
C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to

 R

eu
se

 *

 *
 Evaluated *

 T
A

C
A

S
 *

 A
rtifact * A

E
C

Verified Model Checking of Timed Automata

Simon Wimmer and Peter Lammich

Fakultät für Informatik, Technische Universität München

Abstract. We have constructed a mechanically verified prototype im-
plementation of a model checker for timed automata, a popular formalism
for modeling real-time systems. Our goal is two-fold: first, we want to pro-
vide a reference implementation that is fast enough to check other model
checkers against it on reasonably sized benchmarks; second, we strive for
maximal feature compatibility with the state-of-the-art tool Uppaal.
The starting point of our work is an existing highly abstract formaliza-
tion of reachability checking of timed automata. We reduce checking of
Uppaal-style models to the problem of model checking a single automa-
ton in this abstract formalization, while retaining the ability to perform
on the fly model-checking. Using the Isabelle Refinement Framework,
the abstract specification of the model checker is refined, via multiple
intermediate steps, to an actual imperative implementation in Standard
ML. The resulting tool is evaluated on a set of standard benchmarks to
demonstrate its practical usability.

1 Introduction

Timed automata [1] are a widely used formalism for modeling real-time systems,
which is employed in a class of successful model checkers such as Uppaal [2].
These tools can be understood as trust-multipliers: we trust their correctness to
deduce trust in the safety of systems checked by these tools. However, mistakes
have previously been made. This particularly concerns an approximation oper-
ation that is used by model-checking algorithms to obtain a finite search space.
The use of this operation induced a soundness problem in the tools employing it
[3], which was only discovered years after the first model checkers were devised.

Our ongoing work1 addresses this issue by constructing a fully verified model
checker for timed automata, using Isabelle/HOL [4]. Our tool is not intended
to replace existing model checkers, but to serve as a reference implementation
against which other implementations can be validated. Thus, it must provide
sufficient performance to check real world examples. To this end, we use the
Isabelle Refinement Framework (IRF) [5, 6] to obtain efficient imperative imple-
mentations of the algorithms required for model checking.

Our work starts from an existing abstract formalization of reachability check-
ing of timed automata [7]. To close the gap to a practical model checker, we need
to address two types of issues: efficient implementation of abstract model check-
ing algorithms, and expressiveness of the offered modeling formalism. Two kinds

1 https://github.com/wimmers/munta

2

of algorithms deserve special attention here. The first are operations to manip-
ulate Difference Bound Matrices (DBMs) [2], which represent abstract states.
With the help of the IRF, we obtain efficient implementations of DBMs repre-
sented as arrays. The second are search algorithms that govern the search for
reachable states. These algorithms are interesting in their own right, since they
make use of subsumption: during the search process an abstract state can be
ignored if a larger abstract state was already explored. We provide a generalized
framework for different variants of search algorithms, including a version which
resembles Uppaal’s unified passed and waiting list [2].

We aim to offer a modeling formalism that is comparable in its expressiveness
to the one of Uppaal. To accomplish this goal while keeping the formalization
effort manageable, we opt to accept Uppaal bytecode as input. At the current
state of the project we have formalized the semantics of a subset of the bytecode
produced by Uppaal. We support the essential modeling features: networks of
automata with synchronization, and bounded integer state variables. We apply
a product construction to reduce models of this formalism to a single timed
automaton. As in real model checkers, the whole construction is computed on
the fly. However, not every bytecode input designates a valid automaton. To this
end, we employ a simple program analysis to accept a sufficiently large subset
of the valid inputs.

We conducted experiments on a small number of established benchmark mod-
els. The throughput of our model checker — the number of explored states per
time unit — is within an order of magnitude of a version of Uppaal running a
comparable algorithm.

1.1 Isabelle/HOL

Isabelle/HOL [4] is an interactive theorem prover based on Higher-Order Logic
(HOL). You can think of HOL as a combination of a functional programming
language with logic. Although Isabelle/HOL largely follows ordinary mathe-
matical notation, there are some operators and conventions that should be ex-
plained. Like in functional programming, functions are mostly curried, i.e. of
type τ1 ⇒ τ2 ⇒ τ instead of τ1 × τ2 ⇒ τ . This means that function application
is usually written f a b instead of f(a, b). Lambda terms are written in the stan-
dard syntax λx. t (the function that maps x to t) but can also have multiple
arguments λx y. t, paired arguments λ(x, y). t, or dummy arguments λ . t. Type
variables are written ′a, ′b, etc. Compound types are written in postfix syntax:
τ set is the type of sets of elements of type τ . In some places in the paper we
have simplified formulas or code marginally to avoid distraction by syntactic or
technical details, but in general we have stayed faithful to the sources.

1.2 Related Work

The basis of the work presented in this paper is our existing formalization of
timed automata [7]. We are aware of one previous proof-assistant formalization
of timed automata using PVS [8, 9]. This work has the basic decidability result

3

using regions and claims to make some attempt to extend the formalization
towards DBMs. Another line of work [10, 11] aims at modeling the class of p-
automata [12] in Coq and proving properties of concrete p-automata within Coq.
A similar approach was pursued with the help of Isabelle/HOL in the CClair
project [13]. In contrast, our formalization [7] focuses on the foundations of
timed automata model checking. In particular, it encompasses a formalization
of the relevant DBM algorithms and the rather intricate developments towards
the correctness proof for the approximation operation.

We are not aware of any previous formalizations or verified implementations
of timed automata model checking. The first verification of a model checker we
are aware of is by Sprenger for the modal µ-calculus in Coq [14]. Our important
forerunner, however, is the CAVA project [15–17] by Esparza et al. It sets out for
similar goals as we do but for finite state LTL model checking. A significant part
of the refinement technology that we make use of was developed for this project,
and it was the first project to demonstrate that verification of model checking
can yield practical implementations. Compared to CAVA, our work offers sev-
eral novelties: we target model checking of timed automata, which have an infi-
nite state space; we use imperative data structures, which is crucial for efficient
DBMs; finally, we implemented complex search algorithms with subsumption.
Additionally, we operate on automata annotated with Uppaal bytecode, which
has interesting ramifications: for the product construction, and because we need
to ensure that the input actually defines a timed automaton.

2 Timed Automata and Model Checking

2.1 Transition Systems

We take a very simple view of transition systems: they are simply a relation →
of type ′a ⇒ ′a ⇒ bool. We model (finite) runs as inductive lists, and infinite
runs as coinductive streams. We write a → xs → b to denote the →-run from
a to b using the intermediate states in the list xs, and a →ys to denote the
infinite→-run starting in a and then continuing with states from the stream ys.
Additionally, we define:

a→+ b = (∃xs. a→ xs→ b) and a→∗ b = (a→+ b ∨ a = b) .

We define the five CTL properties that are supported by Uppaal, A♦, A�,
E♦, E�, and 99K, as properties of infinite runs2 starting from a state. For in-
stance,

A♦ φ x = (∀xs. x→xs =⇒ ev (holds φ) (x · xs)) ,

and

φ 99K ψ = A� (λx. φ x =⇒ A♦ ψ x) ,

2 This is fairly standard in the literature [2, 3, 12, 18] but differs slightly from the
implementation in Uppaal.

4

where ev specifies that a property on a stream eventually holds, and holds con-
strains ev to the current state instead of the remainder stream. It then is trivial
to prove identities such as E� φ x = (¬A♦ (Not ◦ φ) x).

2.2 Timed Automata

Compared to standard finite automata, timed automata introduce a notion of
clocks. Fig. 1 depicts an example of a timed automaton. We will assume that
clocks are of type nat . A clock valuation u is a function of type nat ⇒ real .

s1 s2

c2 ≤ 2

c1 > 1, a2, c2 := 0

a3

c1 ≤ 3, a1, c1 := 0

Fig. 1: Example of a timed automaton with two clocks.

Locations and transitions are guarded by clock constraints, which have to
be fulfilled to stay in a location or to take a transition. Clock constraints are
conjunctions of constraints of the form c ∼ d for a clock c, an integer d, and
∼ ∈ {<,≤,=,≥, >}. We write u ` cc if the clock constraint cc holds for the
clock valuation u. We define a timed automaton A as a pair (T , I) where I is
an assignment of clock constraints to locations (also named invariants); and T
is a set of transitions written as A ` l −→g,a,r l′ where l and l′ are start and
successor location, g is the guard of the transition, a is an action label, and r is
a list of clocks that will be reset to zero when the transition is taken. States of
timed automata are pairs of a location and a clock valuation. The operational
semantics define two kinds of steps:

– Delay: (l, u)→d (l, u⊕ d) if d ≥ 0 and u⊕ d ` I l;
– Action: (l, u)→a (l′, [r → 0]u)

if A ` l −→g,a,r l′, u ` g, and [r → 0]u ` I l′;

where u⊕ d = (λc. u c+ d) and [r → 0]u = (λc. if c ∈ r then 0 else u c). For any
(timed) automaton A, we consider the transition system

(l, u)→A (l′, u′) = (∃d ≥ 0. ∃a u′′. (l, u)→d (l, u′′) ∧ (l, u′′)→a (l′, u′)).

That is, each transition consists of a delay step that advances all clocks by some
amount of time, followed by an action step that takes a transition and resets
the clocks annotated to the transition. We write A, s0 |= φ if φ holds in state s0
w.r.t. →A. Note that it is crucial to combine the two types of steps in order to

5

reason about liveness. Consider the automaton from Fig. 1 and assume the two
kinds of steps could be taken independently. Then the automaton has a run on
which some predicate P holds everywhere if and only if P s1 holds.

2.3 Model Checking

Due to the use of clock valuations, the state space of timed automata is inher-
ently infinite. Thus, model checking algorithms for timed automata are based
on the idea of abstracting from concrete valuations to sets of clock valuations
of type (nat ⇒ real) set, often called zones. The initial decidability result [1]
partitioned the state space into a quotient of zones, the so-called regions, and
showed that these yield a sound and complete abstraction3. However, practi-
cal model checking algorithms rather explore the state space in an on-the-fly
manner, computing successors directly on zones, which are typically represented
symbolically as Difference Bound Matrices (DBMs). DBMs are simply a matrix-
form representation of clock constraints, which contain exactly one conjunct for
each pair of clocks. To represent constraints on single clocks, an artificial 0-clock
is added, which is assumed to be assigned 0 in any valuation.

The delicate part of this method is that the number of reachable zones could
still be infinite. Therefore, an over-approximation is applied to zones to obtain a
finite search space. We call the transition system of zones the zone graph, and the
version where over-approximations are applied the abstract zone graph [18]. The
soundness argument for this method (due to over-approximation completeness
is trivial), starts from the region construction and then introduces the notion of
the closure of a zone, which is defined to be the union of all regions intersecting
with a zone. It can be shown from the correctness of the region construction that
closures yield a sound over-approximation of zones. Finally, one shows that the
result of applying the over-approximation operator to zones is always contained
in the closure, thus inheriting soundness from the soundness of closures. We have
formalized this argument and all of the material summarized in this section in
previous work [7]. It only covers the case of reachability, but we will demonstrate
how to extend the soundness argument to liveness below.

3 A First Glance at the Model Checker

This section provides a first overview of our model checker, its construction,
and the correctness theorem we proved. The input to our checker consists of a
model, i.e. a network of Timed Automata, and a formula to be checked against
the model. To achieve high compatibility with Uppaal, guards and updates
can be formulated in Uppaal bytecode4. This intermediate representation is
computed by Uppaal from the original C-style input before the actual model

3 We use the same notions as in [7]. Soundness: for every abstract run, there is a
concrete instantiation. Completeness: every concrete run can be abstracted.

4 For the time being, the bytecode needs to be pre-processed slightly, mainly to rename
textual identifiers to integers.

6

checking process is started. Given such an input, our tool will first determine
whether the input is valid and lies in the supported fragment. This is achieved
by a simple program analysis. As input formulae, our model checker accepts the
same (T)CTL fragment that is supported by UPPAAL, but restricts formulae
to not contain clocks. While this is not a principal limitation of our work, it
reduced the complexity of our first prototype. If the input is invalid, our tool
answers with “invalid input”, else it determines whether

conv N, (init , s0, u0) �max steps φ

holds for the all-zero valuation u0 under the assumption that the automaton is
deadlock-free5, and answers with true/false. Here, N is the input automaton,
conv converts all integer constants to reals (as the semantics are specified on
reals), and φ is the input formula. The relation �max steps is a variant of �
lifted to networks of timed automata with shared state and Uppaal bytecode
annotations. It is indexed with the maximum number of steps that any execution
of a piece of Uppaal bytecode can use (i.e. max steps is the fuel available to
executions). The vector of start locations init, and the shared state s0 (part of
the input) describe the initial configuration.

The actual model checking proceeds in two steps. First, a product construc-
tion converts the network to a single timed automaton, expressed by HOL func-
tions for the transition relation and the invariant assignment. Second, according
to the formula, a model checking algorithm is run on the single automaton. We
need three algorithms: a reachability checker for E♦ and A�, a loop detection
algorithm for E� and A♦, and a combination of both to check 99K-properties.
Note that the aforementioned HOL functions are simply functional programs
that construct the product automaton’s state and invariant assignments on-the-
fly. The final correctness theorem we proved can be stated as follows:

{emp}
precond mc p m k max steps I T prog formula bounds P s0
{λSome r ⇒ valid input p m max steps I T prog bounds P s0 na k ∧

(¬ deadlock (conv N) (init , s0, u0) =⇒
r = conv N, (init , s0, u0) �max steps formula)

| None ⇒ ¬ valid input p m max steps I T prog bounds P s0 na k}

This Hoare triple states that the model checker terminates and produces the
result None if the input is invalid. If the input is valid and deadlock free, it
produces the result Some r, where r is the answer to the model checking problem.

4 Single Automaton Model Checking

In this section, we describe the route from the abstract semantics of timed au-
tomata to the implementation of an actual model checker. The next section will
describe the construction of a single timed automaton from the Uppaal-model.

5 Adding a check for deadlocked states to our algorithms would be conceptually simple
but is left for future work.

7

4.1 Implementation Semantics

Although we have established that the DBM-based semantics from Section 2
can only explore finitely many zones, it is still “too infinite”: the automaton and
DBMs are described by real constants, and operations on DBMs are performed
on infinitely many dimensions (i.e. clocks). Thus, we introduce an implementa-
tion semantics, in which automata are given by integer constants, and where the
number of clocks is fixed. We prove equivalence of the semantics in two steps:
first, we show that DBM operations need only be performed on the clocks that
actually occur in the automaton; second, we show that all computations can be
performed on integers, provided the initial state only contains integers.

For the former step, we simplify the operations under the assumptions that
they maintain canonicity of DBMs. A DBM is canonical if it stores the tightest
derivable constraint for each pair of clocks, i.e.

canonical M n = (∀i j k. i ≤ n ∧ j ≤ n ∧ k ≤ n→M i k ≤M i j +M j k) .

During model checking, the Floyd-Warshall algorithm is used to turn a DBM
into its canonical counterpart.

For the latter step, we use Isabelle’s integrated parametricity prover [19] to
semi-automatically transfer the operations from reals to integers.

As an example, Fig. 2 displays the refinement steps of the up operation, which
computes the time successor of a zone Z, i.e. the set {u⊕ d | u ∈ Z ∧ d ≥ 0}.

up M = (λi j.
if i > 0 then if j = 0 then ∞
else min(M i 0 +M 0 j)(M i j)
else M i j)

(a)

up1 M = (λi j.
if i > 0 ∧ j = 0
then ∞
else M i j)

(b)

up2 M n = fold
(λi M. M((i, 0) :=∞))
[1 ..<n+ 1] M

(c)

up3 M n = imp for′ 1 (n+ 1)
(λi M. mtx set (n+ 1) M (i, 0) ∞)
M

(d)

Fig. 2: Refinement stages of the up operation for computing time successors.

In the step from up to up1, the assumption that the input DBM is canonical
is introduced. In up2, which is the version used in the implementation semantics,
the operation is constrained to clocks 1 to n. Finally, in up3, the matrices are
implemented as arrays and the fold is implemented as a foreach loop.

At this point, a naive exploration of the transitive closure of the implemen-
tation semantics would already yield a simple but inefficient model checker. The
rest of this section outlines the derivation of a more elaborate implementation
that is close to what can be found in Uppaal.

8

4.2 Semantic Refinement of Successor Computation

We further refine the implementation semantics to add two optimizations to the
computation of successor DBMs: to canonicalize DBMs it is sometimes sufficient
to only “repair” single rows or columns instead of running the full Floyd-Warshall
algorithm; moreover, we can terminate the computation early whenever we dis-
cover a DBM that represents an empty zone (as it will remain empty). Both
arguments are again carried out on the semantic level.

4.3 Abstraction of Transition Systems with Closures

Recall that the correctness of the reachability analysis on the abstract zone
graph in Section 2 was obtained arguing that the region closure of zones forms
a sound over-approximation of zones, which in turn is larger than the abstract
zone graph. We want to reuse the same kind of argument to also argue that there
exists a cycle in the abstract zone graph if and only if there is a cycle in the
automaton’s transition system. This proof is carried out in a general abstract
framework for transition systems and their abstractions.

We consider a concrete step relation →C over type ′a and what is supposed
to be its simulation, a step relation →A1

over type ′a set. We say that →A1
is

post-stable [20] if S →A1 T implies

∀s′ ∈ T. ∃s ∈ S. s→C s′ ,

and that →A1
is pre-stable [20] if S →A1

T implies

∀s ∈ S. ∃s′ ∈ T. s→C s′ .

In the timed automata setting, for instance, the simulation graph is post-stable
and the region graph is pre-stable.

Lemma 1. If →A1
is post-stable and we have a →A1

as →A1
a with a finite

and non-empty, then there exist xs and x ∈ a such that x→C xs→C x.

Proof. Let x → y = (∃xs. x →C xs →C y). As →A1 is post-stable, every a has
an ingoing →-edge. Because a is finite we can thus find an →-cycle in a, and
obtain the claim.

Lemma 2. If →A1
is pre-stable and we have a→A1

as→A1
a and x ∈ a, then

there exist xs such that x→xs
C and xs passes through a infinitely often.

Proof. By coinduction. From pre-stability we can find x1 ∈ a such that x→+
C x1,

from x1 we find x2 ∈ a such that x1 →+
C x2, and so forth.

We can now consider doubly-layered abstractions as in the case for regions
and zones. That is, we add a second simulation →A2 and two predicates P1 and
P2 that designate valid states of the first and second simulation layer, respec-
tively. Then we define the closure C of a state of the second layer as

C a = {x | P1 x∧ a∩x 6= ∅} and a→C b = (∃x y. a = C x∧ b = C y ∧x→A2
y) .

9

We assume that →A1
is pre-stable w.r.t. →C and that →C is post-stable w.r.t.

→A1
. Along with some side conditions on P1 and P2

6 we can prove:

Theorem 1. If a0 →A2
as →A2

a →A2
bs →A2

a and P2 a, then there exist
x ∈

⋃
(C a0) and xs such that x →xs

C and xs passes through
⋃

(C a) infinitely
often.

Proof. We first apply C to the second layer states and get a path of the form:
C a0 →C as′ →C C a →C bs′ →C C a for some as′ and bs′. From Lemma 1 and
post-stability, we obtain a path of the form a01 →A1

as1 →A1
a1 →A1

bs1 →A1

a1 with a01 ∈ C a0 and a1 ∈ C a. By applying Lemma 2 and pre-stability, we
obtain the desired result.

This is the main theorem that allows us to run cycle detection on the abstract
zone graph during model checking: the other direction is trivial, and the theorem
can be directly instantiated for regions and (abstracted) zones. There is a slight
subtlety here since we only guarantee x ∈

⋃
(C a0). However we typically have

C a0 = a0, as all clocks are initially set to zero.

4.4 Implementation of Search Algorithms

We first implement the three main model checking algorithms abstractly in the
nondeterminism monad provided by the IRF. On this abstraction level, we can
use such abstract notions as sets and specify the algorithm for an arbitrary (fi-
nite) transition system→. We only showcase the implementation of our cyclicity
checker (used for A♦ and E�). The techniques used for the other algorithms
are similar. The code for our cyclicity checker is displayed in Listing 1.1.

dfs P = do {
(P, ST, r)← recT (λdfs (P, ST, v) .

do {
if ∃v′ ∈ set ST. v′ � v then return (P, ST,True)
else do {

if ∃v′ ∈ P. v � v′ then return (P, ST,False)
else do {

let ST = v · ST ;
(P, ST ′, r)←

foreach {v′ | v → v′} (λ(, , b). ¬ b)
(λv′ (P, ST,). dfs (P, ST, v′))
(P, ST,False) ;

assert (ST ′ = ST) ;
return (insert v P, tl ST ′, r)

}
}

}) (P, [], a0) ;
return (r, P)}

Listing 1.1: Cyclicity Checker

6 P1 states are distinct and there are only finitely many of them. For every P2 state,
there is an overlapping P1 state.

10

We claim that this closely resembles the pseudo-code found, e.g., in [21]. The
algorithm takes a passed set, and produces a new passed set in addition to
the answer. This can be used in the algorithm for checking 99K-properties. The
crux of the algorithm is the use of the subsumption operator �, to check whether
smaller states are already subsumed by larger states that we may have discovered
earlier (for timed automata, this would correspond to set inclusion on zones).
We assume that � is a pre-order and monotone w.r.t. →. Then, using the IRF’s
verification condition generator, we prove:

dfs P ≤ SPEC (λ(r, P ′). (r =⇒ (∃x. a0 →∗ x ∧ x→+ x))
∧(¬ r =⇒ ¬ (∃x. a0 →∗ x ∧ x→+ x) ∧ liveness compatible P ′))

if liveness compatible P .

The invariant we maintain for the passed set P is encoded in the predicate
liveness compatible P . We say that a state x is covered by P if there exists
x′ ∈ P such that x � x′. Then, informally, liveness compatible P states that the
successors of every node that is covered by P are also covered, and that there is
no cycle through nodes that are covered by P . After specifying the correct loop
invariant (using liveness compatible as the main insight) and the termination
relation, together with some key lemmas about the invariant, the verification
conditions can be discharged nearly automatically.

In subsequent steps, we gradually refine this implementation to use more
efficient data structures. The final version uses a function to compute a list of
successors, and is able to index the passed set and the stack according to a key
function on states (this corresponds to the location part of states in the abstract
zone graph). The refinement theorem can be stated as:

dfs map P ≤ ⇓ (Id×r map set rel) (dfs P ′) if (P, P ′) ∈ map set rel .

That is, dfs map is a refinement of dfs, where the passed set is data-refined w.r.t.
the relation map set rel . This relation describes the implementation of passed
sets indexed by keys.

These refinement steps are conducted inside the nondeterminism monad of
the IRF. The final step leads into the heap-monad of Imperative HOL [22], which
supports imperative data structures. Here, the Sepref tool [6] replaces functional
by imperative data structures and generates a refinement theorem automatically.

Maps are implemented via hash tables, which poses a challenge for the im-
plementation as the maps contain objects stored on the heap. This was not
supported by the existing implementation in the Imperative Collections Frame-
work, due to sharing issues: when retrieving a value from the map, we cannot
obtain ownership of the value while the map also retains ownership. This is
even true if the value is read-only. One way to solve this problem would be to
extend the separation logic that underlies the IRF to fractional permissions or
read-only permissions. Our solution, however, is more ad-hoc: we simply restrict
the operations that we perform on the hash map to insertions and an extract
operation, which deletes a key-value pair from the map and returns the value
(i.e. it combines lookup and delete). To define the map implementation, we use

11

a trick similar to Chargueraud’s ideas from [23]: we use a heap assertion that
first connects an abstract map m with an intermediate map mh of pointers to
the elements, and then implements the map of pointers by a regular hash map
mi. Formally, the assertion is defined as:

hms assn A m mi = (∃Amh. is map mh mi ∗map assn A m mh) .

Here is map is the assertion for an existing map implementation from the Im-
perative Collections Framework (which cannot store heap objects, but supports
pointers), and map assn A m mh connects a map of abstract values with a map
of pointers, where the relation between abstract values and pointed-to objects
is defined by A.

Then, the final implementation is produced by proving that all map-related
operations in dfs map can be replaced by insert and extract operations, and
letting Sepref synthesize the imperative variant, making use of our new hash map
implementation. The key theorem on the final implementation is the following
Hoare triple:

{emp}
dfs map impl ′ succsi a0i Lei keyi copyi
{λr. r = (∃x. a0 →∗ x ∧ x→+ x)}

It is expressed in a locale (Isabelle’s module system) that assumes that a0i,
succsi , etc., are the correct imperative implementations of a0, the successor
function, and so forth. Versions of the search algorithm for concrete transition
systems are obtained by simply instantiating the locale with the operations of
the transition system and their implementations.

4.5 Imperative Implementations of Model Checking Operations

Recall the refinement of the up operation (Fig. 2). It is crucial that up2 is ex-
pressed as a fold-operation with explicit updates, as only then the IRF can
extract an efficient imperative version with destructive updates and a foreach
loop. The imperative implementation up3 is, again, synthesized by the Sepref
tool. As can be witnessed for up3, the pattern fold f [1 ..<n+ 1] is turned into
a foreach loop. Technically, this is achieved by a set of rewrite rules that are
applied automatically by the Sepref tool at the end of the synthesis process. The
only hurdle for this kind of synthesis is that the dimension of DBMs needs to
become a parameter of the refinement relations. For n clocks, we define

mtx assn = asmtx assn (n+ 1) id assn .

This specifies that our DBMs are implemented by square-arrays of dimension
n+ 1, and their elements are refined by the identity relation.

The refinement theorem for up3 is proved automatically by the Sepref tool:

(up3, up2) ∈ [λ(, i). i ≤ n] mtx assnd ∗ nat assnk → mtx assn .

This theorem states that, if the specified dimension is in bounds, up3 refines up2.
The ·d annotation indicates that the operation is allowed to overwrite (destroy)

12

the input matrix on the heap. Symmetrically, the ·k annotation means that the
second parameter is not overwritten (kept).

4.6 Code Extraction

Finally, Isabelle/HOL’s code generator [24] is used to extract imperative Stan-
dard ML code from the Isabelle specifications generated by Sepref. Code gener-
ation involves some optimizations and rewritings that are carried out as refine-
ment steps and proved correct, followed by pretty printing from the functional
fragment of HOL and the heap monad to Standard ML.

5 From UPPAAL-style Semantics to a Single Automaton

5.1 UPPAAL-style semantics

Due to the lack of documentation on the Uppaal intermediate format, we define
an approximation of this assembler-like language by reverse engineering. This is
sufficient to check typical benchmarks, and gives a clearly defined semantics to
the fragment that we cover. The language is defined as a simple data type instr.
A step function of type instr ⇒ state ⇒ state option computes the successor
state after executing an instruction, or fails. A state consists of an instruction
pointer, the stack, the state of the shared integer variables, the state of the
comparison flag, and a list of clocks that have been marked for reset. Using a
fuel parameter, we execute programs by repeatedly applying the step function
until we either reach a halt instruction, fail, or run out of fuel, which we also
regard as a failed execution.

A special instruction CEXP is used to check whether an atomic clock con-
straint holds for a given valuation u. However, this instruction cannot simply
be executed during model checking as it would need to work on zones instead
of valuations. Unconstrained use of the CEXP instruction would allow for dis-
junctions of clock constraints on edges, which is not part of the standard timed
automata formalism. Thus, in the same way as Uppaal, we restrict the valid
input programs to those that only yield conjunctions of clock constraints on
edges. We then replace every CEXP instruction by a special meta instruction
that sets the comparison flag to true. This amounts to enforcing a program ex-
ecution where the clock constraint, which is expressed by a piece of bytecode,
holds for a valuation. Edges are annotated with the conjunction of the atomic
clock constraints encountered during execution. In the current version of our
tool, we separate concerns for locations by using a state predicate, which is not
allowed to use CEXP instructions, and a separate clock constraint. The two
could be merged by using the same approach as for edges.

5.2 Program Analysis

As stated in the last section, we need to ensure that successful program execu-
tions can only induce conjunctive clock constraints. That is, we need to ensure

13

that program executions can only be successful when all CEXP instructions that
are encountered during execution evaluate to true. To this end, we use a naive
analysis, which recognizes a subclass of these programs that is sufficiently large
to cover common timed automata benchmarks. This analysis tries to identify
what we call conjunction blocks. A conjunction block reaching from addresses
pcs to pct ends with a halt instruction at pct, starts with a CEXP instruction
at pcs and then is extended to pct by repeatedly using one of the following two
patterns:

– a copy instruction to push the flag on the stack, followed by CEXP and an
and instruction;

– a copy instruction, followed by a jump-on-zero instruction with pct as the
destination, followed by CEXP and an and instruction.

We simultaneously show the two key properties of conjunction blocks via induc-
tion: if there is a conjunction block from pcs to pct, then any successful execution
starting from pcs ends in pct, and every CEXP instruction that is encountered
has to evaluate to true. Given a start address pcs, the whole analysis works by
computing an approximation of the set of possible addresses that can be reached
from pcs, say S, and then checking whether

Min {pc | pc ∈ S ∧ (∃ac. Ppc = CEXP ac)} to Max S

is a conjunction block, where Ppc is the program instruction at address pc. A
major limitation of this analysis is that it cannot approximate the reachable
set for call and return instructions, so we are not able to handle inputs that
are compiled from Uppaal programs with sub-routines. However, as the main
objective of our work is not program analysis, we consider the current naive
analysis sufficient to demonstrate the general viability of our approach.

5.3 Product Construction

The general shape of our product construction is outlined in Fig. 3. The first
stage of the construction encodes the bytecode annotations as guards and up-
dates on the shared state. The subsequent stage constructs a network of au-
tomata for each shared state by essentially filtering the transitions that are valid
for a given state. For a simple network, the product can be constructed in the
obvious way. However, this is only used in the correctness proof of the final step,
which directly constructs a single automaton by pairing the location vector and
the state.

The result of this construction is a highly contrived description of the single
automaton. To obtain an efficiently executable version of this description, we
specify an alternative functional implementation and prove the equivalence of
the two.

14 Uppaal Networks:
shared bounded
integer variables

State Networks:
arbitrary finite
shared state

Networks:

synchronization only

Single Automaton

Encode programs

One per state

Encode location vectors
P
air

lo
catio

n
s
&

state

Fig. 3: Outline of the product construction.

6 Experimental Evaluation

We conducted experiments on some standard benchmark models for timed au-
tomata: a variant of Fischer’s mutual-exclusion protocol, the FDDI token ring
protocol, and the CSMA/CD protocol used in Ethernet networks. We tested one
reachability and one liveness property for each model: E♦(c > 1) and P1.b 99K
P1.c for Fischer’s protocol; E♦(¬P1.idle ∧ ¬P2.idle) and true 99K z async1 for
FDDI; and E♦(P1.abort ∧P2.send), and collision 99K active for CSMA/CD. We
compare (c.f. Table 1) our tool against Uppaal configured with two different
approximation operators: difference (Uppaal1) and location-based (Uppaal2)
extrapolation. We give the computation time in seconds and the number of
explored states, as reported by our tool and Uppaal7. Since the number of
explored states differs significantly, we also calculated throughput, i.e. the num-
ber of explored states per second. The ratio of Uppaal’s throughput and our
tool’s throughput is given in the column TR. We specify the problem size as the
number of automata in the network.

The results indicate that our tool’s throughput is around one order of magni-
tude lower than Uppaal’s. Encouragingly, the gap seems to decrease for larger
models. However, for larger problem sizes of some models, we also start to run
out of memory because our tool is not tuned towards space consumption. We do
not have a convincing explanation for the difference in states explored by our
tool and Uppaal — particularly, because our tool already implements location-
based extrapolation. Nevertheless, we conclude that the performance offered by
our tool is reasonable for a reference implementation against which other tools
can be validated: we can check medium sized instances of common benchmark

7 Uppaal comes with a note suggesting that these numbers might be wrong for liveness
properties.

15

Table 1: Experimental results on a set of standard benchmarks.

Our Tool Uppaal1 Uppaal2

Model Prop SAT Size time #states time #states TR time #states TR

Fischer R N 5 6,61 38578 0,31 12363 6,83 0,04 3739 16,02
L Y 5 7,52 42439 0,31 20340 11,8 0,04 8149 40,1

Y 6 485,9 697612 42,85 249295 4,1 1,53 67325 30,7

FDDI R N 8 16,04 6720 0,34 5416 37,6 0,31 5416 42,0
N 10 142,8 29759 6,63 24210 17,5 6,44 24120 18,0

L Y 6 2,58 2083 0,05 2439 61,7 0,04 2439 68,7
Y 7 6,50 3737 0,15 4944 57,0 0,14 4944 62,3

CSMA/CD R N 5 4,48 9959 0,03 2704 45,3 0,03 2769 40,6
N 6 71,70 81463 1,70 17613 9,2 1,79 17939 8,8

L Y 5 4,93 11526 0,04 3802 42,4 0,04 3867 42,4
Y 6 76,83 96207 1,78 23128 10,4 1,86 12603 10,1

models, which should be sufficient to scrutinize the functionality of a model
checker.

7 Conclusion

We have derived an efficiently executable and formally verified model checker
for timed automata. Starting from an abstract formalization of timed automata,
we first reduced the problem to model checking of a single automaton, and then
used stepwise refinement techniques to gradually replace abstract mathematical
notions by efficient algorithms and data structures. Some of the verified algo-
rithms and data structures, e.g. search with subsumption and Difference Bound
Matrices, are interesting in their own right. Our experiments demonstrate that
our tool’s performance is suitable for validating other model checkers against
it on medium sized instances of classic benchmark models. Using a simple pro-
gram analysis, we can cover a subset of the Uppaal bytecode that is sufficient
to accept common models as an input.

Following the construction we expounded above, our checker can be improved
on two different axes: advanced modeling feature such as broadcast channels or
committed locations can be enabled by elaborating the product construction;
using the refinement techniques that we demonstrated above, further improve-
ments of the model checking algorithms can achieve better performance.

An alternative approach to tackle performance problems is to resort to cer-
tification of model checking results. For the simple CTL properties that are
supported by our tool and Uppaal, passed sets could be used as the certificates
and the model checking algorithms could be reused for certificate checking. As
the model checking algorithms for timed automata make use of subsumption,
passed sets can contain significantly less states than the total number of states
explored during model checking. We plan on exploring this avenue in the future.

16

Data Availability Statement

The datasets generated during and analyzed during the current study are avail-
able in the figshare repository [25]: https://doi.org/10.6084/m9.figshare.5917363.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science
126(2) (1994) 183–235

2. Bengtsson, J., Yi, W.: Timed automata: Semantics, algorithms and tools. In:
Lectures on Concurrency and Petri Nets: Advances in Petri Nets. Volume 3908 of
LNCS., Springer (2004) 87–124

3. Bouyer, P.: Untameable timed automata! In: STACS 2013, Proceedings. Volume
2607 of LNCS., Springer (2003) 620–631

4. Nipkow, T., Lawrence C. Paulson, Wenzel, M.: Isabelle/HOL - A Proof Assistant
for Higher-Order Logic. Volume 2283 of LNCS. Springer (2002)

5. Lammich, P., Tuerk, T.: Applying data refinement for monadic programs to
Hopcroft’s algorithm. In: Proc. of ITP. Volume 7406 of LNCS., Springer (2012)
166–182

6. Lammich, P.: Refinement to Imperative/HOL. In Urban, C., Zhang, X., eds.: ITP
2015, Proceedings. Volume 9236 of LNCS., Springer (2015) 253–269

7. Wimmer, S.: Formalized timed automata. In Blanchette, J.C., Merz, S., eds.: ITP
2016, Proceedings. Volume 9807 of LNCS., Springer (2016) 425–440

8. Xu, Q., Miao, H.: Formal verification framework for safety of real-time system
based on timed automata model in PVS. In: Proc. of the IASTED International
Conference on Software Engineering, 2006. (2006) 107–112

9. Xu, Q., Miao, H.: Manipulating clocks in timed automata using PVS. In: Proc. of
SNPD’09. (2009) 555–560

10. Paulin-Mohring, C.: Modelisation of timed automata in Coq. In: Proc. of
STACS’01. LNCS 2215 (2001) 298–315

11. Garnacho, M., Bodeveix, J., Filali-Amine, M.: A mechanized semantic framework
for real-time systems. In: Proc. of FORMATS’13. LNCS 8053 (2013) 106–120

12. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: Proc.
of the Twenty-Fifth Annual ACM Symposium on Theory of Computing. (1993)
592–601

13. Castéran, P., Rouillard, D.: Towards a generic tool for reasoning about la-
beled transition systems. In: TPHOLs 2001: Supplemental Proceedings. (2001)
http://www.informatics.ed.ac.uk/publications/report/0046.html.

14. Sprenger, C.: A verified model checker for the modal µ-calculus in Coq. In: Proceed-
ings of the 4th International Conference on Tools and Algorithms for Construction
and Analysis of Systems. TACAS ’98, London, UK, Springer (1998) 167–183

15. Esparza, J., Lammich, P., Neumann, R., Nipkow, T., Schimpf, A., Smaus, J.G.: A
fully verified executable LTL model checker. In: Proc. of CAV’13. Volume 8044 of
LNCS., Springer (2013) 463–478

16. Neumann, R.: Using promela in a fully verified executable ltl model checker. In
Giannakopoulou, D., Kroening, D., eds.: Verified Software: Theories, Tools and
Experiments, Springer (2014) 105–114

17. Brunner, J., Lammich, P.: Formal verification of an executable ltl model checker
with partial order reduction. Journal of Automated Reasoning 60(1) (Jan 2018)
3–21

17

18. Herbreteau, F., Srivathsan, B., Tran, T.T., Walukiewicz, I.: Why liveness for timed
automata is hard, and what we can do about it. In Lal, A., Akshay, S., Saurabh,
S., Sen, S., eds.: FSTTCS 2016. Volume 65 of LIPIcs., Schloss Dagstuhl – Leibniz-
Zentrum für Informatik (2016) 48:1–48:14

19. Huffman, B., Kuncar, O.: Lifting and transfer: A modular design for quotients in
Isabelle/HOL. In: CPP. (2013) 131–146

20. Bouajjani, A., Tripakis, S., Yovine, S.: On-the-fly symbolic model checking for real-
time systems. In: Proceedings of the 18th IEEE Real-Time Systems Symposium
(RTSS ’97), December 3-5, 1997, San Francisco, CA, USA. (1997) 25–34

21. Behrmann, G., Larsen, K.G., Rasmussen, J.I.: Beyond liveness: Efficient parameter
synthesis for time bounded liveness. In: Proceedings of the Third International
Conference on Formal Modeling and Analysis of Timed Systems. FORMATS’05,
Springer (2005) 81–94

22. Bulwahn, L., Krauss, A., Haftmann, F., Erkök, L., Matthews, J.: Imperative func-
tional programming with Isabelle/HOL. In: TPHOL. Volume 5170 of LNCS.,
Springer (2008) 134–149

23. Charguéraud, A.: Higher-order representation predicates in separation logic. In:
CPP. (2016) 3–14

24. Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems. In:
FLOPS 2010. LNCS, Springer (2010)

25. Wimmer, S., Lammich, P.: Verified model checking of timed automata – artifact
(2018)

