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Abstract. Prior research has shown how to construct a mechanically
verified model checker for timed automata, a popular formalism for
modeling real-time systems. We extend this work to improve its value for
practical timed automata model checking in two ways.
First, we shift the focus from verified model checking to certifying unreach-
ability. This allows us to benefit from better approximation operations
for symbolic states, and reduces execution time by exploring fewer states
and by exploiting parallelism. Moreover, this gives us the ability to audit
results of unverified model checkers that implement a range of further
optimizations, including certificate compression.
Second, we provide an improved modeling language that includes the
popular modeling features of broadcast channels as well as urgent and
committed locations. The resulting tool is evaluated on a set of standard
benchmarks to demonstrate its practicality, using a new unverified model
checker implementation in Standard ML to construct the certificates.

Keywords: Timed automata · Interactive Theorem Proving · Isabelle/HOL.

Timed automata [1] are a widely used formalism for modeling real-time systems,
which is employed in a class of successful model checkers such as Uppaal [4].
These tools can be understood as trust-multipliers: we trust their correctness to
deduce trust in the safety of systems checked by these tools. As a consequence,
one wants to ensure as rigorously as possible that the computation results of
timed automata model checkers are correct.

Previous work [27] has addressed this problem by constructing a model checker
for timed automata that is fully verified using Isabelle/HOL [22]. This tool is
intended to be a reference implementation that can be used to scrutinize the
correctness of other model checkers. As such, it is mainly able to check small
and medium-sized benchmark examples, but the performance gap w.r.t. more
practical model checkers prevents it from checking realistic benchmark models
within reasonable time and space bounds. Moreover, its modeling language is a
rather ad-hoc translation of Uppaal’s modeling language and lacks commonly
used modeling features such as broadcast transitions and committed locations.

We address these issues by providing a new modeling language, and shifting
the focus from full verified model checking to only certifying that the result
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produced by an unverified model checker is correct. We only study reachability
(for now): it is the most important property that is checked with timed automata
model checkers, and some model checkers only support reachability. It is crucial
to ensure that a bad state is certainly not reachable if the model checker claims
so, thus we want to certify unreachability. Certifying that a state is indeed
reachable would amount to extracting a timed trace and certifying that the trace
is compatible with the model. While implementing this in a verified manner
would be comparatively easy, we consider it less important because it corresponds
to the bug finding functionality of model checkers, which carries less trust.

The recipe for certifying unreachability is simple: the model checker explores a
number of states until it determines that there are no more states to be found. If
none of the states fulfill the final state predicate (i.e. violates the safety property),
then the model checker will answer “unreachable”. We use the set of explored
states as the unreachability certificate. In essence, we only need to check that
the initial state is contained in this set, that there are no outgoing edges from
this set, and that none of the states in the set fulfill the final state predicate.

The switch to certification holds many advantages. Timed automata model
checking uses over-approximations of symbolic states to ensure termination. A
large variety of these approximation operators has been studied [2,3,12]. Our
previous work [26] has shown that, while formally proving the correctness of these
approximation operations is feasible in principle with an interactive theorem
prover, the effort is rather high. Instead, to certify unreachability, it is sufficient
to only know that the approximation operator indeed yields a state that is at
least as big as the precise symbolic state. Certifying this property is cheap.

Moreover, certification eases parallelization. Checking that a state is not final
and that all its successors are covered by the state set are local properties. We
show how to exploit this in a verified implementation, while only mildly increasing
the verification effort and the size of the trusted code base.

Finally, the number of states explored by a model checker can vary immensely,
depending on a range of factors such as the chosen approximation operator or
the search order. Thus, an efficient unverified tool can exploit different heuristics
and strategies to compute a state space that is as small as possible, and thereby
speedup the certification effort. In this context, we also study a number of
compression techniques to reduce the number of states in the certificate after the
model checker has concluded its search.

We use a new unverified model checker called Mlunta, which is implemented
in Standard ML (SML), to generate certificates for a set of standard benchmarks,
and evaluate our verified certifier’s performance on these benchmarks 1.

Related Work This work is based on an existing Isabelle/HOL formalization of
timed automata model checking [26,27]. Other proof-assistant formalizations of
timed automata focus on proving elementary properties about the basic formalism
[28,29], or proving properties about concrete automata [23,9,7], but none of them
are concerned with model checking.

1 Both tools are available online: https://home.in.tum.de/∼wimmers/TA Certification.

https://home.in.tum.de/~wimmers/TA_Certification
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Earlier work formalizes a model checker for the modal µ-calculus [25], and
constructs a verified finite state LTL model checker [8,21,5].

The idea of extracting certificates from the model checking process has
previously been studied in the context of the µ-calculus [20] and finite state
LTL model checking [24]. However, these works are not accompanied by a
verified certificate checker and do not attempt to scale the approach to practical
examples. Only the recent work of Griggio et al. [10] provides a practical extraction
mechanism and a certificate checker for LTL model checking, but the checker is
not verified. To the best of our knowledge, we are the first to examine certification
in the context of timed automata model checking.

Isabelle/HOL Isabelle/HOL [22] is an interactive theorem prover based on Higher-
Order Logic (HOL). HOL can be thought of as a combination of a functional
programming language and mathematical logic. Isabelle/HOL mostly resembles
standard mathematical notation. Some conventions that are borrowed from
functional programming need to be explained, however. Functions are mostly
curried, i.e. of type τ1 ⇒ τ2 ⇒ τ instead of τ1 × τ2 ⇒ τ . As a consequence,
function application is usually denoted as f a b instead of f(a, b). Function
abstraction with lambda terms uses the standard syntax λx. t (the function that
maps x to t) and can also have paired arguments λ(x, y). t. Type variables are
written ′a, ′b, etc. Compound types are written in postfix syntax: τ set is the
type of sets of elements of type τ . We use the Isabelle/HOL convention that
free variables are implicitly all-quantified throughout the paper. In parts of the
paper, formulas or syntax have been simplified for readability, but we have stayed
largely faithful to the Isabelle/HOL formalization.

Contributions In short, these are the main contributions of our work:

– To the best of our knowledge, we are the first to study certification of the
model checking results of reachability checking for timed automata, including
techniques to compress certificates.

– We construct a verified implementation of such a certificate checker.

– We give a formal semantics and a formalized on-the-fly product construction
for a timed automata modeling language including broadcast channels as
well as urgent and committed locations.

Outline The remainder of the paper is organized as follows. The first section
briefly recalls the theory of timed automata, and sketches the state-of-the-art
model checking process. The second section describes our modeling language and
the verified on-the-fly product construction. Section three explains how, starting
from an abstract theory, a concrete verified implementation of the certificate
checker can be obtained. Section four illustrates two techniques to improve the
certificate checker’s performance, while only mildly increasing the formalization
effort. Section five discusses two methods for certificate compression. The paper is
concluded by an experimental evaluation and remarks on potential future work.
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1 Timed Automata and Model Checking

Transition Systems We take a very simple view of transition systems: they are
simply a relation → of type ′a ⇒ ′a ⇒ bool for a type of states ′a. We write
a→∗ b to denote that b can be reached from a via a sequence of →-transitions.

Timed Automata To make the paper self-contained, this paragraph briefly de-
scribes timed automata and is mostly reproduced from Wimmer and Lammich
[26]. For a thorough introduction see the tutorial paper of Bengtsson and Yi [4].

Compared to standard finite automata, timed automata introduce a notion
of clocks. Fig. 1 depicts an example of a timed automaton. We will assume that
clocks are of type nat . A clock valuation u is a function of type nat ⇒ real . Loca-

s1 s2

c2 ≤ 2

c1 > 1, a2, c2 := 0

a3

c1 ≤ 3, a1, c1 := 0

Fig. 1: Example of a timed automaton with two clocks.

tions and transitions are guarded by clock constraints, which have to be fulfilled
to stay in a location or to take a transition. Clock constraints are conjunctions of
constraints of the form c ∼ d for a clock c, an integer d, and ∼ ∈ {<,≤,=,≥, >}.
We write u |= cc if the clock constraint cc holds for the clock valuation u. We
define a timed automaton A as a pair (T , I) where I is a mapping from locations
to clock constraints (also named invariants); and T is a set of transitions written
as A ` l −→g,a,r l′ where l and l′ are start and successor location, g is the guard
of the transition, a is an action label, and r is a list of clocks that will be reset
to zero when the transition is taken. States of timed automata are pairs of a
location and a clock valuation. The operational semantics defines two kinds of
steps (given as their HOL descriptions):

– Delay: (l, u)→d (l, u⊕ d) if d ≥ 0 and u⊕ d |= I l;
– Action: (l, u)→a (l′, [r → 0]u)

if A ` l −→g,a,r l′, u |= g, and [r → 0]u |= I l′;

where u ⊕ d = (λc. u c + d) offsets all clocks by d in the valuation u, and
[r → 0]u = (λc. if c ∈ r then 0 else u c) resets all clocks in r to 0 in valuation u.
For any (timed) automaton A, we consider the transition system

(l, u)→A (l′, u′) = (∃d ≥ 0. ∃a u′′. (l, u)→d (l, u′′) ∧ (l, u′′)→a (l′, u′)) .
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That is, each transition consists of a delay step that advances all clocks by some
amount of time, followed by an action step that takes a transition and resets the
clocks annotated to the transition. Given a final state predicate F and an initial
state (l0, u0), we are interested in whether (l0, u0)→∗A (l, u) for any l, u with F l.

Model Checking Due to the use of clock valuations, the state space of timed
automata is inherently infinite. Thus, model checking algorithms for timed
automata are based on the idea of abstracting from concrete valuations to
sets of clock valuations of type (nat ⇒ real) set, often called zones. The state
space is explored in an on-the-fly manner, computing successors on zones, which
are typically represented symbolically as Difference Bound Matrices (DBMs).
Knowledge of this data structure is not necessary to understand the rest of the
paper, thus we refer the interested reader to Bengtsson and Yi [4] and to Wimmer
and Lammich [26,27] for a verification of this data structure. In the remainder we
will only use the term “zones” and not refer to their implementation as DBMs.

The delicate part of this method is that the number of reachable zones could
still be infinite. Therefore, over-approximations of zones are computed to obtain
a finite search space. We call the transition system of zones the zone graph, and
the version where over-approximations are applied the abstract zone graph [11].
For a number of such approximation operators, it can be shown that the abstract
zone graph is sound and complete 2. The proofs are rather intricate, however.
Thus formalizing them would be a big effort. By focusing on certification of
unreachability, this problem vanishes, as we only need to ensure that any state
we deem reachable is subsumed by (i.e. semantically a subset of) some state that
is part of the certificate and that was computed by the over-approximation.

2 Incorporating Practical Modeling Features

Practical modeling with the help of timed automata relies on having a rich
modeling language that at its core typically supports networks of timed automata,
which share a form of discrete state, and which communicate over channels.
Extensions to the typical formalism have been invented to either ease the modeling
process, or to alleviate state space explosion. In the former category, the state-
of-the-art tool Uppaal even supports a C-like input language that can be used
to express guards and updates, and the discrete state consists of variables and
arrays of different types. The features of urgent locations and broadcast channels
can be considered to belong to both categories, while committed locations more
clearly belong to the latter category. Previous work [27] already discusses how to
incorporate the C-like features of Uppaal’s input language in a verified model
checker. Thus we focus on the features of urgent and committed locations and
broadcast channels here. In addition, we provide a less ad-hoc modeling language
such that models can be specified in a human-readable format, closing the gap
between the actual model and the formalized semantics.

2 Soundness: for every abstract run, there is a concrete instantiation. Completeness:
every concrete run can be abstracted.
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2.1 A Formal Semantics

This section briefly describes the formal semantics of our modeling language. We
extend single automata to use transitions that include a guard and an update on
the discrete state, i.e. transitions are now of the form A ` l −→b,g,a,f,r l′ for a
Boolean expression b and a discrete update f . The discrete state is characterized
by a number of integer state variables. We write s `b b to denote that state

s satisifes the Boolean expression b, s
f−→ s′ to denote that f updates s to s′,

and finally s
fs
=⇒ s′ to denote that the list fs updates s to s′. We do not sketch

out the detailed definitions of these semantic primitives as they are in principle
parametric within our formalization. Actions are of one of three types: input a?,
output a!, or internal a. Each automaton is associated with a set of committed
locations C and a set of urgent locations U (i.e. automata are now a quadruple
(C, U , T , I)).

A full network of timed automata is a triple (B, N , V) for B a set of labels
that mark the broadcast channels, N a list of single automata, and V a mapping
from state variable names to a pair of a lower and an upper bound specifying the
range of the variable. An individual automaton can take an internal transition at
any time provided that the transition is enabled. In a binary transition, a pair of
automata can synchronize on a label a given that one of them has an enabled
transition labeled a! and the other one has an enabled transition labeled a?. This
CCS-style type of synchronization is used in favour of CPS-style synchronization
chiefly because this seems to be the prevalent choice in timed automata literature
and model checkers. A broadcast transition can be taken when a process has an
outgoing action a! for a ∈ B. Any process with an enabled transition labeled with
a? will synchronize on this broadcast. If any process is in a committed location,
then the next transition has to involve at least one process that is currently in a
committed location. In an urgent location, time delay is not allowed.

The following specifies the semantics for delay and broadcast transitions,
omitting internal and binary transitions for brevity:

∀p < |N |. u⊕ d |= Ip Lp d ≥ 0
(∃p < |N |. Lp ∈ Up) −→ d = 0 bounded V s

(B, N , V) ` 〈L, s, u〉 →Del 〈L, s, u⊕ d〉
n = |N | p < n Lp = l ps ⊆ {i | i < n} p 6∈ ps a ∈ B

(l, b, g, a!, f, r, l′) ∈ Tp ∀p < n. u′ |= Ip L′p
l ∈ Cp ∨ (∃p ∈ ps. Lp ∈ Cp) ∨ (∀p < n.Lp 6∈ Cp)

∀p ∈ ps. (Lp, bs p, gs p, a?, fs p, rs p, ls′ p) ∈ Tp
s `b b ∀p ∈ ps. s `b bs p u |= g ∀p ∈ ps. u |= gs p

∀q < n. q 6∈ ps ∧ p 6= q −→
(∀b g f r l′. (Lq, b, g, a?, f, r, l′) ∈ Tq −→ ¬s `b b ∨ ¬u |= g)

L′ = L[ps := ls′, p := l′] u′ = [rs→ 0][r → 0]u

s
f−→ s′ s′

map fs ps
=====⇒ s′′ bounded V s′′

(B, N , V) ` 〈L, s, u〉 →Broad a 〈L′, s′′, u′〉
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As can be seen from the definition, the semantics of broadcast transitions are
rather involved for two reasons. First, we need to state that either no process
currently is in a committed location, or that one of these processes is involved in
the transition (first box). Second, we need to select a set of receiving processes
ps . In the semantics, a number of mappings bs , gs , fs , rs , and ls ′ is used to select
a transition for each process (second box). This set needs to be maximal (third
box), i.e. if process q has an enabled transition labeled with a?, then q ∈ ps . Note
that it is important that processes are ordered to enforce a deterministic result
for the updates of state and clock variables.

2.2 Product Construction & Renaming

Typically, complex modeling features, such as provided by the formalism described
in the last section, are handled by first constructing a single automaton, called
product automaton from the input model, and then applying model checking
algorithms for single automata on the product automaton. We also follow this
approach here.

It is rather straightforward to provide the definition of a product automaton
A′ = A (B, N , V) from (B, N , V), and to prove bisimulation:

(∃t. (B, N , V) ` 〈L, s, u〉 →t 〈L′, s′, u′〉) ←→ ((L, s), u)→A′ ((L′, s′), u′) .

The formal proofs are quite automated (as they mainly involve reasoning on sets
and elementary propositions). The hard part is to turn this into an executable on-
the-fly construction. The goal is to describe the transitions of A′ as an executable
function sA′ such that set (sA′ l) = {l′ |A′ ` l −→g,a,r l′} for all reachable l. The
implementation of sA′ constructs a function for each of the three types of action
transitions and the correctness proof is split accordingly. Each of them involves
proving two directions of an equivalence to show the set equality.

While none of the individual reasoning steps is conceptually involved, it is a
challenge to keep the proof manageable in Isabelle/HOL. The complexity mainly
comes from the sheer size and number of terms involved in the construction.
This can make Isabelle’s proof tactics deteriorate and severely slow down pretty-
printing of the proof state, which renders interactive development painful.

To fill in the big picture, two pieces of the puzzle are still missing. First,
we assumed that all labels (for locations, actions, clocks, and variables) use
(consecutive) natural numbers in the automaton description above. Second, we
assumed that time constants (i.e. the range of clock constraints) are integers
instead of real numbers, which is what the semantics is defined on.

More precisely, we assume that we are given an input model (B,N ,V) that
uses e.g. strings as labels, and integers for time constants. The semantics of
this model are defined on (B,map convA N ,V) where convA converts all time
constants of a single automaton from integers to reals3. As a pre-processing step,
we convert the model such that all strings are renamed to consecutive natural

3 map f xs is the list that is obtained by applying f to every element of xs.
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numbers, using some renamings rA, rN and rV . We establish the following chain
of bisimulations (where ∼ means bisimulation w.r.t. some suitable relation):

(B,map convA N ,V)

∼ (rB B,map rN (map convA N ), rV V) (1)

= (rB B,map convA (map rN N ), rV V) (2)

∼ A (rB B,map convA (map rN N ), rV V) (3)

= conv (A (rB B,map rN N , rV V)) (4)

This allows us to decide model checking properties of (B,map convA N ,V)
on conv (A (rB B,map rN N , rV V)) using the existing verified model checker
implementation for a single timed automaton [27]. Note that the converted model
(rB B,map rN N , rV V) is what we apply the on-the-fly product construction to,
to get an executable description of A (rB B,map rN N , rV V).

Step (3) is the bisimulation theorem for the product construction, which
we already stated above. The equalities of steps (2) and (4) can be proved
automatically with the help of Isabelle’s rewriting facilities. Step (1) requires
rB, rV , and rN to be injective functions on the corresponding domains given
by (B,N ,V). Note that this condition can simply be checked programmatically.
Our technique for this step is to first use a general theorem that states that any
injective function can be extended to a bijection between the full domain type
and the natural numbers, provided that the domain is of a countably infinite
type (such as the type of strings).

It is crucial to use such fine-grained reasoning and to not try to prove the
complete bisimulation in one go. Any attempts where we tried to fuse multiple
reasoning steps into one lead to unbearably complex and unmanagable proofs.

3 From Model Checking to Certifying Unreachability

As stated above, this work starts from an existing formalization of timed automata
model checking. This section describes how it is extended to turn it into a verified
certifier. We study the case of a single timed automaton, which is sufficient due
to the reduction described in the previous section.

3.1 An Abstract Correctness Theorem

To work towards a rigorous justification of the certification process, we first study
the problem on a more abstract level. Consider a transition system → on states
of type ′l × ′s where ′l corresponds to the finite state part of timed automata
and ′s corresponds to zones. We assume an invariant P on states, i.e.:

P (l1, s1) ∧ (l1, s1)→ (l2, s2) −→ P (l2, s2) .

The interesting feature that sets timed automata model checking apart is
subsumption. Recall that during the model checking process, it is possible to first
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discover some state (l, Z) (a pair of a discrete state l and a zone Z), and to find
at some later point that another reachable state (l, Z ′) subsumes (l, Z) because
Z ′ semantically contains Z ′, i.e. Z ⊆ Z ′. At this point the state (l, Z) can be
discarded as we know that anything that is reachable from (l, Z) is also reachable
from (l, Z ′). Abstractly, subsumption is modeled by some fixed preorder (i.e.
reflexive and transitive relation) 4 on ′s which is monotone w.r.t. →:

s1 4 s2 ∧ (l1, s1)→ (l2, t1) ∧ P (l1, s1) ∧ P (l2, s2)

−→ (∃t2. t1 4 t2 ∧ (l1, s2)→ (l2, t2))

In the abstract setting, a certificate consists of a set of discrete states L of
type ′l set, and a mapping M of type ′l⇒ ′s set that gives the set of reachable
symbolic states that were computed for any discrete state l ∈ L. The certificate
(L,M) needs to be invariant under P :

l ∈ L ∧ s ∈ M l −→ P (l, s) .

Moreover, it needs to be closed. Following Herbreteau et al. [11], we call a state
covered if it is subsumed by another state in the certificate. A certificate is closed
if for each state in the certificate all its successors are covered:

l1 ∈ L ∧ s1 ∈M l1 ∧ (l1, s1)→ (l2, s2) −→ l2 ∈ L ∧ (∃s3 ∈M l2. s2 4 s3) (∗)

We can easily prove the following key theorem stating that all reachable states
are covered if the initial state is covered:

Theorem 1. Let (L,M) be closed and invariant under P . Assume l0 ∈ L,
s′0 ∈ M l0, s0 4 s′0, and (l0, s0) →∗ (l1, s1). Then l1 ∈ L and there exists s2
such that s2 ∈ M l1 and s1 4 s2.

Proof. By induction on the number of steps in (l0, s0)→∗ (l1, s1).

We will now say that a certificate (L,M) is admissible iff

– it is invariant under P ,
– it is closed,
– it covers the initial state (i.e. there is an s′0 ∈M l0 such that s0 4 s′0),
– and there is no l ∈ L with F l.

Corollary 1. If F is monotone w.r.t. 4 and the certificate (L,M) is admissible,
then @l s. (l0, s0)→∗ (l, s) ∧ F l .

3.2 An Abstract Certificate Checker

From the theoretical analysis laid out in the last section, we can derive the
following strategy for certifying unreachability:

– An unverified model checker explores the reachable state space of a given
model symbolically and checks that none of the discovered states (l, s) fulfills
F l.
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– The set of explored states is emitted as a certificate, possibly followed by
compression (see section 5).

– The model, the certificate, and a description of the renaming that was used
for the states are passed to the verified certifier.

– The certifier checks that the given renaming is injective, renames the model
accordingly, applies the product construction and checks that the certificate
is admissible.

If the process is successful, we can conclude by Corollary 1 that no “bad” state
(l, s) (i.e. with F l) is reachable symbolically. We will argue that this really implies
that the model is safe in the concrete case of timed automata in section 3.3.

We now lay out how a verified certificate checker that implements said strategy
for an abstract transition system can be constructed in Isabelle/HOL. Listing 1.1
displays the definition of the core of the checker that checks whether the certificate
is closed in the sense defined above.

1 definition check (L,M) ≡
2 monadic list all L (λl. do {
3 let S = M l ;
4 let next = succs l S ;
5 monadic list all next (λ(l′, S′). do {
6 xs← SPEC (λxs. set xs = S′) ;
7 if xs = [] then return True else do {
8 b1← return (l′ ∈ L) ;
9 ys← SPEC (λxs. set xs = M l′) ;

10 b2← monadic list all (λx.
11 monadic list ex (λy. return (x 4 y)) ys
12 ) xs ;
13 return (b1 ∧ b2)
14 }
15 })
16 })

Listing 1.1: Monadic program to check whether a certificate is closed.

The program is defined in the non-determinisim monad of the Imperative Re-
finement Framework (IRF) [17]. Some parts, such as checking set membership
or converting a (finite) set to a list are still left abstract. A non-deterministic
specification SPECQ returns some value v with Qv.

The body of the program (lines 2-16) iterates over all discrete states in the
certificate L and checks that all corresponding symbolic states are covered. Line
3 retrieves the symbolic states corresponding to discrete state l and in line 4 their
symbolic successor states are computed. The result (next) is a list of pairs of a
discrete state and the set of its corresponding symbolic states. The loop ranging
from lines 5 to 15 iterates over this list to ensure that all the successor states
are covered. Given a discrete state l′ and a set of symbolic states S′, line 6 first
converts it into a list xs that can be iterated over. This turns into a vacuous
operation when the algorithm is refined to an executable version where sets are
implemented as lists. Line 8 checks that l′ is also part of the certificate. Then, in
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line 9 the set of corresponding symbolic states is retrieved and converted to a list
ys. Finally, lines 10-12 ensure that all states in xs are subsumed by some state
in ys.

To prove soundness of check , we mainly need correctness theorems for the
combinators monadic list all and monadic list ex that do what their names
suggest. This is the correctness theorem for monadic list all, for instance:

(∀x. Pi x ≤ SPEC (λr. r ←→ P x))

−→ monadic list all xsPi ≤ SPEC (λr. r ←→ list all xsP )

where list all xsP holds if and only if P holds for all elements in xs. After setting
up the IRF’s verification condition generator with this rule and the corresponding
rule for monadic list ex, it is easy to prove that check is sound:

check (L,M) ≤ SPEC (λr. r −→ closed (L,M))

where the property closed (L,M) corresponds to condition (∗) from above.
We then use standard refinement techniques to obtain an algorithm checki that

refines check replacing sets by lists. However, the algorithm is still specified in the
non-determinisim monad and therefore not executable. We use a simple technique
to make it executable. Consider the following theorem for monadic list all :

monadic list all xs (λx. return (P x)) = return (list all xsP ) .

It allows us to push a return to the outside of monadic list all. By exhaustively
applying a set of such rewrite rules we obtain an alternative definition of checki
where return appears only on the outermost level, and the inner term is determin-
istic and thus executable. Using these techniques, we obtain a simple certificate
checker that is executable, provided that we can implement the elementary model
checking primitives such as the subsumption check or computing the list of
successors of a state.

3.3 Transferring the Correctness Theorem

For timed automata, the abstract transition system studied above is the zone
graph →ZG(A) of a given (single) automaton A. We can show that it simulates
→A:

(l, u)→A (l′, u′) ∧ u ∈ Z −→ (∃Z ′. (l, Z)→ZG(A) (l′, Z ′) ∧ u′ ∈ Z ′) .

This simulation property is sufficient to establish that if there is no reachable
state (l, Z) in →ZG(A) with F l, then no final state (l, u) is reachable in →A:

(@l, Z. (l0, Z0)→ZG(A) (l, Z) ∧ F l) ∧ u0 ∈ Z0

−→ (@l, u. (l0, u0)→A (l, u) ∧ F l)

In the formalization, these proofs rely on instantiating a general theory of
simulations in transition systems that is derived from the theory of Wimmer and
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Lammich [27]. From Corollary 1 we get that there is no reachable final state in
→ZG(A) if the certificate check is passed. Finally, with the bisimulation theorem
from section 2.2, we can conclude that there is no final reachable state in the
input model if there is no final reachable state in →A.

3.4 Implementing a Concrete Checker

All the elementary model checking primitives we need for certification have already
been implemented [27]. The abstract implementation presented above assumes
that the model checking primitives are implemented in a purely functional manner
(as they are just regular HOL functions). The existing (verified) model checker
[27], however, is an imperative implementation in the Imperative HOL framework.
Imperative HOL [6] is a framework for specifying and reasoning about imperative
programs in Isabelle/HOL. It provides a heap monad in which imperative pro-
grams can be expressed. Usually, once we have used an imperative implementation
anywhere, the whole program would need to be stated in the heap monad. How-
ever, we can employ a technique similar to the one that is used for Haskell’s ST
monad [18] to erase the heap monad in a safe way under certain circumstances. As
a consequence, we are able to reuse the existing verified model checking primitives,
while being able to state the certificate checking algorithm purely functionally.

In the concrete checker, the mapping M is implemented using a verified
functional hash table implementation based on so-called diff arrays [16]. This
data structure provides a purely functional interface to an underlying imperative
array. When a diff array is updated it performs the update on the imperative
array, and stores a difference that can be used to re-compute the old state of the
array. Reading from the most recent version of a diff array is fast as the value
can directly be read from the underlying imperative array. If an old version is
accessed, the whole array has to be copied to recompute the old version. This
gives diff arrays good performance characteristics, as long as they are mostly
used linearly. This is the case in our application as the hash table is filled in an
initial phase, after which the hash table is used in a read-only manner.

3.5 Parallel Execution

The attentive reader may wonder why we care about a purely functional imple-
mentation of the certificate checker at all. Indeed, we could use existing techniques
[27] to obtain an imperative implementation of the certificate checker in the
heap monad. However, in this setting it would be hard to justify the soundness
of executing parts of the checker in parallel. In the purely functional setting,
this is much simpler. Our approach to parallel execution is minimalist: we only
provide means to execute the map combinator on lists in parallel. This is achieved
by another custom code translation that is part of the trusted code base. The
parallel implementation of map uses a task queue that will contain the individual
computations that need to be run for each element of xs , and uses a fixed number
of threads to work through this list and assemble the final result.
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We exploit this map implementation to work through the list of discrete states
L in parallel, using the equivalence:

list all Qxs = list all id (map Qxs) .

In doing so, we lose the ability to stop execution early once a list element does
not satisify Q. For the certificate checker, however, we assume that usually
the certificate is correct, meaning that we have to go through the whole list
anyway. We only parallelize the outermost loop of checki because this should
yield reasonably-sized work portions, given that the size of L will typically be in
the hundreds or thousands.

4 Scaling Performance

In this section we discuss two techniques to improve the performance of the
certificate checker without increasing the verification effort significantly.

4.1 Monomorphization

Isabelle/HOL supports polymorphism and type classes, which are valuable fea-
tures for sizeable formalization efforts. Large parts of our formalization also make
use of these features, e.g. most of the timed automata semantics are formalized
for a general time domain, and operations on DBMs are applicable on DBMs
whose entries are formed from more general algebraic structures than the ring of
integers. While this yields an abstract and general formalized theory, it can get
in our way when trying to obtain efficient code.

When generating SML code from HOL, Isabelle uses a so-called dictionary
construction to compile out type classes, which are not supported by SML. This
means that most functions carry a large number of additional parameters, which
are used to look up elementary operations, such as addition of two numbers.
These additional lookup operations degrade performance. One solution is to
ensure that all relevant constants that are exported to SML are monomorphic
(i.e. specialized to the integer type), eliminating the need for the dictionary
construction in most places. Thus, we apply a semi-automated procedure to
achieve this monomorphization.

4.2 Integer Representation

Types such as int or nat are unbounded in Isabelle/HOL meaning they are
implemented with the help of big integers in the target languages. To improve per-
formance, we want to use machine integers instead, and instruct Isabelle/HOL’s
code generator to do that. This is still sound: SML’s standard integer operations
throw an exception if an overflow occurs instead of silently wrapping around. The
code generator can only achieve partial correctness anyway: if program execution
does not fail, then its result is consistent with the evaluated HOL term.
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5 Certificate Compression

In this section, we present two techniques to compress the unreachability certifi-
cate. By compression we mean reducing the number of zones that are present in
the certificate for each discrete state, using the unverified model checker. The
first technique relies on subsumption. As explained above, it is possible that the
model checker adds a zone Z to the set of explored states and later another zone
Z ′ with Z 4 Z ′. Thus we filter the set w.r.t. to 4 in the end.

The second technique relies on the following idea: we replace one or more
zones by their union, and check that the state space is still closed. This means that
we have to check that all the successors of the larger zone are still covered by the
current set of states. In that case, we can discard the old zones, and replace them by
their union. We do not compute a precise union of zones but their convex hull. This
operation is rather cheap as it amounts to taking the pointwise maximum of DBM
entries. After computing the convex hull of a number of zones (in canonical form),
we only need to apply the expensive operation to restore a canonical form once.

The latter technique yields a whole family of compression algorithms by
iterating one of the following operations for each discrete state until a fixed-point
is reached: a) the convex hull of all zones is computed; b) the convex hull of the
first two zones is computed; c) the convex hull of the first two zones that can
successfully be joined is put to the front of the list; d) same as c) but considering
only discrete states for which compression was successful in the last round; e)
same as d) but iterating the operation until saturation. An evaluation of these
algorithms can be found in the next section. Analogously to the certificate checker,
each iteration of the compression algorithm could in principle be parallelized by
working on the discrete states in parallel.

6 Experimental Evaluation

We evaluate the checker on a set of benchmarks that is derived from Uppaal’s
standard benchmark suite [19]. Additionally, to cover the new modeling features,
we use a set of benchmarks that is derived from the Penn pacemaker models [14]
and a modified version of the HDDI benchmark with broadcast channels. A pro-
totype SML implementation of a timed automata model checker (Mlunta) is used
to compute the certificates. We use reachability properties of the form E♦ false
to enforce that the model checker explores the complete state space. The results
are given in Table 1. The problem size is specified as the number of automata
in the network. We report the total runtime of the tandem consisting of Mlunta
(using the first compression technique) and the (verified) certifier, and the indi-
vidual runtime of certificate checking for a varying number of threads for parallel
computation. The former is compiled with MLton, while the latter are compiled
with Poly/ML as it is the only SML compiler that supports multi-threading. For
comparison, we report the runtime of Uppaal on the same benchmarks, the
runtime of an unverified SML implementation of the certificate checker based
on Mlunta (compiled with Poly/ML), and the runtime of the fully verified model
checker (Munta) [27] extended with the improvements from sections 2 and 4.
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Certifier for #threads

Model Size Uppaal Tandem Munta Unverif. 1-MLton 1 2 4 8

FDDI 8 0.43 1.42 1.46 0.46 0.62 2.17 1.70 1.46 1.35

FDDI broad 8 0.42 0.44 1.47 0.13 0.22 1.31 1.14 1.09 1.04

Fischer 5 0.36 3.38 7.54 2.03 1.71 3.17 2.31 1.95 1.74

CSMA 5 0.04 1.07 5.46 1.01 0.60 2.83 1.86 1.44 1.26
6 2.06 15.3 69.30 13.98 7.24 20.40 11.60 7.49 6.14

Mode

Pacemaker 1 0.03 0.28 0.51 0.12 0.17 1.14 0.95 0.86 0.85
2 0.04 1.05 4.02 0.84 0.54 2.46 1.78 1.42 1.27
3 0.06 1.91 5.22 1.33 0.93 3.43 2.21 1.72 1.55
4 0.03 14.30 0.96 10.31 8.37 16.90 9.81 6.75 5.83
5 0.04 37.50 1.17 25.06 21.80 38.20 22.30 14.50 12.80

Table 1: Benchmarks results on a machine with 132 GB RAM and an Intel Xeon CPU
E5-2699 v4 at 2.20GHz with 22 cores. The column labeled “Tandem” gives the runtime
for a combination of the unverified SML tool and the verified certificate checker. The
next column gives the runtime of the unverified SML certifier, followed by the runtimes
of the verified checker for a varying number of threads. All times are given in seconds.

As can be seen from the results4, the tandem is still one order of magnitude
slower than Uppaal, but certificate checking in isolation is also up to one order
of magnitude faster than the previous verified model checker [27]. Multi-core scale
beyond two threads is relatively unsatisfactory, however. In micro-benchmarks,
we have identified that the problem appears to be with memory allocation on the
heap, even if no data is shared among threads (in our case, only the certificate
is shared but successors are computed locally). There does not seem to be an
obvious way to improve on this situation for SML implementations. Finally, one
can see that the verified certifier is not drastically slower than the unverified
implementation based on Mlunta, indicating that the verified certifier is not
missing any obviously significant optimizations.

Table 2 gives the results of evaluating the different compression algorithms
on the same set of benchmarks. The second variant is always applied to the
compression result of the first variant to avoid trivial computations of the
convex hull. Variant 2c (the most expensive one) can produce drastically smaller
certificates than any other variant, and its minimum compression factor is an
order of a magnitude higher than for any other variant. Nevertheless, only variants
1 and 2a appear to be useful in practice, as they are relatively cheap to compute.
The other variants could prove useful if the certificates were produced by a
significantly more efficient implementation, such as Uppaal or TChecker [13]. On
a final note, we have constructed a more than 95% smaller but valid certificate
for the Fischer benchmark, suggesting that there is room for improvement on
the compression algorithms.

4 Mlunta explores significantly more states than Uppaal and Munta for “Pacemaker”.
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Variant

Model Size 1 2a 2b 2c 2d 2e

FDDI 8 0.21 0.21 1.72 69.53 3.65 3.43

FDDI broadcast 8 0.00 48.94 48.94 48.94 1.06 1.06

Fischer 5 22.03 22.03 22.72 43.06 30.40 30.40

CSMA/CD 5 26.06 41.54 43.84 81.16 58.94 47.54
6 24.86 41.91 44.02 88.35 63.24 47.02

Mode

Pacemaker 1 16.07 25.00 30.80 58.04 29.02 29.02
2 24.00 26.38 30.37 58.68 35.87 35.22
3 12.96 17.62 19.23 46.92 25.30 25.01
4 13.82 20.02 23.60 41.48 26.16 24.71
5 17.14 22.48 25.46 39.69 28.18 26.88

Average 15.71 26.61 29.07 57.58 30.18 27.03

Table 2: Certificate compression factors (given in %).

7 Conclusion and Future Work

We have presented a verified certifier of unreachability certificates for a rich timed
automata modeling formalism. The certificates are ought to be produced by an
unverified model checker. Experimentation shows that verified certificate checking
in isolation is up to an order of magnitude faster than what was previously possible
with a verified model checker [27]. The performance of a tandem of an unverified
model checker and the verified certifier could be improved by replacing the
certificate-producing part with a highly optimized tool, possibly opening room to
use some of the more powerful certificate compression techniques we suggested
above. Moreover, more sophisticated tools also employ more powerful abstraction
techniques, for which our proposed certification technique is still suitable.

Future Work We intend to extend this work to certification of Büchi emptiness
in the future, using the idea of subsumption graphs [11] and using an unverified
LTL model checking implementation for timed automata to produce the certifi-
cates [11,15]. As we pointed out above, there appears to be further room for
improvement on the certificate compression algorithms.

In terms of the modeling language, an interesting possibility is to integrate the
Uppaal-style bytecode language [27] for manipulating state variables. If clocks
are not dealt with in the bytecode, this should be comparatively simple as the
discrete state is mostly parametric in the current formalization. Furthermore, the
concept of synchronization over channels could further be generalized by following
the approach taken by TChecker. This would not only enrich the input language
but could also simplify the product construction, by unifying the construction
for binary and broadcast synchronization.
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19. Möller, M.O.: Uppaal benchmarks (2017), https://www.it.uu.se/research/group/
darts/uppaal/benchmarks

https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1007/978-3-540-24730-2_25
https://doi.org/10.1007/978-3-540-27755-2_3
https://doi.org/10.1007/978-3-540-71067-7_14
https://doi.org/10.1007/978-3-540-71067-7_14
https://github.com/fredher/tchecker
http://isa-afp.org/entries/Collections.html
http://isa-afp.org/entries/Collections.html
https://doi.org/10.1007/978-3-319-22102-1_17
https://www.it.uu.se/research/group/darts/uppaal/benchmarks
https://www.it.uu.se/research/group/darts/uppaal/benchmarks


18 S. Wimmer and J. v. Mutius

20. Namjoshi, K.S.: Certifying model checkers. In: Berry, G., Comon, H., Finkel, A.
(eds.) CAV 2001. pp. 2–13. Springer Berlin Heidelberg (2001)

21. Neumann, R.: Using promela in a fully verified executable LTL model checker. In:
Giannakopoulou, D., Kroening, D. (eds.) VSTTE 2014. pp. 105–114. Springer

22. Nipkow, T., Lawrence C. Paulson, Wenzel, M.: Isabelle/HOL - A Proof Assistant for
Higher-Order Logic, LNCS, vol. 2283. Springer (2002). https://doi.org/10.1007/3-
540-45949-9

23. Paulin-Mohring, C.: Modelisation of timed automata in Coq. In: Proc. of STACS’01.
pp. 298–315. LNCS 2215 (2001)

24. Peled, D., Pnueli, A., Zuck, L.: From falsification to verification. In: Hariharan,
R., Vinay, V., Mukund, M. (eds.) FST TCS 2001. pp. 292–304. Springer Berlin
Heidelberg (2001)

25. Sprenger, C.: A verified model checker for the modal µ-calculus in Coq. In: TACAS
1998. pp. 167–183. Springer, London, UK (1998)

26. Wimmer, S.: Formalized timed automata. In: Blanchette, J.C., Merz, S.
(eds.) ITP 2016, Proceedings. LNCS, vol. 9807, pp. 425–440. Springer (2016).
https://doi.org/10.1007/978-3-319-43144-4 26

27. Wimmer, S., Lammich, P.: Verified model checking of timed automata. In:
Beyer, D., Huisman, M. (eds.) TACAS 2018. pp. 61–78. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-89960-2 4

28. Xu, Q., Miao, H.: Formal verification framework for safety of real-time system
based on timed automata model in PVS. In: Proc. of the IASTED International
Conference on Software Engineering, 2006. pp. 107–112 (2006)

29. Xu, Q., Miao, H.: Manipulating clocks in timed automata using PVS. In: Proc. of
SNPD’09. pp. 555–560 (2009)

https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-319-43144-4_26
https://doi.org/10.1007/978-3-319-89960-2_4

	Towards Practical Verification of Reachability Checking for Timed Automata

