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Statistics 
1: Introduction to Data 

1.1 – Data Basics 

Types of Variables 

- Numerical: can take a range of numerical values 
> continuous: can take every value 
> discrete: can take values with jumps (e.g. integers) 

- Categorical: can take different categories of values 
> nominal: cannot be ordered 
> ordinal: can be ordered 

 

Association and Independence 

- Variables are associated/dependent when the show some connection 
> positive: higher ~ higer, negative: higher ~ lower 

- Variables are independent when they are not associated 
 

1.2 – Data Collection Principles 

Population & Sampling 

- The term population refers to a population as a whole - statistics on populations are rare due to the 
high costs of producing these 

- A Sample is a subset of the population (often a [very] small fraction) 
> random samples abolish bias in a sample (be aware of non-response bias) 

 
Explanatory and Response Variable 

- Explanatory variables somehow affects the response variable 

- Caution: Association does not imply causation 
 
Observational Studies and Experiments 

- Researchers perform oberservational studies when they collect data in a way that does not directly 
interefe with how the data arise 

- Experiments allow researchers to investigate causal conncetions by selecting samples and randomly 
assign them to treatment and control-groups 

 

1.3 – Sampling Strategies & Observational Studies 

Observational Studies 

- Confounding variables are correlated to explanatory and response variables and thereby allow to 
make causal conclusions 

- Prospective studies identify individuals and collects information on them 

- Retrospective studies collect data after events have taken place 
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Sampling Methods 

- Simple Random Sampling: randomly picking from the whole 
population 

- Stratified Sampling: divide population into groups called strata 
(grouping similar cases) and randomly pick from these stratas 
according to their fraction 

- Cluster Sampling: break up the population in many clusters and 
randomly pick clusters (where we use all observations) 

- Multistage Sample: break up population in many clusters and 
randomly pick clusters in which we randomy pick observations 

 
 
 
 
 
 
 
 

1.4 – Experiments 

Randomized Experiments 

- Controlling: controlling any other differences in treatment & control group and minimize them 

- Randomization: people are randomly assigned to treatment & control group 

- Replication: replicate results by choosing large sample sizes ore by replicating entire studies 

- Blocking: grouping individuals before assigning them to control & treatment group to eliminate 
further deviations/differences in samples 

 
Blind & Double-Blind 

- Blind: patients do not know, whether they are in treatment or control group 

- Double-blind: patients & doctors do not know, if patients are in treatment or control group 
 

1.5 – Numerical Data 

Mean 

 𝑥 =
∑𝑥

𝑛
, 𝜇for population mean 

 

Mean in R 

1. mean(data) 

 Histogram & Shape 
By creating an histogram from the data-set we can examine certain properties 

- Skewness: longer right tail > right skewed, longer left tail > left skewed, equal tails > symmetric 

- Peaks: one peak > unimodal, two peaks > bimodal, multiple peaks > multimodal 
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Variance & Standard Deviation 

- 𝑠: sample standard deviation, 𝑠2: sample variance, 𝜎: population standard deviation, 𝜎2: population 
variance 

 𝑠2 =
(𝑥𝑖−𝑥)2

𝑛−1
 

 
Variance 

1. var(data$col) 

Standard Deviation in R 

1. sd(data$col) 

Using R to summarise Data 
%>% is the pipelineoperator, used to concat functions on the same dataset 
 
Useful functions:  
filter() used to filter objects 
summarise() used to sum up data by certain parameters like mean, min, max, sd, iqr, n, n_distinct 
select() only keeps data that is selected 
group_by() groups data by a certain value 
arrange() used to order data 
mutate() adds new variables, preserves existing ones drops variables  

1. data %>% 
2.  filter(filteringcondition) %>% 

3.  summarise(mean = mean(n), 

4.  median = median(n), 

5.  min = min(n), 

6.  max = max(n), 

7.  n = n(), 

8.  n_distinct = n_distinct(n) 

9.  ) 

Box Plots, Quartiles & Median 

- Box plot can be seen on the right 

- Median: 50% of data fall below median, 50% of 
data fall above median (center) 

- Quartile: each quartile contains 25% of the 
observations/data 

> 𝐼𝑄𝑅 = 𝑄3 − 𝑄1 

- Whiskers: reach is never more than 1,5 ⋅ 𝐼𝑄𝑅 
 
Robust Statistics 
Median & IQR are called robust estimates, as outliers 
have only little effect on them 
 
For GG-Plot commands use the ggplot2 cheatsheet :) 
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1.6 – Categorical Data 

Contigency Table incl. Totals 

- Table for single variables is called frequency table 

- Replacing counts with percentages/proportions 
would result in a relative frequency table 

 
Contingency table in R 

1. dt <- table(data$var1, data$var2) 
2. addmargins(dt) 

Segmented Bar and Mosaic 
Plots 

- Segmented bar plot: 
absolute numbers 

- Mosaic plot: 
proportion/probabilities 

 
 
 
 
 
Indepence 
Calculating row probabilities and comparing them allows the evaluation of ‚independence‘. 
 

1.7. Calculating a quantile 

Functions for quantiles always start with a ‘q’. The Quantile is a percentile in a dataset. 
 
Args: The column with the data, the quantile e.g. .95, optional: na.rm = TRUE to remove na values  

1. quantile(data$col, .quantile) 
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2: Probability 

2.1 – Defining Probability 

Probability 
The probability of an outcome is the proportion of times the outcome would occur if we observed the 
random process an infinite number of times. 
 
Disjoint and Mutually Exclusive Outcomes 
Two outcomes are disjoints/mutually exclusive, if they cannot both happen. 
 𝑃(𝐴1 ∨ 𝐴2) = 𝑃(𝐴1) + 𝑃(𝐴2)  Addition Rule of disjoint outcomes 
 
General Addition Rule 
 𝑃(𝐴 ∨ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∧ 𝐵) 
 
Probability Distributions 
A probability distribution is a list of the possible outcomes with corresponding probabilities that 
1. must be disjoint 
2. are between 0 and 1 
3. sum up to a total of 1 
 
Complement 

The Complement of an outcome represents all outcomes not in the original: 𝑃(𝐴) + 𝑃(𝐴𝐶) = 1 
 
Independence 
Two processes are independent, if knowing the outcome of one provide no useful information on the 
outcome of the other. 
 𝑃(𝐴 ∧ 𝐵) = 𝑃(𝐴) ⋅ 𝑃(𝐵) = 𝑃(𝐴|𝐵)  Multiplication Rule for independent processes 
 

2.2 – Conditional Probability 

Marginal and Joint & Conditional Probabilities 

- Probabilities based on a single variable are called marginal probabilities 

- Probabilities based on two or more variables are called joint probabilities 

- Conditional probabilities is used for computing probabilities under given conditions 

 𝑃(𝐴|𝐵) =
𝑃(𝐴∧𝐵)

𝑃(𝐵)
  Probabilitiy for A given B 

Tree Diagrams 
 
 
 
 
 
 
 
 
 

Bayes’ Theorem: inverting probabilities 

 𝑃(𝐴1|𝐵)
𝑃(𝐵|𝐴)𝑃(𝐴1)

𝑃(𝐵|𝐴1)𝑃(𝐴1)+𝑃(𝐵|𝐴2)𝑃(𝐴2)+⋯+𝑃(𝐵|𝐴𝑘)𝑃(𝐴𝑘)
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2.3 – Sampling from small Population 

Sampling with or without Replacement 

- Sampling without replacement abolishes independence between observations 

- By sampling with replacement the probability stays the same 
 

2.4 – Random Variables 

Random Variable 
A random process or variable with a numerical outcome. 
 
Expectation 

 𝐸(𝑋) = 𝜇 = 𝔼 = ∑
𝑖=1

𝑘

𝑥1 ⋅ 𝑃(𝑋 = 𝑥𝑖) 

 
Variability 

 𝜎2 = ∑
𝑗=1

𝑘

(𝑥𝑗 − 𝜇)2 ⋅ 𝑃(𝑋 = 𝑥𝑗) 

 

2.5 – Sensitivity and Specifity 

Sensitivity and Specifity 

- Sesitivity measures a tests ability to identify positive results 

- Specifity measure a tests ability to identify negative results 
 
Calulation from binary variables 

 sensitivity =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  specificity =

𝑇𝑁

𝐹𝑃+𝑇𝑁
 

 
  

http://home.in.tum.de/~schamel


Tobias Schamel, Jan-Luca Grabowski, Daniel Korth Statistics 

 7 

3: Distribution of Random Variables 

3.1 – Normal Distribution 

Normal Distribution Model 
Many variables are nearly normal distributed. 
Therefore, their distribution can me modelled with the 
normal distribution model. 
The model can be modified with two parameters: 

- 𝜎 (standard deviation) 

- 𝜇 (mean) 
 
Standardizing with Z-Scores 
Z-Scores are used to standardize deviations from the mean under the normal distribution model. The z-
score is the number of standard deviation the observation is above/below the mean. 

 𝑍 =
𝑥−𝜇

𝜎
 z-score 

 
68-95-99.7 Rule 

- The interval 𝜇 ± 1 ⋅ 𝜎 covers 68% of observations 

- The interval 𝜇 ± 2 ⋅ 𝜎 covers 95% of observations 

- The interval 𝜇 ± 3 ⋅ 𝜎 covers 99.7% of observations 
 

3.2 – Evaluating Normal Distribution 

Evaluation with Histogram 
Create simple histogram and overlay best fitting 
normal curve using sample mean 𝑥 and standad 

deviation 𝑠 as parameters of the curve. 
 
Evaluation with Normal Probability Plot 
Create a normal probability plot - the closer the 
points are to a straight line, the more confident we 
can be about the normality assumption. 
 
Calculating a normal distribution in R: 

1. dnorm(x, sd = 1, log = FALSE) 

Calculating a probability in R of a normal Distribution 
Args: Zscore: double, optional: lower.tail: boolean 

1.  pnorm(zscore) 

Calculating a quantile in R of a normal Distribution 
Args: p: vector of probabilitys, mean, sd, optional: lower.tail: boolean 

1. qnorm(p, mean = mean, sd = sd) 
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3.3 – Geometric Distribution 

Bernoulli Distribution 
Bernoulli Distribution fulfill the following assumptions 

- Each independent person in the experiment is considered a trial 

- Each trial has an equal probability of success 𝑝 and an equal probability of failure 𝑞 = 1 − 𝑝 
> when individual trial has just two possible outcomes, the variable is called Bernoulli Variable 

 𝜇 = 𝑝  𝜎 = 𝑝𝑞  𝜎 = ඥ𝑝𝑞 

 
Geometric Distribution 
Geometric distributions are used to calculate the waiting time until a success for 

- Independent 

- Indentically distributed 
Bernoulli random variables. The probability of finding the first success in the nth trial is 𝑞𝑛−1 ⋅ 𝑝 

 𝜇 =
1

𝑝
  𝜎2 =

1−𝑝

𝑝2   𝜎 = ට
1−𝑝

𝑝2  

 
Calculating a geometric distribution in R: 

1. dgeom(x, prob) 

 Calculating a probability in R of a normal Distribution 
Args: q: vector of quantiles, probability of success, optional: lower.tail: Boolean 

1. pgeom(q, prob) 

 Calculating a quantile in R of a normal Distribution 
Args: p: vector of probabilitys, prob: probability of success, optional: lower.tail: Boolean 

1. qgeom(p, prob) 

 

3.4 – Binomial Distribution 

Binomial Distribution 

- The binomial distribution is used to calculate the probability of having 𝑘 successes in 𝑛 trials. 

- The binomial distribution can be approximated using a normal model when failure and success occur 
at least 10 times.  
> accuracy can be improved by widening interval 0.5 on both sides 

- Binomial distributions must fulfill conditions 
> trials are independet 

> number of trials 𝑛 is fixed 
> each trial can be classified as either success or failure 
> the probabilities for success and failure are constant for each trial 

 ൫𝑛
𝑘

൯𝑝𝑘 ⋅ 𝑞𝑛−𝑘 

 𝜇 = 𝑛𝑝  𝜎2 = 𝑛𝑝𝑞  𝜎 = ඥ𝑛𝑝𝑞 

Calculating a geometric distribution in R: 

1. dbinom(x, size = size, prob = prob) 
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Calculating a probability in R of a binomial Distribution 
Args: x: vector of quantiles, size: number of trials, prob: prohability of success, log: logical, if given as 
log(p) 

1.  pbinom(x, size = size, prob = prob) 

Calculating a quantile in R of a normal Distribution 
Args: p: vector of prohabilitys, size: number of trials, prob: prohability of success, 

1. qbinom(p, size, prob = prob) 

 

3.5 – More discrete Distrubutions 

Negative Binomial Distribution 

- The negative binomial distribution is used to calculate the probability of observing the 𝑘th success in 

the 𝑛th trial. 

- Negative binomial distribution must fulfill conditions 
> trials are independent 
> each trial can be classified as either success or failure 
> the probabilities for success and failure are constant for each trial 
> the last trial must be a success 

 ൫𝑛−1
𝑘−1

൯𝑝𝑘 ⋅ 𝑞𝑛−𝑘 

 
Poisson distribution 

- The poisson distribution is used to estimate number of events in a large population over a unit of 
time (e.g. having heart attack, getting married, getting struck by lightning). 

- Individuals in the population are independent 

 𝑃(observe k events) =
𝜆𝑘⋅𝑒−𝜆

𝑘!
, where 𝜆 is the rate of occurences over a fixed span of time 

 𝜇 = 𝜆  𝜎2 = 𝜆   𝜎 = ξ𝜆 
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4: Foundations for Inference 

4.1 – Variability in Estimates 

Point Estimates 

- We want to estimate the population mean from our sample, but the sample mean is to variable. 

- The sample mean is called a point estimate and it varies with sampling variation. 
 
Standard Error of the Mean 
The variability in point estimates can be described using the standard errror (standard deviation 
associated with an estimate). 

 𝑆𝐸𝑥 = 𝜎𝑥 =
𝜎𝑥

ξ𝑛
, where observations are independent (less than 10% of population) 

 

4.2 – Confidence Intervals 

Confidence Intervals 

- A plausible range of values for the population parameter is called confidence interval (CI). 

- „We are xx% sure, that the population parameter is within the CI.“ 
 𝑥 ± 𝑧⋆ ⋅ 𝑆𝐸, where 𝑧 = 1.64 → 90%, 𝑧 = 1.96 → 95%, 𝑧 = 2.58 → 99% 
 𝑧⋆ ⋅ 𝑆𝐸  margin of error 
 
Central Limit Theorem 
If a sample consits of at least 30 independent observations and data is not strongly skewed, than the 
distribution of the sample mean is well approximated by the normal model. 
 
Conditions for use of CI 
Conditions to ensure, that 𝑥 is nearly normal and the estimated 𝑆𝐸 is accurate: 

- Sample observations are independent 
> best judgement, random assignment, random sample is less than 10% of the population 

- Sample size is large 𝑛 ≥ 30 

- The population distribution is not strongly skewed 
> best judgement, less important in larger samples (outliers are accepted for 𝑛 ≥ 100) 
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4.3 – Hypothesis Testing 

Framework 

- Set hypotheses: null hypothesis (𝐻0) representing a skeptical perspective/claim, alternative 
hypothesis (𝐻𝐴) representing an alternative claim (often range of possible parameter values) 

- 𝐻0 is only rejected if we can find convincing evidence, that it is false 

> possible evidence is CI or p-value (confidence level 𝛼) 
 

 
Decision Errors 
 
 
 
Requirements for Tests 

- Individual observations must be independent 

- Sample size must not be too small and too skewed 
 
Statistical vs. Practical Significance 
Large sample sizes result in smaller SE and therefore a more sensible test. Therefore, we might detect 
small differences, which, while being statistically significant, are not practically significant. 
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5: Inference for Numerical Data 

5.1 – One-Sample Means with t-Distribution 

Normality Condition 

- We required large sample sizes to ensure a normal distribution of sample means & to ensure the 
accuracy of the calculated standard error. 

- According to the Central Limit Theorem the sampling distribution is nearly normal when sample 
observations are independent and come from a nearly normal distribution. 

 
t-Distribution 

- Tails are thicker and the peak is lower in the t-
distribution 

- We use a t-score (comp. z-score) 

- The t-distribution has a single parameter df 
(degrees of freedeom) 

> 𝑑𝑓 ≥ 30 is nearly normal 

> 𝑑𝑓 = 𝑛 − 1 
 
Conditions for using the t-Distribution 

- Independence of observations (random sample is less than 10% of the population) 

- Observations from a nearly normal distribution 
> look at the data 
> previous experiments alerting? 

 
Confidence Interval 
 𝑥 ± 𝑡𝑑𝑓

⋆ ⋅ 𝑆𝐸 

 

5.2 – Paired Data 

Paired Data 
Two sets of observations are paired if each observations in one set has a special 
correspondence/conncetion with exactly one observation in the other set. 
 
Inference for Paired Data 

- Add a „diff“ variable to the dataset 

- Conduct a hypotheses test using the t-distribution 
 

5.3 – Difference of two Means 

Requirements 

- Each sample meets the requirements for the t-distribution (independence, normal distributed) 

- Samples are independent 
 
 
Distribution of difference of Sample Means 

- The difference of two means can be modelled using the t-distribution 

 𝑆𝐸𝑥1−𝑥2
= ට

𝑠1
2

𝑛1
+

𝑠2
2

𝑛2
  𝑑𝑓 = 𝑚𝑖𝑛(𝑛1 − 1, 𝑛2 − 1) 
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Inference 

- Write appropriate hypotheses. 

- Verify conditions for using the t-distribution 
> one-sample or difference in paired data: observations must be independent and nearly 
    normal, slight skew is okay for larger sample sizes 
> difference in means: each sample must satisfy t-distribution requirements & independence 

- Compute point estimate of interest, the standard error & the degrees of freedom 

- Compute T-score & p-value 

- Make conclusion based on the p-value and write conclusion in plain language 
 

5.4 – Power calculations for Difference of Means 

Creating powerful Tests 
Planning tests leaves us with two competing considerations 

- Collect enough data to detect differences 

- Collect little amount of data to save money & protect patients 
We aim for a power of 80%. 
 
Determining a propper Sample Size 

- The expected mean in case of success must not be in the CI (incl. some variation space) 

 0.84 ⋅ 𝑆𝐸 + 1.96 ⋅ 𝑆𝐸, 3 = 2.8 ⋅ 𝑆𝐸, where 𝑆𝐸 = ට
122

𝑛
+

122

𝑛
 

 

5.5 – Doing a T-Test in R 

We can use t.test for doing a T-Test 
If we already have substracted the 2 variables of interest and set our substract as x. 
Also we define our conf.level. mu is the true value of the mean. 

1. t.test(x = data$diff, conf.level = , mu = ) 

elsewise we define x and y and set paired = TRUE in a two-sided test mu is defined as the 

difference in means in a two sided test. 

1. #else 
2. tstat <- t.test(x = data$a, y = data$b, paired = TRUE, conf.level = , mu 

=)  

 We can specify the test by adding alternative = c(“two-sided”, “less”, “greater”) to 
specify our test. The default is “two-sided”. 
 

  

http://home.in.tum.de/~schamel


Tobias Schamel, Jan-Luca Grabowski, Daniel Korth Statistics 

 14 

5.6 – Comparing many Means with ANOVA 

Comparing Means of different Samples 

- Pairwise comparisons are time consuming - use analysis of variance (ANOVA) 

- f-statistic 

- Hyptheses: 𝐻0: mean is the same accross all groups, 𝐻𝐴: at least 
one mean is different 

 
Requirements/Conditions 

- Observations are independent within and across groups 

- Data within each group are nearly normal 

- Variability across groups is about equal 
 
The F-Test 

𝑀𝑆𝐺 =
1

𝑑𝑓𝐺
𝑆𝑆𝐺 =

1

𝑘−1
∑

𝑖=1

𝑘

𝑛𝑖(𝑥𝑖 − 𝑥)2 𝑀𝑆𝐸 =
1

𝑑𝑓𝐸
𝑆𝑆𝐸 =

1

𝑛−𝑘
∑

𝑖=1

𝑘

(𝑛𝑖 − 1)𝑠𝑖
2 𝐹 =

𝑀𝑆𝐺

𝑀𝑆𝐸
 

Uppter tail of the F-Value represents the p-value. 
Multiple Comparison 

- We do multiple comparisons to find out, which mean differentiates. 

- Use Bonferro correction to prevent inflation of type 1 error 

> 𝛼∗ =
𝛼

𝐾
, where 𝐾 =

𝑘(𝑘−1)

2
 

- Caution: sometimes ANOVA will reject 𝐻0 but no comparison shows stat. signficant differences. 
 
Doing an anovatest in R 

1. aov <- aov(response ~ explanatory, data = data) 
2. summary(aov) 
3. #Tukeys honestly significant difference test 
4. TukeyHSD(aov) 
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6: Inference for Categorical Data 

6.1 – Inference for Single Proportions 

Sample Proportion 

 𝑝 =
∑𝑥

𝑛
 

 
Requirements/Conditions 

- Sample observations are independent 

- Success-failure condition: 𝑛𝑝 ≥ 10, 𝑛𝑞 ≥ 10 
 
Hypothesis Testing 

- Set up hyptothesis: 𝐻0: 𝑝 = 𝑝𝑜, 𝐻𝐴: 𝑝 ≠ 𝑝0 

- Calulcate SE, Z-Score and p-value/CI 

- Evalute hypothesis 

 𝑆𝐸 = ට
𝑝0𝑞𝑜

𝑛
  𝑍 =

𝑝−𝑝0

𝑆𝐸
 

 
Choosing the right Sample Size 
If we want to achieve a given margin of error, where we will reject 𝐻0, we can calculate the required 
sample size. 

 𝑧⋆ට
𝑝𝑞

𝑛
, choose 𝑝 = 0.5 if it is unknown 

 

6.2 – Difference of two Proportions 

Difference of two Porportions 

Difference 𝑝
1

− 𝑝
2
 tends to follow a normal model when 

- Each proportion itself follows the normal model 

- The two samples are independent of each other 

 𝑆𝐸
𝑝1−𝑝2

= ට𝑆𝐸
𝑝1

2 + 𝑆𝐸
𝑝2

2 = ට
𝑝1𝑞1

𝑛1
+

𝑝2𝑞2

𝑛2
 

Pooled Proportion 

When 𝐻0 is that proportions are equal, use the pooled proportion (𝑝) to verify success-failure condition 
and estimate the standard error. 

 𝑝 =
𝑝1𝑛1+𝑝2𝑛2

𝑛1+𝑛2
 𝑆𝐸 = ඨ𝑝𝑞

𝑛1
+

𝑝𝑞

𝑛2
 

 

6.3 – Testing Goodness of Fit using Chi-Square 

Chi-Square 
Observed = what we observed, Expected = what we expected (using our expected distribution) 

 𝜒2 = ∑
𝑖=1

𝑘 (observed𝑖−expected𝑖)2

expected𝑖
  𝑑𝑓 = 𝑘 − 1 

 
Requirements/Conditions 

- Independence 
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- Sample Size: each particular scenario must have at least 5 expected cases 
 
When to use 

- Sample of cases that can be classified into several groups: determine whether representation is 
representative to general population 

- Evaluate whether data resemble a particular distribution (e.g. normal/geometric distribution) 
 

Computing a chisq test: 

1. # Use chisq.test on a table 
2. chisq.test(table(data)) 

 Outputs: X-squared, df, p-value 

6.4 – Testing for Independence in two-way Tables 

Expected Counts in two-way Tables 

 Expected Countrow𝑖,col𝑗 =
row𝑖total⋅col𝑗total

table total
 𝑑𝑓 = (𝑅 − 1) ⋅ (𝐶 − 1) 

 

6.5 – Small Sample Hypothesis testing for a Proportion 

When Sucess-Failure Condition is not met 
Generate the distribution by simulation. 
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7: Introduction to linear Regression 

7.1 – Residuals and Correlation 

Residuals 
Residuals are the leftover variation in the data after accounting for the model fit 

 𝑒𝑖 = 𝑦
𝑖

− 𝑦
𝑖
 

 
In R ist easy to plot the residuals using autoplot. 

1. #residual analysis 
2. library(ggfortify) 
3. autoplot(model) 

  
Correlation 
Correlations describe the strength of linear relationship, taking values between -1 and 1. 

 𝑅 =
1

𝑛−1
∑

𝑖=1

𝑛
𝑥𝑖−𝑥

𝑠𝑥

𝑦𝑖−𝑦

𝑠𝑦
  

 

1. r <- cor(data$Value1, data$Value2) 
2. r    

7.2 – Line fitting by least Squares Regression 

 Requirements/Conditions 

- Linearity: data should show a linear trend 

- Nearly Normal Residuals: residuals must be nearly (or large sample) 

- Constant Variability: variability of points around fitted line remains roughly constant 

- Independence: independent observations, caution to time series data 
 
When using R we need a summary of our data and especially we need the mean and the standard 
derivation of our response and our explanatory variable. The results of the following code will be used 
later. 

1. d <- data %>% 
2. summarise(mean_resp = mean(Response), 
3.       mean_exp = mean(Explanatory), 
4.       sd_resp = sd(Response), 
5.       sd_exp = sd(Explanatory)) 
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Finding the Line 
 

 𝑏1 =
𝑠𝑦

𝑠𝑥
𝑅 (slope) 

1. # estimated intercept using the data summaray of above. 
2. slope <- d$sd_resp/d$sd_exp*r  

  𝑏0 = 𝑦 − 𝑏1 ⋅ 𝑥 (intercept)  

1. # estimated intercept using the data summaray of above. 
2. intercept <- d$mean_resp - slope*d$mean_exp 

Creating a model 

1. #modeling the linear regression 
2. model <- lm(Response ~ Explanatory, data = data) 

  
Extrapolation 
Linear models describes the data over a given interval. Model should not be applied outside! 
 
Strength of Fit 

Strength of a fit is described using 𝑅2, which is the variability in the data desribed by the model. 
 𝑅2 = correlation2 

1. #strength of the fit 
2. summary(model)$r.squared 
3. cor(Resonse, Explanatory)^2 

7.3 – Types of Outliers in Linear Regression 

Leverage 
Points that fall horizintally away from the center of the cloud are called points with high leverage. 
 
Influential Points 
Points with high leverage actually changing the line substantially are called influential points. 
 

7.4 – Inference for linear Regression 

Inference 
We usually test 𝐻0: 𝑏1 = 0, 𝐻𝐴: 𝑏1 ≠ 0 using a t-Test.  
 
In R we can use lm to create our model to test our data as described above. 

1. model <- lm(response ~ explanatory, data = )  
2. broom::tidy(model)  
3. #test statistic  
4. t <- (estimate - 0)/(std. error)  
5. #p-value  
6. p <- 2 * pt(t, df = , lower.tail = FALSE)  
7. #confidence interval 
8. confint(model, "explanatory", level = 0.95)  
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8: Multiple and logistic Regression 

8.1 – Multiple Regression 

Mutiple Regression Model 
A multiple regression model is a linear model with many predictors. In general, we write the model as 

𝑦 = 𝛽
0

+ 𝛽
1
𝑥1 + ⋯ + 𝛽

𝑘
𝑥𝑘 when there are 𝑘 predictors. 

The 𝛽’s are estimated using statistical software. 
 
Adjusted R2 

 𝑅𝑎𝑑𝑗
2 = 1 −

𝑉𝑎𝑟(𝑒𝑖)

𝑉𝑎𝑟(𝑦𝑖)
⋅

𝑛−1

𝑛−𝑘−1
, where 𝑛 is number of cases and 𝑘 is number of predictors 

 

8.2 – Model Selection 

Not all variables are helpful 
Variables may be correlated. Therefore they do not offer any additional information and can not 
strengthen the prediction/model. 
 
Backward Elimination vs. Forward Selection 

- Backward Elimination starts with the model that includes all potential predictor variables 

> remove predictor which’s removal results in higher 𝑅𝑎𝑑𝑗
2  than no removal 

> remove predictor with p-values above significance level 𝛼 

- Forward Selection adds variables on-at-a-time until the best fit 

> add predictor with the highest 𝑅𝑎𝑑𝑗
2  until we cannot improve the models 𝑅𝑎𝑑𝑗

2  

> add predictor with smallest p-value while below significance level 𝛼 

- 𝑅2 approach is used to improve accuracy, p-value approach is used to include statistically significant 
predictors  

 
Requirements/Conditions 

- The residuals of the model are nearly normal 

- The variability of the residuals is nearly constant 

- The residuals are independent 

- Each variable is linearly related to the outcome 
 

8.3 – Logistic Regression 

Logistic Regression 
Logistic regression is used to model categorical response variables. Therefore, a numerical response 

variable is transformed (link function) to a probability ∈ [0,1]. 

 𝑙𝑜𝑔
𝑒
(

𝑝𝑖

1−𝑝𝑖

) = logit(𝑝
𝑖
) = 𝛽

0
+ 𝛽

1
𝑥1,𝑖 + ⋯ + 𝛽

𝑘
𝑥𝑘,𝑖  𝑝𝑖 =

𝑒
𝛽0+𝛽1𝑥1,𝑖+⋯+𝛽𝑘𝑥𝑘,𝑖

1+𝑒
𝛽0+𝛽1𝑥1,𝑖+⋯+𝛽𝑘𝑥𝑘,𝑖

 

Conditions 
Predictors are linearly related to logit(𝑝𝑖) (if other predictors const.), outcomes are independent. 
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