the first two types of equations until only
equations of the last type are left. In this case it is easy to solve the remaining
equations to find a unifier. For the equation from above this trivial unifier
would look like

<?X := λ x 1 . . . x p. t , ?Y := λ x 1 . . . x q. t>

for any term t of suitable type.
It is an old design decision of Isabelle not resolve flexible-flexible equa-

tions at the end of higher-order unification but instead to attach them to
theorems in order to let the user decide for an apt instantiation or leave
them to further resolution steps to resolve them. This leads to the existence
of the infamous flex-flex pairs in Isabelle. Usually flex-flex pairs are of no
concern to most users of Isabelle as they are resolved by most automatic
proof tactics and final proof steps such as by. The most common sources
for flex-flex pairs to surface on the top-level are manual rule combinations
via the THEN and OF attributes (or ML combinators), and the manual
application of rules (often in longer apply-style proof scripts). Given that
most users can live happily without making explicit use of this old feature
of Isabelle, one could wonder wether flex-flex pairs are still essential in what
Isabelle has evolved into to today. This paper studies this question by pre-
senting what would happen if flex-flex pairs were eliminated by resolving
them after every invocation of higher-order unification.

The rest of this paper is structured as follows. Section 2 presents our
method. Section 3 gives a detailed account of the changes that would have
to be made to existing theories if flex-flex pairs were eliminated from Is-
abelle. Finally, Section 4 argues that removing flex-flex pairs would indeed
be feasible, and outlines some potential merits that could be gained from
freeing Isabelle from flex-flex pairs.

2 Method

At the heart of Isabelle’s inference kernel lies the method bicompose aux 2,
which is the main participant in the process of resolving two theorems. The
first step of bicompose aux is to identify a set of disagreement pairs. This
set consists of the parts of the theorems that need to be unified and the flex-
flex pairs that are already attached to the theorems. For finding unifiers
of such disagreeing terms, bicompose aux makes use of the functionality
of Unify.unifiers 3. Given a list of of disagreement pairs, this function
produces a sequence of pairs of a substitution and a list of new flex-flex
pairs, which in combination form a unifier. In Isabelle, these substitutions
consist of instantiations for schematic term and type variables.

2src/Pure/thm.ML
3src/HOL/unify.ML
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The idea of our experiment is simply to turn this sequence of unifiers into
one where all flex-flex pairs are resolved before making further use of the
unifiers in bicompose aux. For this purpose, the unification module already
provides the method Unify.smash unifiers, which first computes the same
unifiers as Unify.unifiers and then smashes unifiers in the style of Huet
described above. More precisely, flex-flex pairs are eliminated one-by-one,
resolving pairs of the form

λ x 1 . . . xm. ?X t1 . . . tp = λ x 1 . . . xn. ?Y u1 . . . uq

with

<?X := λ x 1 . . . x p. ?Z , ?Y := λ x 1 . . . x q. ?Z>

for some fresh variable ?Z.
The Isabelle source comments already state that unfortunately this uni-

fier is sometimes less general than it would have to be. For instance, consider
the following flex-flex pair:

λ x y . ?f x y = λ x y . ?g x y .

The implementation would eliminate the flex-flex pairs with an instantiation
of the form

<?f := λ x y . ?a, ?g := λ x y . ?a> ,

while we could simply set ?f := ?g. We have sometimes found this method
too aggressive to produce the desired resolvents of two theorems and thus
have also experimented with two more general variants of smashing flex-flex
pairs. In the following, we will call them type two and three, while the
already existing variant of Isabelle will be called type one. The two new
types are:

(Type two) Pairs of the form

λ x 1 . . . xn. ?X t1 . . . tp = λ x 1 . . . xn. ?Y t1 . . . tp

are resolved by setting ?Y := ?X.

(Type three) Pairs of the form

λ x 1 . . . xm. ?X t1 . . . tp = λ x 1 . . . xn. ?Y u1 . . . uq

are resolved with the substitution

<?X := λ x 1 . . . x p. ?Z x 1 . . . xk, ?Y := λ y1 . . . yq. ?Z y1 . . . yk>

for some fresh variable ?Z where the arguments to ?Z are the bound
variables that already appear as both, a term t i and a term uj .
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The source code for both types can be found in the appendix.
We introduced two configuration options, one to toggle smashing of flex-

flex pairs, and the other one two switch between type one and type two
smashing. Where necessary, we applied type three smashing on the user
level. We then simply switched on type one smashing by default and tried
to rebuild the Isabelle distribution and the Archive of Formal Proofs (AFP)
4 to see what would happen to existing proofs when flex-flex pairs were
disabled. All findings are based on a development version of the AFP and
the distribution from June 8, 2016.

3 Results

3.1 Smashing the Isabelle Distribution

In the distribution, problems in 40 files were discovered. The changes that
had to be made to repair those proofs fall into five different categories:

• turning on type two smashing,

• applying type three smashing,

• trivial proof restructurings,

• substantial changes,

• and unresolved issues.

The first two type of problems do not need any further explanation. A
total of ten instances of broken proofs required type two smashing, while only
one instance required to be resolved by type three smashing. It is worthy to
note that each of these ten instances occurred in apply-style proof scripts.

Trivial adjustments include one explicit instantiation of a variable in a
theorem and one instance where a combined rule that would would usu-
ally carry a flex-flex pair could not be applied to the goal any more be-
cause smashing had produced a too specific instantiation. In the latter case
the single rule application could be split in two by sequentially applying
the two rules that were previously combined. A more frequent adjustment
(five occurrences) that had to be made made was rewriting applications of
rule into a combination of ‘−’ and rule or alternatively an application of
rule-tac. In Isar proof scripts, this phenomenon can appear when a fact of
the form P ?x is chained into an application of rule with a rule of the form
(
∧

x . P x ) =⇒ Q . Due to the way rule handles these facts, the chained fact
P ?x is resolved against the rule first, sometimes resulting in a flex-flex pair.
After smashing, the resulting theorem may not fit to be resolved against the

4isa-afp.org
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goal anymore. Turning the chained fact into an assumption (i.e.
∧

x . P x )
by applying ‘−’ first then resolves the problem.

Most of the broken proofs were caused by a single tactic in the HOL
formalization of non-standard analysis (18 files). A custom tactic transfer
(not to be confused with transfer from the Transfer package) is used to
implement a transfer principle. It first rewrites a goal into a standard format
using simplification w.r.t. to a set of rewrite rules, next applies a special
rule to start the transfer process, and then exhaustively applies a number
of introduction rules. The problem that was produced by smashing flex-
flex pairs could be tracked back to a single one of these introduction rules
(transfer Ifun):

?f ≡ star-n ?F ?x ≡ star-n ?X

?f ? ?x ≡ star-n (λn. ?F n (?X n))

The cause of the issue are the nested schematic variables on the right-hand
side of the conclusion. Usually the rule is applied to goals of the form

. . . =⇒
∧

X . star-of f ? star-of g ? star-n X ≡ star-n (λ n. ?X (X n))

where the left-hand side can contain arbitrary nesting of star-of, star-n and
?, and more nested bound and schematic variables can appear on the right-
hand side of the meta equality. To prove this type of goal, the definition
star-of has to be used additionally:

star-of ?x ≡ star-n (λn. ?x ) .

We resolved the issue by adding a simple modification to transfer that
applies transfer Ifun more deterministically. The modification removes
transfer Ifun from the set of introduction rules and only tries to apply it
when no other rules can be applied anymore. In this case, simple recursion
over the structure of the left-hand side of the goal is used to find to find the
right instantiation of the rule. The implementation of this reasoning step
can be found in the appendix. The changes means that the formalization
of non-standard analysis moves from being the largest producer of flex-flex
pairs to produce zero flex-flex pairs. In addition, the change clarifies the
reasoning process of transfer.

The two rather old logic sessions CTT and Sequents each exhibited two
problems that we left unresolved for now. In Sequents they both arise in
the proof of a schematic goal statement where a combined rule that already
carries a complex flex-flex pair is applied. Similarly, both problems in CTT

appear in proofs of schematic goal statements. One of them is caused by
the custom rew tactic of this session. These proofs are very hard to follow,
and the correct instantiation of the rules is not obvious. Our conjecture is
that in a modern apply-style proof script or Isar proof of the corresponding
lemmas, these problems would disappear due to a more explicit reasoning
style.
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More significant unresolved issues are caused by the BNF package and
metis. The distribution contains nine mutually recursive datatype defini-
tions and two definitions via primcorec that only go through when smash-
ing is disabled. A single invocation of metis with the lifted attribute in
src/HOL/Transcedental.thy also breaks for at least type one and two
smashing. As the author is not an expert for either one of these packages,
these problems have not been investigated further.

3.2 Smashing the Archive of Formal Proofs

Fortunately, fixing the whole AFP for smashing did not require much more
work than the Isabelle distribution: only 39 files needed to be changed.
This, however, does not include the two ‘slow’ sessions ConcurrentGC and
Flyspeck-Tame. Possible repercussions on these have not been analyzed
yet.

The required changes did not uncover much different problems than for
the distribution. Type two smashing had to be used 24 times, while type
three smashing could remedy four more problems. On 14 instances appli-
cations of rule had to be preceded by an application of ‘−’. Proofs had to
be slightly restructured due to rule composition three times. Some other re-
structurings required a bit more creativity: three times an automatic proof
method had to be swapped with another one, and once a metis proof was
replaced with a different one found by sledgehammer. A short apply-script
could be replaced by a simple one-line proof at four instances. Again, most
of these restructurings were made to apply-style proof scripts, not Isar proof
scripts.

To the category of unresolved issues the AFP added four more applica-
tions of metis and nine datatype definitions. Interestingly, the many AFP
sessions that are concerned with program verification and program synthe-
sis, and include long apply-style proofs, complex tactics, and schematic goal
statements, were not harmed significantly by the change. Most of the fixes
with type two and three smashing fall into this category. This shows that,
compared to problems discovered in the old logic sessions of the distribution,
modern well-behaved tactics and apply-style proofs do not rely on flex-flex
pairs to get their job done.

3.3 Summary

The following table summarizes the changes that had to be made to the
Isabelle distribution and the AFP.
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Number of Occurrences

Issue/Modification Description Distribution AFP Total

Type 2 Smashing 9 24 33
Type 3 Smashing 1 4 5
Trivial Restructuring Added ‘-’-proof step 5 14 19

Other 2 16 18
Unresolved BNF package 11 9 20

metis 1 4 5
Other 4 0 4

Total 33 71 104

4 Discussion

Our findings show that today’s Isabelle users do not explicitly rely on flex-
flex pairs as a feature of Isabelle in their applications. What is more, they
do not even seem to do so implicitly. The only real occurrence of this seems
to be the transfer tactic in the HOL formalization of non-standard analysis.
However, we have demonstrated that the tactic can be made slightly more
well-behaved, while at the same time completely eliminating the need for
flex-flex pairs. The only places where flex-flex pairs seem to serve a real
purpose are the CTT and Sequents logic sessions from nearly ancient times
of Isabelle. And yet, there are only four of these places! Admittedly, this
bright picture is slightly clouded by the fact that the BNF package and metis
sometimes break when introducing smashing. However, as exemplified for
the transfer tactic, resolving these issues might even be a chance to clarify
a slightly odd situation in the codebase of these packages. In particular, it
is somewhat surprising that removing a feature of higher-order unification
breaks the first-order reasoning of metis.

Summarizing, we believe that if the issues with the BNF package and
metis could be resolved without much trouble, there would be a strong
point for removing flex-flex pairs entirely. In this case, one would have
to decide for the mode of smashing that should be used to eliminate flex-
flex pairs produced by higher-order unification. Given that there were 33
occurrences where type two smashing had to be used and given that some of
these included applications of custom proof tactics, our experiments seem to
indicate that at least type two smashing should be used to not limit current
users. Moreover, the ML implementation of type two smashing is hardly
more complicated than the existing implementation of type one smashing.
For type three smashing the situation is less clear. Only five potential use
cases in the current Isabelle universe possibly do not make a sufficiently
strong point for adding a trusted piece of code to Isabelle’s inference kernel
that is more complicated than for the other variants of smashing.
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Disagreement pairs

��
Unification

��
Renaming

��
Instantiation

Figure 1: Structure of bicompose aux.

What could be gained from removing flex-flex pairs from Isabelle? First
and foremost, this would keep a feature that might be slightly dubious and
disturbing from surfacing to novice users. Moreover, it might even force
users to sometimes write more well-behaved proofs and tactics in a positive
way. However, our main prospect would tend to the direction of clarifying
Isabelle’s inference kernel with respect to higher-order unification. On a high
level, the current functionality of bicompose aux could be described as being
divided into four phases: identification of disagreement pairs (from the rules
that are ought to be resolved with each other), unification, renaming, and
instantiation. The situation is depicted in Figure 1. Currently, higher-order
unification is inherently used by bicompose aux, and thus a part of Isabelle’s
trusted code base. As this code is highly complex and was previously found
to have issues, the trustworthiness of the inference kernel could be improved
by moving higher-order unification out of the trusted code base. A potential
way would be to add a certifier at the interface of bicompose aux and
the unifier. This certifier would check that the substitution environment
which is computed by the unifier really unifies the disagreement pairs under
question. The revised schema could be depicted as in Figure 2 (the dotted
line separates trusted from untrusted code). Without flex-flex pairs, this
check would simply amount to applying the given substitutions and checking
the resulting terms for αβη-equivalence. Results of pattern-unification could
optionally go unchecked for performance reasons.

Another route to go down would be to restructure bicompose aux more
radically. Only two of its work steps seem to necessarily be part of the
trusted code base (in one or the other form): renaming and instantiation. In-
stead of combining all these functionalities in one elementary inference step,
the resolution aspect of bicompose aux could be reduced to a more prim-
itive inference step that would only allow to resolve rules that are already
correctly instantiated. After eliminating flex-flex pairs, this would again
simply amount to checking for αβη-equivalence. The restructured version
of resolution could be depicted as in Figure 3. Renaming and instantiation
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Unification

uu
Certifier

��
Renaming
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Instantiation

Figure 2: Structure when using a certifier.

Disagreement Pairs

��

))
Unification

zz

Renaming

��
Instantiation

��
Elementary resolution

Figure 3: Structure when breaking up bicompose aux.
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are already available as exported functionalities of the kernel, however addi-
tional primitives for these steps might have to be introduced for performance
reasons. Our initial experimentation has shown that a tricky part of this
endeavor would be to apply renaming in a way to retain full compatibility
with the present naming scheme (which is necessary to avoid work on fixing
proofs that rely on names produced by the inference kernel).

In addition to minimizing the trusted code base, both approaches would
share the positive traits that one could freely add more complicated types
of smashing and even allow the user to configure resolution steps with a
unification procedure of their liking (e.g., as a context option). The downside
would be a nearly unavoidable performance degradation as checking steps
would be introduced and optimizations for lifting would be lost at least in
the case of the second approach. The challenge is to find a good tradeoff
between performance and size of the trusted code base.
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Appendix

Listing 1: ML implementation of type 2 smashing with type 1 as fallback

fun s m a s h f l e x f l e x 2 ( t , u ) env : Envir . env =
l et

fun s t r i p e q ( t1 $ t2 , u1 $ u2 ) f l a g =
s t r i p e q ( t1 , u1 ) ( t2 = u2 andalso f l a g )
| s t r i p e q ( Var lhs , Var rhs ) f l a g = ( lhs , rhs , f l a g )
| s t r i p e q ( t , u ) = (

case head of t of
Var (v , T) => (
case head of u of

Var (u , U) => ( ( v , T) , (u , U) , f a l s e )
| => raise CANTUNIFY)

| => raise CANTUNIFY)
val (vT as (v , T) , wU as ( , U) , f l a g ) =

s t r i p e q ( s t r i p a b s b o d y ( Envir . norm term env t ) ,
s t r i p a b s b o d y ( Envir . norm term env u ) ) t rue ;

fun t r i v ( ) =
l et

val ( env ’ , var ) =
Envir . genvar (#1 v ) ( env , Envir . body type env T) ;

val env ’ ’ =
Envir . vupdate (wU, type abs ( env ’ , U, var ) ) env ’ ;

in
i f vT = wU then env ’ ’
else Envir . vupdate (vT , type abs ( env ’ , T, var ) ) env ’ ’

end ;
fun non t r i v ( ) =

Envir . vupdate (wU, Var vT) env
in

i f f l a g then non t r i v ( ) else t r i v ( )
end ;

Listing 2: ML implementation of type 3 smashing on the user level

fun enumerate xs = f o l d ( fn x =>
fn ( i , xs ) => ( i + 1 , (x , i ) : : xs ) ) xs (0 , [ ] ) |> snd

fun dummy abs [ ] t = t
| dummy abs n (T : : Ts ) t =

Abs ( ”x” ˆ Int . t oS t r i ng n , T, dummy abs (n + 1) Ts t )
fun common prefix Ts

( t1 as Abs ( , T, t ) ) ( u1 as Abs ( , U, u ) ) =
i f U = T then common prefix (T : : Ts ) t u else ( [ ] , t1 , u1 )
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| common prefix Ts t u = (Ts , t , u ) ;
fun dest app acc ( t $ u) = dest app (u : : acc ) t
| dest app acc t = ( t , acc ) ;

fun add bound (Bound i , n ) bs = ( i , n ) : : bs
| add bound bs = bs ;

fun s m a s h f l e x f l e x 3 c tx t thm ( t , u ) =
l et

val idx = Thm. maxidx of thm + 1 ;
val (Ts , t1 , ) = common prefix [ ] t u ;
val ( tas , t2 ) = Term . s t r i p a b s t ;
val ( uas , u2 ) = Term . s t r i p a b s u ;
val ( tx as Var ( , T1) , t s ) = Term . str ip comb t2 ;
val ( ux as Var ( , U1) , us ) = Term . str ip comb u2 ;
val Ts1 = Term . b inde r type s T1 ;
val Us1 = Term . b inde r type s U1 ;
val T = Term . f a s t y p e o f 1 (Ts , t1 ) ;
val t s h i f t = length tas − l ength Ts ;
val u s h i f t = length uas − l ength Ts ;
val tbs = f o l d add bound ( enumerate ( rev t s ) ) [ ]
|> map ( a p f s t ( fn i => i − t s h i f t ) ) ;

val ubs = f o l d add bound ( enumerate ( rev us ) ) [ ]
|> map ( a p f s t ( fn i => i − u s h i f t ) ) ;

val bounds = i n t e r (op =) (map f s t tbs ) (map f s t ubs )
|> d i s t i n c t (op =);

val T’ = map ( nth Ts) bounds −−−> T;
val v = Var ( ( ”dummy var” , idx ) , T ’ ) ;
val tbs ’ = map ( fn i =>

f i n d f i r s t ( fn ( j , ) => i = j ) tbs
|> the |> snd |> Bound)

bounds ;
val t ’ = l i s t c omb (v , tbs ’ ) |> dummy abs 0 Ts1 ;
val ubs ’ = map ( fn i =>

f i n d f i r s t ( fn ( j , ) => i = j ) ubs
|> the |> snd |> Bound)

bounds ;
val u ’ = l i s t comb (v , ubs ’ ) |> dummy abs 0 Us1 ;
val subst = [ ( Term . dest Var tx , Thm. cte rm of c tx t t ’ ) ,

(Term . dest Var ux , Thm. cte rm of c tx t u ’ ) ] ;
in

i n s t a n t i a t e n o r m a l i z e ( [ ] , subst ) thm
end ;

Listing 3: Resolving with the right instantiation of transfer Ifun

local exception MATCH
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in
fun t r a n s f e r s t a r t a c c tx t =

l et
fun thm of ( Const (@{ const name I fun } , ) $ t $ u) =

@{thm t r a n s f e r I f u n } OF [ thm of t , thm of u ]
| thm of ( Const (@{ const name s t a r o f } , ) $ ) =

@{thm s t a r o f d e f }
| thm of ( Const (@{ const name s t a r n } , ) $ ) =

@{thm Pure . r e f l e x i v e }
| thm of = raise MATCH;

fun thm of goa l ( Const (@{ const name Pure . eq } , ) $ t $
( Const (@{ const name s t a r n } , ) $ ) ) =

thm of t
| thm of goa l = raise MATCH;

in
SUBGOAL ( fn ( t , i ) =>

r e s o l v e t a c c tx t [ thm of goa l
( s t r i p a l l b o d y t |> Logic . s t r i p i m p c o n c l ) ] i

handle MATCH => no tac )
end ;

end ;
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