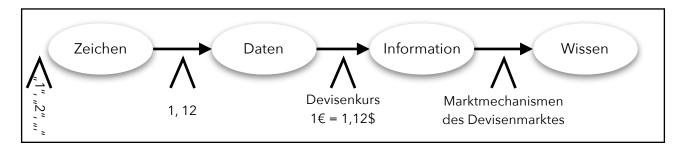
Einführung WInfo

LE01: Informationssysteme als Gestaltungsobjekte der WInfo

1.1 - Was ist Wirtschaftsinformatik

Was ist Wirtschaftsinformatik?


- Gegenstand der Wirschaftsinformatik sind <u>Informations- und Kommunikationssysteme</u> in Wirtschaft und Verwaltung
- Soziotechnische Systeme, die menschliche und maschinelle Komponenten als Aufgabenträger umfassen

Paradigmen der Wirtschaftsinformatik

- Reduzierung der Komplexität notwendig Modellierung
- Integrationswissenschaft: Synergien, Zusammenhänge Mensch-Organisation-IKT
- Gestaltung betriblicher Informationsysteme

1.2 - Die Bedeutung der Ressource Information

Abgrenzung Zeiche, Daten, Information & Wissen

Informationslogistisches Grundprinzip

Ziel ist die Bereitstellung bzw. das Vorhandensein

- der richtigne Informationen
- zum richtigen Zeitpunkt
- in der richtigen Menge
- am richtigen Ort
- in der erforderlichen Qualität

Bedeutung von Informationen

- Informationen als <u>Produktionsfaktor</u> etablieren sich immer weiter als immaterielle Ressource
- ⁻ Informationen als <u>Wirtschaftsgut</u>, wenn eine relative Knappheit und eine hohe Nachfrage aufeinandertreffen

1.3 - Informationssysteme als komplexe Mensch-Maschine-Systeme

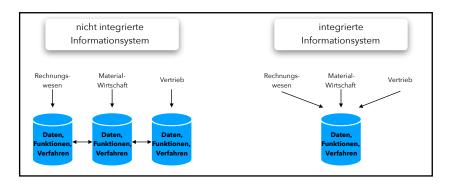
Was ist ein System?

Ein System ist eine Menge von Elementen, die miteinander in Beziehung stehen

- offen ↔ geschlossen
- dynamisch ↔ statisch
- komplex ↔ einfach

- Mensch Mensch
- Mensch Maschine
- Maschine Maschine

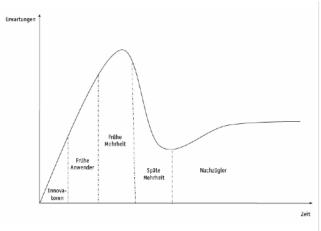
Was ist ein Betriebliches Informationssystem?

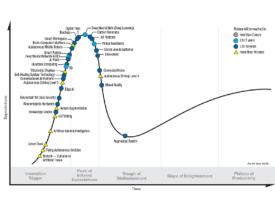

- Unterstützt Leistungsprozesse und Austauschbeziehungen innerhalb eines Betriebes und zwischen Betrieb und Umwelt

Was ist eine Rechnergestütztes Informationssystem?

- Erfassung, Speicherung, Übertragung/Transformation von Informationen durch Einsatz von Informationtechnik (teilweise) automatisiert
- Mensch-Maschine System

1.4 - Rechnergestützte Informationssysteme


Integrierte und nicht integrierte Informationssysteme



LE02: Technische & Organisatorische Aspekte bei der Gestaltung von Informationssystemen

2.1 Entwicklungslinien der IKT

Gartner Hype-Cycle

Kapazitätssteigerung

 Moorsches-Gesetz: die technische Leistungsfähigkeit von Chips verdoppelt sich alle 12-18 Monate

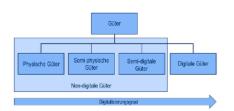
Social Media

- siehe Entwicklung von Youtube, Facebook, Instagram, etc.

Mobility & Consumerization

- Mobility: Alles immer und überall verfügbar
- Consumerization: Innovationen setzen sich zuerst auf dem privaten Markt durch und werden dann von den Mitarbeitern im betrieblichen Umfeld gefordert

Analytics/Big Data


- Masse an Daten steigt exponnentiell; man benötigt daher neue Analysemöglichkeiten, weil die Datenmenge manuell nicht auszuwerten ist

Cloud Computing

- Verlagerung der Rechenleistung in Cloud-Rechenzentren und OnDemand Abruf von Leistung

2.2 Digitalisierung von Produkten und Dienstleistungen

Digitale Güter und Dienstleistungen

- geringere Entwicklungskosten
- agilerer Markt
- Verschiebung von Branchengrenzen

IT-Plattformen

- Plattform: Erweiterbares softwarebasiertes System mit einer Kernfunktion, die mit externen und internen Modulen erweitert werden kann
- Plattform-Ökosystem: Plattform mit all ihren Nutzern
- Eigenschaften von IT-Plattformen
 - 1. Modularität: System kann durch komplementäre Produkte/Services modular erweitert werden
 - 2. Skalierbarkeit: Anzahl der Erweiterungen ist unbegrenzt
 - 3. Offenheit: Erweiterungen werden von externen Komplementären entwickelt > Aktivierung von externen Innovationspotential
 - 4. Netzwerkeffekt: Schaffung eines zwei- oder mehrseitigen Marktes mit Netzwerkeffekt
- Erfolgsfaktoren von Plattformen
 - 1. Kontrollmechanismen zu Qualitätssicherung
 - 2. Ausgewogene Wertschöpfung (Betreiber & Komplementäre)
 - 3. Unterstützung der Komplementäre mit Ressourcen
 - 4. Erreichen der kritischen Masse (für Netzwerkeffekt)
- Perspektiven auf Plattformökosysteme

Technologieorientiert	Marktorientiert
Zweck: Mitgestaltung der Wertschöpfung	Zweck: Austausch von Waren & Dienstleistungen zwischen den Nutzern
Bsp.: AppStore	Bsp.: airbnb, facebook

Product-Service-Systems

- ⁻ Je weitgehender der Service, desto Kundenorientierter das Unternehmen
- ⁻ Je geringer der Service, desto Produktorientierter das Unternehemen

2.3 Zusammenhang zwischen Unternehmensstrategie und IKT

The Innovator's Dilemma

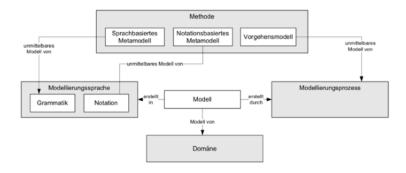
- Innovators Dilemma: Es gibt keinen perfekten Zeitpunkt, um sein System umzustellen.
 - > Ist man zu früh, ist die alte Technologie noch besser als die neue und man verliert Marktanteile
 - > Ist man zu spät, ist die neue Technologie besser und man wird aus dem Markt verdrängt.

Zusammenhang Unternehmensstartegie und Informationssysteme

- IKT als enabler von neuen Unternehmensstrategien (siehe Erfolgreiche IT-Unternehmen)
- Unternehmensstrategie als aligner für Informationssysteme (Unternehmen stellen Anforderungen an IT)

LE03: Modelle als Grundlage zur Beschreibung und Entwicklung von Informationssystemen

3.1 Modelle und Modellierung


Was ist ein Modell?

- vereinfachtes Abbild der Wirklichkeit (Grundzweck: Reduktion von Komplexität)
- Grundfragen: wovon (Gegenstand), wozu (Zweck), für wen (Zielgruppe, Adressat)

IST- und SOLL-Modelle

Auschnitt aus der realen Welt (IST-)Modellierung IST-Modell (Abbild der realen Welt) IST-Modell (SOLL-)Modellierung SOLL-Modell (zukünftige Möglichkeit)

Bestandteile eines Modells

Was ist ein Referenzmodell?

Referenzmodelle sind Modellmuster bzw. Entwurfsmuster, die als idealtypisches Modell für eine Klasse von Sachverhalten betrachtet werden kann.

- auf Basis des Referenzmodells können spezielle Modelle für ganz bestimmte Sachverhalte geplant werden
- das Referenzmodell kann als Vergleichsobjekt herangezogen werden
- das Referenzmodell muss Robust gegenüber Veränderung der Realwelt sein
- das Referenzmodell muss Flexibel sein, damit Veränderungen mit geringem Aufwand umgesetzt werden können
- sie enthalten/folgen Gestaltungsempfehlungen (normativer Charakter)

Was ist ein Metamodell?

Ein Metamodell beschreibt eine Sprache (Syntax & Semantik) zur Modellierung.

Was ist ein Ordnungsrahmen?

Ein Ordnungsrahmen ist ein Modell mit hohem Abstraktionsgrad.

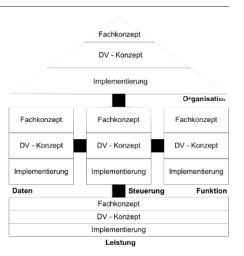
- Schaffung eines aggregierten Überblickes über die wesentilochen Funkionsbereiche einer Domäne
- Bsp.: ARIS-Modell

LE04: ARIS - Modellierung von Prozessen, Daten und Funktionen

4.1 ARIS

Was ist ARIS

- ARIS: Architektur integrierter Informationssysteme (Scheer)
- Bezugsrahmen für Geschäftsprozessmodellierung zur Reduzierung der Komplexität
- Unterteilt in Sichten und Ebenen
- 5 Beschreibungssichten:
 - 1. Datensicht: Informationsobjekte zur Repräsentation von Ereignisen und Zuständen
 - 2. Funktionssicht: Funktionen und ihre Zusammenhänge
 - 3. Leistungssicht
 - 4. Organisationssicht: Aufbauorganisation
 - 5. Steuerungssicht (zentral): Ablauforganisation
- 3 Beschreibungsebenen pro Beschreibungssicht (vgl. Phasenmodell der Softwareentwicklung):
 - 1. Fachkonzept: Anforderungsanalyse und Darstellung betriebswirtschaftlicher Sachverhalte (unabhängig von Informationssystemen), z.B. EPKs (Ereignisgesteuerte Prozesskette)
 - 2. DV-Konzept (Datenverarbeitungskonzept): Entwurf und Definition davon, wie die Inhalte des Fachkonzepts in Informationssystemen umgesetzte werden
 - 3. Implementierung: Umsetzung des DV-Konzepts in Software- und Hardwarekomponente


4.2 Modellierung der Steuerungsschicht (EPK)

Was sind EPKs?

EPKs sind Ereignis Prozessketten und dienen zur Darstellung des Kontrollflusses.

Syntax von EPKs

- Funktionen (abgerundete Rechtecke)
- Ereignisse (Sechsecke) als Auslöse- und Bereitsstellungsereignisse
- Konnektoren:
 - UND-Konnektor: beide Wege gehen; darf direkt auf ein Ereignis folgen
 - ODER-Konnektor: einer oder beide Wege gehen; darf nur auf Funktionen zur Entscheidung folgen
 - XOR-Konnektor: nur einen der Wege gehen; darf nur auf Funktionen zur Entscheidung folgen
- Organisationseinheiten (Rechtecke, angebunden durch ungerichtete Kanten) zur Verarbeitung von Input- und Outputdaten
- Input- und Outputdaten (Rechtecke mit gerichteten Kanten)

Semantik von EPKs

- EPKs beginnen und enden mit Ereignissen
- Funktionen folgen nicht auf Funktionen, Eigenschaften folgen nicht auf Eigenschaften
- Jede Funktion/Eigenschaft hat genau zwei Verbindungen (Ausnahme Anfang und Ende)
- Pfade müssen wieder mit dem Konnektor zusammengeführt werden, mit dem sie verzweigt werden
- Konnektoren haben entweder
 - mehrere eingehende Kanten und genau eine ausgehende Kante
 - genau eine eingehende Kante und mehrere ausgehende Kanten

Kardinalitäten

- Chen-Notation: Menge der Entität wird angegeben. Produkt(1) (n)Teil
- Schlageter/Stucky: Menge der Relationen wird angegben. Produkt(n) (1)Teil

4.3 Modellierung der Datensicht (ERM)

Was sind ERMs?

ERMs sind Entity-Relationship Modelle und dienen zur Darstellung von Datenbeziehungen.

Syntax von ERMs

- Entitätstyp: Menge von Entitäten mit den gleichen Attributen
- Werttyp/Attribute: Eigenschaften von Beziehungen oder Entitäten
- Beziehungstyp: Beziehung zwischen Enitätstypen (Verben im infitiv)
- Schlüssel: dient zur eindeutigen Identifizierung einer Entität
- Kardinalität: gibt Anzahl der verknüpften Objekte an
- Generalisierung: Vererbung der Eigenschaften an Untertyp

Schlüssel

Semantik von ERMs

- Verbindungen zwischen Symbolen der gleichen Typen sind nicht erlaubt
- Jede Entität benötigt einen eindeutigen Schlüssel
- Doppelte Bennenung von Beziehungstypen sind nicht erlaubt

Abstraktionsebenen des Datenbankentwurfs

- Konzeptuelle Ebene (Strukturierung des Anwendungsbereiches)
 - Entity-Relationship Modelle
 - Semantische Modelle
 - Funktionale Datenmodelle
- DV-Konzept (Modellierung des Datenbanksystems)
 - Relationale Datenmodelle
 - Onjektorientierte Datenmodelle
- Implementierungsebene (Leistungsfähigkeit der Datenbankanwendung erhöhen)
 - Betrachtete Strukturen: Datenblöcke, Zeiger, Indexstrukturen
 - Hardwareeinsatz

LE05: ARIS - Modellierung von Geschäftsmodellen

5.1 Geschäftsmodell

Was ist ein Geschäftsmodell?

"Who is the customer, what does he value, and how does the organization intend to earn money?" ~Peter Drucker (1954)

Elemente eines Geschäftsmodells:
 Kunde, Nutzenversprechen, Wertschöpfungskette, Ertragsmechanik

Business Model Canvas

N F	Tey Partners: Netzwerk von Partnern und Iferanten	Key-Activities: Wichtigste Handlungen eines Unternehmens	Value Propositions: Paket von Nutzen, das ein Unternehmen seinen Kunden bietet		Customer Relationship: Beziehung, die das Unternehmen mit seinen Kunden pflegt	Customer Segments: Kunden- segmente, die ein Unternehmen
		Key Resources: Wichtigste Ressource eines Unternehmens (physisch, intellektuell, finanz.)			Channels: Kommunikations-, Vertriebs- und Lieferkanäle	bedient
	Cost Structure: Costen, die durch	n Leistungserbringung	entstehen	Revenue Strea Erlösströme, di	ms: ie durch Leistungserbr	ingung entstehen

5.2 Geschäftsmodellinnovationen

Was ist eine Geschäftsmodellinnovation?

Eine Geschäftsmodellinnovation schafft neue Logik hinsichtlich der Art wie ein Unternehmen Wert schafft, indem es Änderungen an den Kunden, Nutzerversprechen und der Wertschöpfungskette vornimmt.

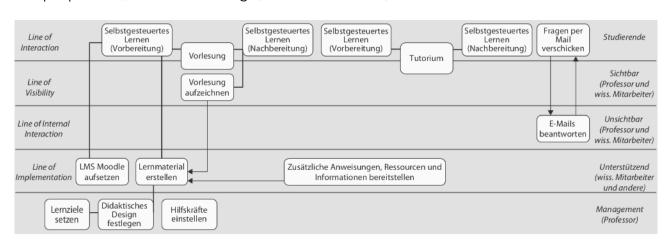
5.3 Wertflussmodellierung

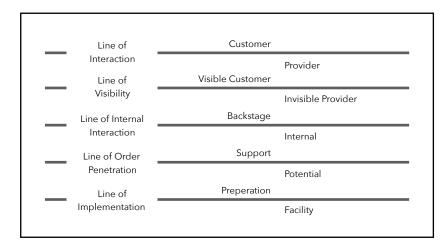
Was ist die e³ Value Methode?

- Methode zur Modellierung von Wertflüssen zwischen Akteuren (Fokus auf Geld & Gütern)
- Evaluierung von Geschäftsmodellen mit der e³ Value Methode zeigt wirtschaftliche Tragfähigkeit & Nachhaltigkeit

Syntax e³ Value Methode

- Akteur: unabhängige wirtschaftliche Einheit
- Marktsegment: Menge von Akteuren mit gleichen Wertobjekten- und Schnittstellen
- Wertobjekt: Austauschobjekt zwischen Akteuren (z.B. Geld, Güter)
- Wertkanal: Angebots-/Nachfrageindikator f
 ür Wertobjekte
- Wertschnittstelle: Fasst Wertkanäle zusammen
- Wertaustausch: Verbindung zweier Wertkanäle (Austauschbeziehung)
- Szenariopfad: Beschreibt den Wertfluss einer Transaktion innerhalb eins Modells
 - Startstimulus: Anfang des Szenariopfades
 - Stopstimulus: Ende des Szenariopfades
 - UNDverknüpfung
 - ODERverknüpfung

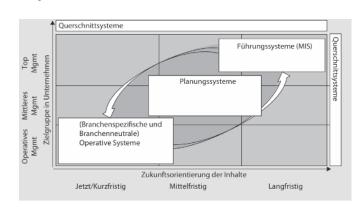



5.4 Dienstleistungsmodellierung

Service Blueprint

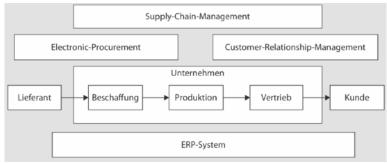
- Line of Interaction:
 Abgrenzung von Kunden und Anbieteraktivitäten
- Line of Visibility: Trennung von für den Kunden sichtbaren Anbieteraktivitäten zu den Unternehmensinternen Anbieteraktivitäten
- Line of Internal Interaction:
 Abgrenzung von nicht sichtbaren Backstage
 - Aktivitäten und sekundären Support Aktivitäten
- Line of Order Penetration: Trennung von kundeninduzierten Aktivitäten von Potentialaktivitäten, die unabhängig von Kunden vordisponiert werden
- Line of Implementation Trennung: Trennung von Vorbereitenden und Unterstützenden Aktivitäten (Beschaffung von Potential- und Verbrauchsfaktoren)

Beispielprozess "Lehrveranstaltung" (Leihmeister S. 382)



LE06: Branchenneutrale Anwendungssysteme

6.1 Administrations- und Dispositionssysteme


Ordnungsschema für Anwendungssysteme

- Operative Systeme: Verwaltung von einzelnen Vorgängen
- Planungssysteme:
 Ressourcenmanagement für operatives
 Geschäft
- Führungssysteme: Management Informations Systeme

Enterprise Resource Planning (ERP)

- Komponentenbasiertes integriertes Anwendungspaket
- Unterstützung aller wesentlichen Funktionsbereiche
- Integration durch zentrale
 Datenbank (Vermeidung von Datenredundanzen)

6.2 Führungsunterstützungssysteme

Was sind Führungsunterstützungssysteme?

- Führungsinformationssystem (FIS) sollen Führungskräften die für den Führungsprozess relevanten Informationen rechtzeitig und in geigneter Form zur Verfügung stellen

Management Information Systems (MIS)

Ziele:

- Bereitstellung führungsrelevanter Informationen (interne und quantitative Steuerungsinform.)
- Automatisierung von Routineaufgaben
- Teilautomatisierung von Dispositionsaufgaben

Merkmale:

- Informationen als Vergangenheits-, Gegenwarts- und Plandaten
- Computersystem mit Daten- und Modellbank auch in Echtzeit einsetzbar
- Entscheidungsautomatisierung möglich

Unterstützungssysteme

Ziele:

- Unterstützung des Managements während des Entscheidungsprozesses

Merkmale:

- Informationsversorgung
- sämtliche Aktivitäten eines Managers, die durch Computer unterstützt werden können

Executive Information System (EIS)

Ziele:

- Unterstützung der Bürofunktion durch Kommunikations-, Analyse- und Organisationstools
- Verbesserung Planungs-, Steuerungs- und Kontrollprozesses

Merkmale:

- Gleichbleibende Zusammenstellung von Berichten und Grafiken
- Interaktive Suche nach allen verfügbaren Dimensionen der Auswertung
- Visualisierung von Trends und Parameteränderungen

Decision Support System (DSS)

Ziele:

- computergestütztes System zur Unterstützung des Entscheidungsprozesses
- Unterstützung von Aktivitäten, die nicht durch IT routinemäßig bearbeitet werden können
- Schwerpunkt: Evaluierung und Auswahl von Problemlösungen

Merkmale:

- Großer Methodenumfang für verschiedene Einsatzzwecke
- Leichte & interaktive Bedienbarkeit
- Simulation von alternativen Lösungen

Expertensystem (ES)

Ziele:

- computergestütztes System zur Unterstützung des Entscheidungsprozesses
- Teil der Intelligenz im System und nicht beim Nutzer

Merkmale:

- Bereitstellung und Integration von Entscheidungswerkzeugen
- Sprachkomponente mit schneller und flexibler Interaktion
- Automatischer Zugriff auf unternehmensinterne Datenbanken und Systeme
- Heuristische Arbeitsweise und passive Lernfähigkeit

Abgrenzung DSS & EIS

DSS

- System für die Analyse und Modellierung von Informationen
- Programmierbar
- Ad-hoc Zugriff auf Daten
- Entworfen für den flexiblen Gebrauch von Analysewerkzeugen

EIS

- System für die Präsentation von Informationen und Überwachung von Informationen
- nicht Programmierbar
- vorstrukturierter Zugriff auf Daten
- Entworfen für möglichst einfache Bedinung

Was ist Business Intelligence?

BI sind Verfahren und Prozesse, die der Analyse eines (eigenen) Unternehmens dienen. Das Umfasst Sammeln, Auswerten und Darstellen von Daten in elektronischer Form.

LE07: Architekturen und Trends betrieblicher Informationssysteme

7.1 Betriebliche Informationssysteme im Überblick

Leistungssystem

- umfasst: Basissystem, Leistungssystem; Diskurswelt, Umwelt; automatisiert/nicht automatisiert
- Durchführung des operativen Geschäfts
- Zugriff auf das Informationsystem

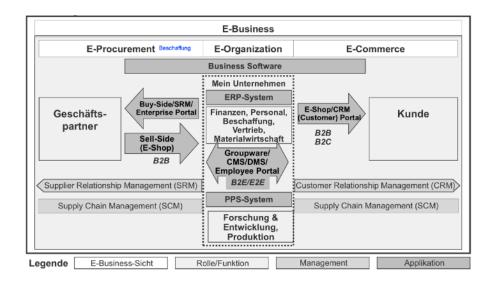
Lenkungssystem

- umfasst: Informationssystem, Lenkungssystem; Diskurswelt, Umwelt; automatisiert/nicht automatisiert
- Planung, Steuerung und Kontrolle des des Leistungssystems

Informationssystem

- umfasst: Informationssystem, Lenkungssystem, Leistungssystem; Diskurswelt, Umwelt; automatisiert/nicht automatisiert
- Verwaltung und Disposition der für die Aufgaben nötigen Daten

Anwendungssystem


- umfasst: Informationssystem; Diskurswelt, Umwelt; automatisiert
- Teil des Informationssystem, der automatisiert ist

Diskurswelt & Umwelt

- Diskurswelt: Gegenstand, den das System betrachtet/bearbeitet
- Umwelt: vom System nicht beeinflussbare Einflüsse von außen

Begrifflichkeiten betriebliche Informationssysteme

- E-Procurement: Einkauf/Beschaffung, SCM
- E-Organization: Unternehmensinterne Abläufe (ERP-Systeme)
- E-Commerce: Vertrieb/ Verkauf, SCM (E-Shop)

Was sind Enterprise Resource Planning (ERP) Systems?

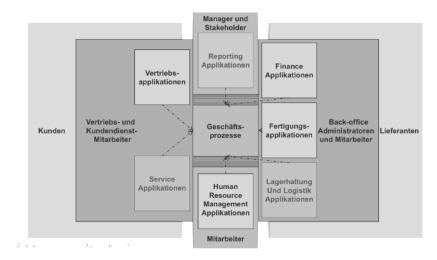
ERMs sind ein Paket von Softwarelösungen für Unternehmen, dass die verschiedenen Bereiche (financial, accounting, human resources, supply chain & customer) des Unternehmens miteinander verknüpft. (vgl. Davenport, 1998)

ERP Historie

2013 ERP basierend auf In-Memory Datenbanken

2004 ERP basierend auf Enterprise Service Orientated Architectures

2000s Extended ERP oder ERP II


1990s Enterprise Resource Planing (ERP)

1980s Manufacturing Resources Planing (MRPII)

1970s Material Requirements Planning (MRP)

1960s Inventory Control Packages

Anatomie ERP-Systeme

7.2 IT-Unternehmensarchitektur & Enterprise Architecture Management (EAM)

IT-Unternehmensarchitektur


- Geschäftsarchitektur: Fokus auf zentrale Geschäftsprozesse (Ziele, Strategien & Rahmenbedingungen)

 Facharchitektur: Transparenz der Informationen verbessern (Datenarchitektur: Identifizierung der relevanten Daten & Beziehungen,

Informations-architektur: Erfassen von Informationen, Informationsgruppen

 Anwendungsarchitektur: Fokus auf Anwendungssysteme, die für Geschäftsprozesse erforderlich sind (Systeme, Verbindungs zueinander, Services, Kosten & Erträge)

- Infrastrukturarchitektur: Fokus auf der genutzen Technologie

Enterprise Architecture (EA)

- Gemeinsame Sprache Business & IT
- Technische, soziale, wirtschaftliche und rechtliche Aspekte
- aktueller (as-is) Zustand > geplanter
 Zustand (geplante & bugetierte Projekte)
 > Ziel (to-be, envisioned) Idealzustand

7.3 Aktuelle Trends betrieblicher Informationssysteme

Digital Era zu Intelligence Era

Mainframe & PC	Client Server & Internet	Cloud, Mobile & Big Data	Intelligent Technologies
1960er-1980er	1990er-2000er	2000er-2010er	2010er-2020er
TransistorenGroßrechnerPCAutomatisierung von Fabrikhallen	PC im HaushaltBreitbandinternetERP-Systeme	Mobiles Internet & SmartphoneCloud ComputingSoziale NetzwerkeBig Data	maschinelles Lernenkünstliche IntelligenzInternet der DingeBlockchain
Automatisierung der Produktion	Automatisierung von Geschäftsprozessen	Digitale Transformation	Intelligent Enterprise

Potentiale

- Automatisierung ↑ + Routineaufgaben ↓ + komplexe Aufgaben ↑ = Produkivität ↑
- Sichtbarkeit (Daten sammeln, analysieren & vernetzen), Fokus (Effiziente Bereiche erkennen und Ressourcen umleiten), Agilität (schnelle Änderungs- und Anpassungsfähigkeit)
- Mit Weniger Mehr erreichen (Automatisierung, Dynamische Preise)
- Bessere Kundenzufriedenheit (intelligente & proaktive Reaktion auf Kundenwünsche, Chatbots, Omnichannel Kundenservice)
- Neue Geschäftsmodelle (Monetarisierung von datengestützten Leistungen)

LE08: Anwendungsysteme, E-Business & Supplychainmanagement

8.1 E-Business

Begriffsabgrenzung

- Electronic Business: elektronische Anbahnung & Unterstützung, Abwicklung und Aufrechterhaltung von Leistungsaustauschprozessen mittels elektronischer Netze
- Electronic Commerce: Austausch von Wirtschaftsgütern über Rechnernetze
- Electronic Commerce: fokussiert auf die transaktionsbezogene Seite der Wertschöpfungskette, Unternmenge von eBusiness

Kategorien von Electronic Business

Anbieter ↓ Nachfrager →	Consumer	Business	Administration
Consumer	C2C z.B. Flohmarkt Community mit Kleinanzeigen	C2B z.B. Jobbörse mit Angeboten von Arbeitnehmern	C2A z.B. elektronische Abgabe der privaten Steuererklärung
Business	B2C z.B. E-Shop, E-Mall wie Amazon & Zalando	B2B z.B. E-Procurement zur Ausschreibung	B2A z.B. elektronische Abgabe der Steuererklärung
Administration	A2C z.B. Abwicklung von Unterstützungs- leistungen	A2B z.B. öffentliche Ausschreibung online	A2A z.B. interne Behördenabwicklung

8.2 Supply Chain Management

Was ist SCM?

- Planung, Steuerung und Kontrolle aller Material-, Güter-, Geld-, Dienstleistungs- und Informationsflüsse von Rohmaterialbeschaffung bis Endkonsumenten
- Nicht nur ein Unternehmen sondern die gesamte Wertschöpfungskette

Prinzipien der Materialversorgung

- Push-Prinzip: Analyse von Verkaufszahlen liefert Prognose zum zukünftigen Absatz, keine direkte Kommunikation zwischen Beschaffung, Produktion & Vertrieb
- Pull-Prinzip: Verkaufsvorgang löst automatischen Nachschub aus

8.3 Elektronischer Datenaustausch (EDI)

Was ist EDI?

- EDI (electronic data interchange) ist der elektronische Datenaustausch über Geschäftstransaktionen nach einem bestimmten Protokoll.
- EDIFACT (electronic data interchange for administration, commerce and transport) ist ein Protokoll zum Austausch von Geschäfts und Handelsdaten.

erfordert Übereinstimmung hinsichtlich:

- Semantik
- EDI-Funktionalität
- Telekommunikation
- · Sicherheits- und Kontrollaspekte

EDI Standards

	National	International
Branchenneutral	ANSI X. 12 (USA) TRADACOMS (UK)	EDIFACT EANCOM (EDIFACT-subset, löst SEDAS in Deutschland ab)
Branchenbezogen	VDA (Automobil, D) SEDAS (Handel, D) GENCOD (Handel, F)	ODETTE (Automobil) RINET (Versicherung) SWIFT (Banken)

Kosten & Nutzen

Kosten

- ⁻ einmalig: Hard- und Software, Schulung, Beratung
- laufend: Wartung, Netzwerkkosten

Nutzen

- kurzfristig: Reduzierung Personalkosten, Reduzierung Fehlerrate
- langfristig: Reduzierung Lagerkapazität

LE10: Informationssysteme im Bankensektor

10.1 Einführung in den Bankensektor

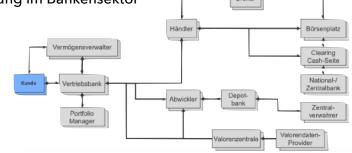
Geschäftsmodell von Banken

- Dienstleistungsgeschäfte: Zahlungsverkehr, Wertpapiergeschäfte, Assetmanagement, M&A
- Aktiv- und Passivgeschäfte: Kreditgeschäfte, Mittelbeschaffung

Einflussfaktoren auf den Bankensektor

- Kunden: Individualisierung, Flexibilisierung, Digitalisierung, gesunkene Loyalität
- Wettbewerber: FinTechs, Branchenfremde
- Markt: Niedrigzinsumfeld, Kostendruck (z.B. teure Filialen)
- Regulatorik: Basel III (Kapital- & Liquiditätsregulierung)
- Technologie: eSupport, interne Automatisierung

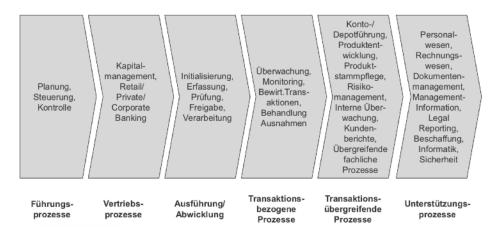
Kategorisierung von FinTechs im Ökosystem der Banken


- Kooperierend: bieten Produkte in Kooperation mit Banken an
- Komplementär: bieten ergänzende/neue Produkte neben den Banken an
- Konkurierenden: bieten Produkte an, die auch Banken anbieten

Zunehmende Vernetzung und Spezialisierung im Bankensektor Wertpapiergeschäft

- Sehr viele Akteure, die in einem automatischen Prozess miteinander arbeiten
- deutliche Kostensenkungen

Allgemein


 Economies of Scale: Reduzierung der Durchschnittkosten durch Bündelung und integrieren von Prozessen

Broker

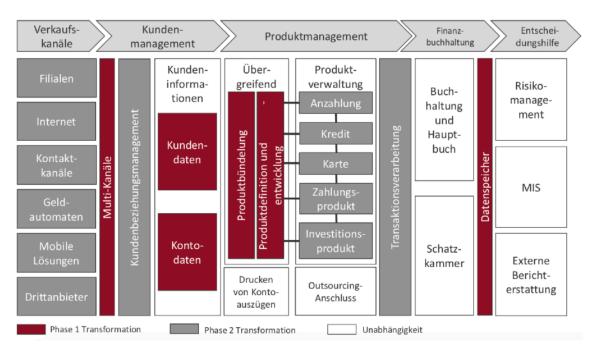
- Economies of Scope: Unternehmensweiter Datenaustausch erlaubt besseres Kundenerlebnis
- Economies of Skill: Spezialisierung (z.B. Wirecard)

Generische/Allgemeine Wertschöpfungskette einer Bank

10.2 IT im Bankensektor

Rolle der IT im Bankensektor

- Kernprozess von Banken ist die Verarbeitung von Informationen > IT ist Kern-Asset
- IT häufig veraltet, Daten- und Anwendungsredundanzen (Kostentreiber)


Ziele des IT-Einsatzes im Bankensektor

- Senkung der Bearbeitungs- und Durchlaufzeiten
- Reduzierung der Arbeiten im Back-Office
- Reduzierung von Qualitätsmängeln
- Integrierte Vorgangsbearbeitung
- Reduzierung von Schnittstellen

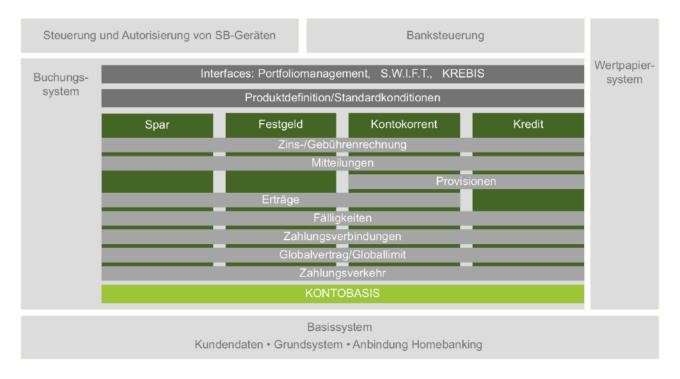
Anforderungen an IT in Banken

- Vielfältige Kundenanwendungen
- Vermeidung von Legacy-Systemen/Altsystemen
- Schnelle Anpassungsfähigkeit (flexbible Produkt- und Preisgestaltung)
- Organisation der Daten (Regulatorien, Risikomanagement)
- Geringe Kosten
- Vereinfachter Betrieb (einfache Wartung, 24/7 Verfügbarkeit)

Strukturierung von Informationssystemen im Bankensektor

Aktuelle IT-Trends im Bankensektor

- Aussterben von Bankfilialen (Kosten, Veränderung im Retail-Banking)
- IT-basierte Analyse von Daten (Kreditwürdigkeit beurteilen, eSupport Datenschutz)
- Mobile Payment (mit Smartphone, etc.)
- Internationale Überweisungen
- Veränderung in der Vermögensverwaltung (Robo-Advisor)

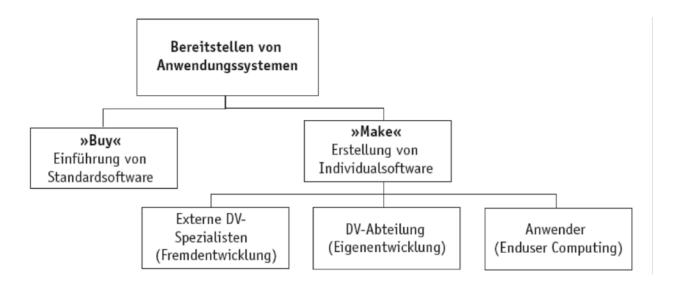

10.3 Beispiele für Informationssysteme im Bankensektor

Algorithmic Trading

- Automatisierter Handel von Wertpapieren mit Computerprogrammen
- Mittlerweile ein bedeutender Anteil des Gesamtumsatz an Börsen

Core Banking Systeme (CBS)

- Systeme zur Unterstützung der Kernprozesse



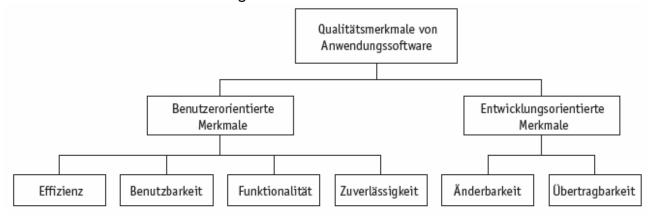
Bezahlsysteme

 eCommerce Bezahlsysteme, bei denen ein Dienstleister den gesamten Geldverkehr überwacht und Garantien gibt

LE11: Bereitstellung von Anwendungssystemen

11.1 Arten der Softwarebereitstellung im Überblick

11.2 Auswahl der Standardsoftware


Vorgehen zur Softwareauswahl

Kritierien für die Softwareauswahl

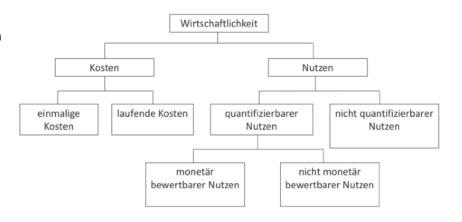
	Aktuelle Kritierien	Strategische Kritierien
Produktbezogene Kritierien	 Erfüllung funktionaler Anforderungen Erfüllung technischer Anforderungen Preis/Lizenzmodell 	 Modernität der Technologie Flexibilität des Systems Produktstrategie (Wartungszeitraum)
Anbieterbezogene Kritierien	 Branchenerfahrung Qualität/Ruf Reaktionsgeschwindigkeit Supportangebot Seriosität 	 Zukunfssicherheit des Anbieters Marktstellung des Anbieters

Qualitätsmerkmale von Anwendungssoftware

Nutzenkategorien von Informationssystemen

Nutzenkategorien

Kriterien	Strategische Wettbewerbsvorteile	Produktivitäts- verbesserung	Kostenersparnis
Zuordnung zu Unternehmensebenen	strategische Ebene	taktische Ebene	operative Ebene
Anwendungen	innovative Anwendung	komplementäre Anwendung	substitutive Anwendung
Bewertbarkeit	entscheidbar	kalkulierbar	rechenbar
Methodeneinsatz	neuere Verfahren	mehrdimensionale Verfahren	wenigdimensionale Verfahren


- Kostenersparnis: monetär Bewertbar & quantifizierbar

Wirtschaftlichkeitsvergleiche

 Einfache Kostenrechnungen vernachlässigen meist den Aspekt des Nutzens

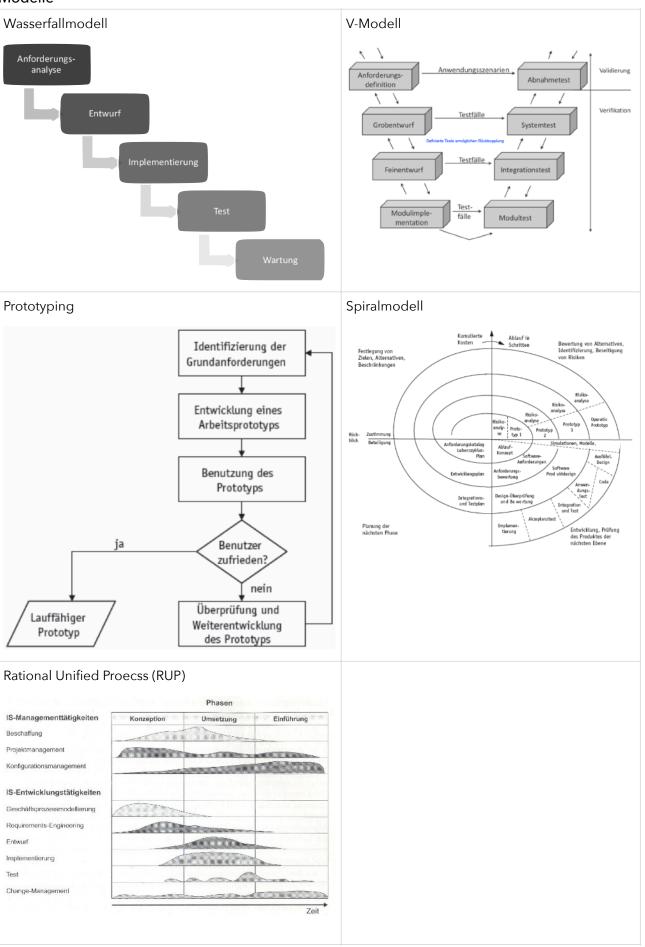
Nutzwerkanalyse

- 1. Aufstellen der Kritierien und deren Gewichtung
- Gegenüberstellung der Angebote
- Punktbewertung der Angebote
- Problem: Gewichtung und Bepunktung sind bei nicht monetär bewertbarem Nutzen subjektiv

Kritieren für die Auswahl von Cloud Computing Anbietern

- Funktionalität
- Rechtliche Rahmenbedingungen, Standort der Server
- Vertrag
- Flexibilität (bedarfsorientierter Einkauf der IT-Infrastruktur)

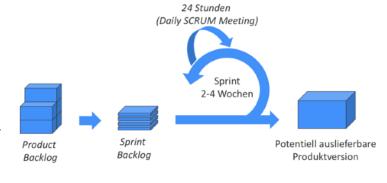
Nutzenkategorien von Anwendungsystemen


	monetär bewertbar	nicht monetär bewertbar
quantifizierbarer Nutzen	 Verkürzung von Bearbeitungszeiten Abbau von Überstunden Materialeinsparung Personalreduzierung 	 Schnellere Angebotsbearbeitung Weniger Terminüberschreitungen Höherer Servicegrad Weniger Kundenreklamationen
nicht quantifizierbarer Nutzen	Gibt es nicht!	 Erhöhung der Datenaktualität Verbesserte Informationen Gesteigertes Unternehemensimage Erweitet Märkte/Geschäftsfelder

11.3 Entwicklung von Individualsoftware

Übersicht

Modell	Vorteil	Nachteil	Eigenschaft
Wasserfallmodell	Klare Phasenabgrenzung	Keine Rückkopplung	Sequentiell
V-Modell	Definierte Tests	Späte Rückkopplung	Sequentiell
Prototyping	Frühes Feedback	Hoher Aufwand durch wechselnde Anforderungen	Iterativ
Spiralmodell	Klare Phasen & frühes Feedback	Hohe Komplexität	Sequentiell, iterativ
Rational Unified Process (RUP)	Sehr formal	Zu formal für kreativen Entwicklungsprozess	Sequentiell, iterativ
SCRUM	sehr flexibel/frei	Fehlende Formalisierung	Agil
Extreme Programming (XP)	Kunde im Vordergrund	Wenig Formalisierung	Agil


Modelle

Einf. Wirtschaftsinformatik

Agile Software-Entwicklung - SCRUM

- Daily Standup: Kurzes, tägliches Status-Meeting
- Sprint-Planning: Monatliches
 Meeting zur Festlegung der
 Anforderungen & Umsetzung
- Sprint Retrospektive: Evaluierung der Arbeitsweise und Planung von Verbesserungsmaßnahmen nach Abschluss des Projekts

Agile Software-Entwicklung - XP

- Bei unklaren Anforderungen und häufigen Änderungen
- Blendet Planungsvorgänge aus
- Insbesondere für kleine Entwicklungsprojekte geeignet
- Kommunikation im Vordergrund (zwischen Kunde & Entwickler)
- Schnell erste Ergebnisse
- Pair Programming (zwei Programmiere pro Computer)

Scrum vs. XP

	SCRUM	XP
Fokus	Produktivität	Engineering
Rollen	Product Owner, SCRUM Master, Team	Kunde, Entwickler
Vorgehensweise	Iterativ	Iterativ
Festlegung der Anforderungen	Verbindlich durch Sprint Backlog festgelgt	Flexibel, sofern nocht nicht begonnen
Umsetzungsreihenfolge	Flexible Umsetzung der Anforderungen	Strikte Reihenfolge der Umsetzung

LE12: E-Government

12.1 Phänomen E-Government

Was ist E-Government?

- Abwicklung geschäftlicher Prozesse im Zusammenhang mit Regieren und Verwalten mit Hilfe von Informations- und Kommunikationstechniken über elektronische Medien.
- Durchführung von Prozessen der öffentlichen Willensbildung, der Entscheidung (z.B. Wahlen) und der Leistungserstellung in Politik, Staat und Verwaltung unter sehr intensiver Nutzung der Informationstechnik

Anbieter ↓ Nachfrager →	Consumer	Business	Administration
Consumer	C2C z.B. Flohmarkt Community mit Kleinanzeigen	C2B z.B. Jobbörse mit Angeboten von Arbeitnehmern	C2A z.B. elektronische Abgabe der privaten Steuererklärung
Business	B2C z.B. E-Shop, E-Mall wie Amazon & Zalando	B2B z.B. E-Procurement zur Ausschreibung	B2A z.B. elektronische Abgabe der Steuererklärung
Administration	A2C z.B. Abwicklung von Unterstützungs- leistungen	A2B z.B. öffentliche Ausschreibung online	A2A z.B. interne Behördenabwicklung

E-Government im Föderalismus

- Bund, Länder und Kommunen müssen integriertes System schaffen
- Herausforderung: Doppel-Entwicklung, Medienbrücke, fehlende Harmonisierung/ Kompatibilität, lückenhafte & redundante Vernetzung
- Lösung: gemeinsame Strategie, Infrastruktur und Standards, Interoperabilität

- Nötig: Verfassungsänderung (GG 91c), die Bund und Ländern Zusammenarbeit erlaubt Open Government
- Öffnung eines Staates hin zu seinen Interessensgruppen wie Bürger, Unternehmen oder dem Staat selbst.
- Warum: Rechenschaft gegenüber Stakeholdern, Kontrolle, Steigerung Effizienz & Effektivität
- Problem: Daten ohne Betroffenheit interessieren die meisten Stakeholder nicht. Flut der Daten schafft auch keine weitere Transparenz, da deren Analyse für Menschen unmöglich ist.

Ziele von Open Government

- Kollaboration: zwischen Staat und seinen Stakeholdern durch Webbasierte Kommunikation
- Partizipation: der Stakeholder am Regierungsgeschehen, Prozessen/Abläufen durch Bereitstellung von Internet-Portalen zur Beteiligung
- Transparenz: des Handelns der Regierung, den Prozessen/Abläufen durch Bereitstellung der Daten

12.2 Klassifikationsschema

Informationsstufe

- Bereitstellung von Informationen für den Nutzer
- Keine individuelle Kommunikation

Kommunikationsstufe

- Möglichkeit zur Kontaktaufnahme
- Synchron & Asynchron

Interaktions-/Transaktionsstufe

 Benutzer kann von sich aus Verwaltungsvorgänge auslösen

Notwendigkeit digitaler Signatur!

12.3 Bürger und E-Government

Erwartungen

der Bürger

- Zeit- und Kostenersparnis
- einfache Bedienbarkeit & Übersichtlichkeit
- durchgehende Verfügbarkeit
- Möglichkeit zur Partizipation bei politischen Entscheidungen

der Verwaltung & Politik

- Zeit- und Kostenersparnis
- Vereinfachung/Automatisierung von Vorgängen
- ⁻ Transparenz, Bürgerbeteiligung
- Imageverbesserung > Arbeitspl.-Attraktivität
- Standortfaktor für Unternehmen

Berüngspunkte und Lebenslagen

Berührungspunkte

- Steuererklärung (1x p.a.)
- Stimmzettel (ca. alle 2 Jahre)
- Ausweis/Pass (alle 10 Jahre)

Lebenslagen

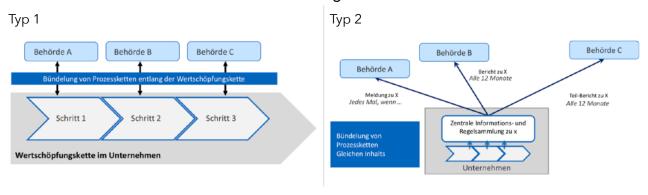
 Angebot angepasst an die Lebenslagen der Bürger (Übersichtlichkeit)

12.4 E-Business und E-Government

Erwartungen

der Unternehmen

- vollständiges und strukturiertes Informationsangebot
- einfache Abläufe (Bürokratiearm)
- Schnelle Bearbeitung
- Effizienzgewinne


der Verwaltung & Politik

- Rechtskonforme Abwicklung
- Tranparente Abläufe (abbau Redundanzen)
- Arbeitserleichterung (weniger Routineaufgaben)
- Effizienzgewinne


Berüngspunkte und Unternehmenslagen

- Antrag Ausnahmegenehmigung für Betrieb (mehrmals p.a.)
- Umsatzsteuererklärung (jährlich)
- Antrag Rufnummerbedarf für TK-Anlage (1x pro Standort)

Prozessketten zwischen Wirtschaft und Verwaltung

12.5 Zukunfsperspektiven

One Stop Government

Eine zentrale Anlaufstelle, die alle Anfragen bedienen kann.

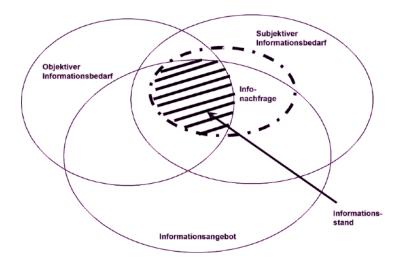
Hemmnisse

viele Einzelvorschriften benötigen noch persönliches Erscheinen Internetzugang föderales System fehlende Standards

LE13: Informationsmanagement

13.1 Aufgaben des Informationsmanagements

Was ist Informationsmanagement?


Informationsmanagement ist Teilbereich der Unternhemensführung, die den bestmöglichen Einsatz der Ressource Information zu Gewährleisten.

Kernaufgaben:

- Management von Informationswirtschaft, Informatiossysteme & Informationstechnologie
- Generelle Führungs- und Gestaltungsaufgaben
- Bestimmung und Bereitstellung des Leistungspotenzials

Informationsstand

- Subjektiver Bedarf: durch den Entscheider festgelegt
- Objektiver Bedarf: durch die Entscheidungs festgelegt

Materielle Wirtschaftsgüter und Informationen

Materielle Wirtschaftsgüter - Hohe Vervielfältigungskosten - Angleichung der Grenzkosten an die Informationen - Niedrige Vervielfältigungskosten - Grenzkosten der (Re-)Produk	
- Angleichung der Grenzkosten an die - Grenzkosten der (Re-)Produk	
 Durchschnittskosten Wertverlust durch Gebrauch Individueller Besitz Wertverlust durch Teilung, begrenzte Teilbarkeit Identifikations- und Schutzmöglichkeit Logistik oft aufwendig Preis/Wert im Markt ermittelbar begrenzte Kombinationsmöglichkeiten kein Wertverlust durch Gebra kein Wertverlust durch Gebra kein Wertverlust durch Gebra Vielfacher Besitz möglich Probleme des Datenschutzes Datensicherheit Logistik einfach Preis/Wert nur schwer bestim Ansammlung schafft neue Quweitergehende Möglichkeite 	ion nahe Null uch g, fast beliebige und der mbar ialitäten,

Konsequenz: Vervielfältigungsrechte denen von Eigentum angepasst.

Angebot

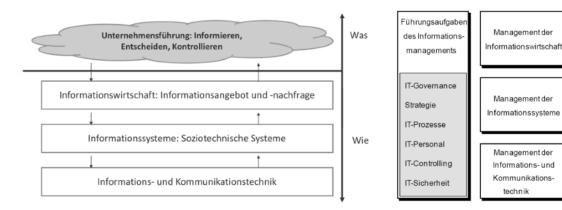
Nachfrage

Daten

Prozesse

Anwendungslebenszyklus

Speicherung

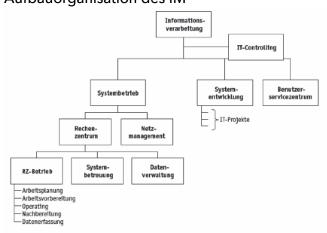

Kommunikation

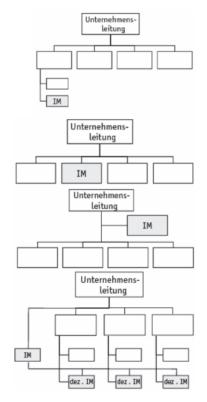
Technikbündel

Verwendung

Ebenen des Informationsmanagements

Ebenenmodell Informationsmanagement


Die Veränderung einer Ebene verändert alle weiteren Ebenen mit (Bsp. Quantencomputer)


13.2 Organisation des Informationsmanagement und Outsourcing

Einordnung des IM in Aufbauorganisationen

- 1. IM als Linieninstanz in einem Hauptbereich
 - Schwerpuntk des IM liegt beihnahe ausschließlich in einem Fachbereich
 - Know-how Probleme und Konfliktpotential (bei verschiedenen Fachbereichen)
- 2. IM als Hauptbereich
 - IM hat eine sehr hohe Bedeutung
 - Zusammenarbeit mit anderen Fachbereichen schwierig
- 3. IM als Stabstelle
 - enger Kontakt mit Unternehemnsleitung
 - keine formale Weisungsbefugnis, was die Durchsetzung von IM-Aufgaben in den Fachbereichen schwierig macht
- 4. IM als Querschnittsfunktion in einer Matrixorganisation
 - Kurze Wege zu den Fachbereichen und zur Unternehmensleitung
 - Hoher Koordiantionsaufwand

Aufbauorganisation des IM

IT-Outsourcing

- Outsourcing: Aufgaben an ein anderes Unternehmen abgeben
- Externes Outsourcing: Übertragen der Aufgaben an externes Unternehmen
- Internes Outsourcing: Übertragen der Aufgaben an rechtlich verbundenes Unternehmen


IT-Sourcings

Gründe

- Kostenreduktion, Kostentranparenz
- Personalabhänigkeit verringern, Personalentlastung
- Veringerung der Risiken, Abwälzung der Risiken an Outsourcer
- Nutzung von Technik ohne eigene Investitionen, Zugang zu speziellem Know-how

Risiken

- Hohe einmalige Kosten, Schwierige Einschätzung der zukünftigen Kostenentwicklung
- Verlust von Know-how, personalpolitische & arbeitsrechliche Probleme
- Starre Bindung an Technologie des Outsourcing Anbieters
- Datenschutz
- Schwierige Rückkehr zum eigenen System

13.3 Der CIO

Ausprägungen des Informatikers

Konventionelle	Informatikführungs-	Entrepreneurship-	Innovative
Informatier	kräfte	Informatiker	Informatiker

> Rolle des Wirtschaftsinformatikers <

Führungsaufgaben des IM

- Bestimmung der IT-Strategie
- Management der Leistungserbringung
- Personalmanagement
- Controlling

Was ist ein CIO?

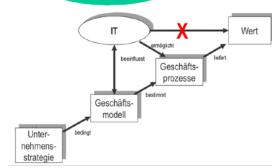
Chief Information Officer (CIO) ist die Berufsbezeichnung für eine Person/Führungskraft, die verantwortlich ist für die Informationstechnik und Anwendungen, die die Unternehmenziele unterstützen.

Erfolgsfaktoren für einen CIO

- Persönliche Merkmale: IT-Wissen, Soziale Fähigkeiten
- IS Management Prozess: Aufbau einer Gemeinsem Vision, Netzwerk, proaktive Planung
- Organisatorischer Zusammenhang: Einstellung des Unternehmens zur IT
- Verhalten: Glaubwürdigkeit

13.4 Zusammenh. zwischen Unternehmensstratgie, Organisation & IKT

Zusammenhang zwischen Unternehmensstrategie und Informationssysteme


- Enable: IS & IT können neue
 Geschäftsmodelle ermöglichen
 > Bsp. Scannerkassen > größeres
 Sortiment & Warenwirtschaftssysteme
- Align: Unternehmensstrategie stellt
 Forderungen an IS IS wird an Strategie angepasst

Unternehmensstrategie Informationssysteme

Produktivitätsparadoxon

Das Produktivitätsparadoxon besagt, dass kein positiver Zusammenhang zwischen IT-Investitionen und der Produktivität auf volkswirtschaftlicher oder betrieblicher Ebene besteht.

> Wertschaffend sind die neu ermöglichten Geschäftsmodelle!

LE14: Social Computing

14.1 Rahmenbedingungen für Social Computing: Gruppenverhalten

Was ist eine Gruppe?

Gruppe definiert sich durch folgende Merkmale: Gruppenbewusstsein (zwischen Mitgliedern), Gruppenstruktur, typisches Interaktionsverhalten, gemeinsame Normen und Werte.

Einfluss der Gruppe auf Einzelne

- Gruppengröße und -struktur
- Zusammensetzung der Gruppe
- Kommunikationsstruktur

Einfluss von Einzelnen auf Gruppen

- Reziprozität der Beziehungen: Sympathie erzeugt Gegensympathie
- kognitive Balancierung: Beziehung zwischen zwei Personen balanciert sich in Abhängigkeit zu Beziehung zu drittem Element
- Verzerrung kategorialer Personenwahrnehmen: Beurteilung von Personen nach Kontext
- Attributstheorie: Handlung eines Person werden als Absicht ausgelegt

Meinungsbildungsprozess

- Informelle Kommunikation: Konformitätsdruck zu Gruppen (Gruppenzwang)
- Austauschtheorie: Konformitätsdruck Gegenteilig (eigene Meinung stark einbringen)
- Social Impact: Mehrheitsmeinung senkt Einfluss von Minderheitsmeinung (Gaffer-Effekt)
- Starke Minderheiten: Minderheiten können Mehrheitsverhälnisse kippen

14.2 Überblick Social Computing

Was ist Social Computing (CSCW)?

Softwaresysteme, die Interaktion und Kollaboration unterstützen.

CSCW: Computer-Supported Cooperative Work, rechnergestütze gemeinsame Aufgabenerfüllung (früher)

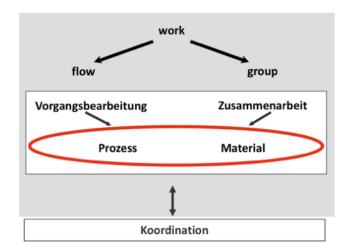
Social Software

- Software: Fokus auf individueller Produktivitätsorientierung
- Social Software: Gestaltung von Beziehungen zwischen Individuen & Personengruppen
- Merkmale:
 - 1. Individuum/Gruppe im Mittelpunkt, nicht die Technik
 - 2. Selbstorganisation (Konventionen, keine offizielle Gremien)
 - 3. Individuum als Informationsproduzent (nicht nur Konsument)
 - 4. Fokus weniger auf Informationen sondern auf deren Struktur & Verknüpfung

Web 2.0

Web 2.0 ist das Internet der Partizipation, bei der über zentrale Plattformen kommuniziert werden kann. Web 1.0 hatte einen einseitigen Informationsfluss.

Schlüsselprinzipien Web 2.0


- Web als Plattform (statt lokaler Rechner)
- Kollektive Intelligenz/Mitwirken (Bsp. Wikipedia)
- Daten-getriebene Anwendungen (Bsp. Facebook, Amazon, Google)
- Kontinuierliche Weiterentwicklung (auch durch Nutzer)
- Einfachheit der Anwendung, UI und Geschäftsmodelle
- Verteilte Systeme
- Rich User Experience (beste UE, z.B. Mailprogramme, bei denen man die Seite nicht neu laden muss)

Klassifikation von Social Computing

Zusammenarbeit der Teammitglieder	Zu gleicher Zeit	Zeitlich Versetzt
Am gleichen Ort (face-to-face)	Computerunterstützte Sitzungmoderation, Präsentationssoftware, Beamer, Smart-Board	Gruppentermin-Kalender, Projektmanagementsysteme
An unterschiedlichen Orten	TelKo, Videokonferenz, Screen-Sharing	E-Mail, Voice-Mail, gemeinsam genutzte Datenbank, Bulletin Boards (z.B. Slack)

Workgroup und Workflow Computing

- Workflow: Aufteilung und Lösung von Teilproblemen
- Workgroup: Lösung eines gemeinsamen Problems

14.3 Workgroup Computing

Was ist Workgroup Computing?

Organistion und Verwaltung von gruppeninternen Informations- und Arbeitsprozessen.

- Groupware: gemeinschaftlich nutzbare computerbasierte Umgebung zur Zusammenarbeit
- Anwendungsfälle: Information Sharing, Telekooperation (elektronisch unterstützte standortübergreifende Zusammenarbeit), Sitzungsunterstützung

14.4 Workflow Systeme

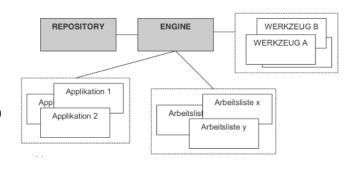
Was sind Workflow Systeme?

Zusammenführung der Arbeiten Einzelner, Abwicklung definierter Geschäftsvorfälle, Behandlung strukturierbarer, planbarer Abläufe (Prozessorientiert).

Ziele von Workflow Systemen

- Erhöhung der Transparenz über den Prozess
- Termin-Einhaltung
- Flexibilität und Reaktionsmöglichkeit
- Verringerung der Anzahl von Arbeitsschritten
- Parallelisierung von Arbeitsschritten
- Verringerung der Aufgabenkomplexität
- Verringerung der Durchlaufzeiten

Techniken zur Vorgangsunterschützung


- Repräsentation des Prozesses in Applikationen
- Workflow Systeme (Trennung von Prozesswissen und Ausführung der Einzelfunktion, flexibler)

Workflowtypen

- transaktional: Bsp. Automatischer Rechnungserstellung bei Auftragseingang
- flexibel: Bsp. Beratungsfunktion mit Leitfaden (aber ohne festen/fixen Ablauf)
- ad hoc: Bsp. Planung eines neuen Projekts

Architektur eines Workflow-Systems

- Engine: Beeinhaltet Funktionalität (Kontrollfluss)
- Repository: Speichert Workflow-Definitionen und Instanziierungen
- Arbeitslisten: Schnittstelle zwischen System und Benutzer, definiert Arbeitsschritte
- Werkzeuge: Unterschützen Änderungen und Analyse von Workflows
- Applikationen: Unterstützt einzelne Aufgabenschritte

