
Tobias Schamel Middleware

Middleware
0: Motivation

0.1 – Definiton
Why Middleware?
- In an enterprise application landscape different

applications need to be integrated.
> Enterprise Application Integration

- Middleware helps to connects and operate
distributed applications. It is a layer between the
applications and the network.

- Middleware Hides Heterogenity
> Computer architecture, operating system, APIs

What is Middleware?
Middleware compromises services and abstractions that facilitate the design, development, and
deployment of distributed applications in heterogeneous networked environments.

0.2 – Cooperation Models
Request/Reply
Adressing: indirect
Initiation: consumer
- Communication flow
I. Client sends request to adressed

server
II. Adressed server receives and

processes request and issues reply
back to the client

III. Client receives reply
- Evaluation

> Client depends on the server’s data and/or functionality
> Server does not depend on the client

Anonymus Request/Reply
Adressing: indirect
Initiation: consumer
- Communication flow
I. Client issues request but dies not address any specific server
II. Appropriate server receive and process request and potentially issue a reply

back to the client
III. Client receives and consolidates replies
- Evaluation

> Loose coupling, easy exchange of server
1

Client
(Event Sink)

Server
(Ev. Source)

Client
(Event Sink)

Server
(Ev. Source)

http://home.in.tum.de/~schamel

Tobias Schamel Middleware
Callback
Adressing: direct
Initiation: producer
- Communication flow (consumers are registered at their dedicated producers)
I. Producer sends information to registeres consumers
- Evaluation

> Producer can customize due to knowledge on consumer
> High coupling

Event-Based
Adressing: indirect
Initiation: producer (consumers are subscribed to relevant events)
- Communication flow
I. Producers publish notification about event (state changes)
- Evaluation

> Producers and consumers are decoupled (Notification Service =
Middleware)

> Requires more compley infrastructure

0.3 – Integration Pattern
File Transfer
Every application produces, shares and consumes files.

> Integrators transform files into different formats
> Applications produce files at regular intervals

according to nature of business
- Evaluation

> (+) files are available on every operating system, integrators need no knowledge on actual
application-workflow (low coupling)

> (–) agreement on naming & directories, garbage collector needed, locking mechanism
needed (parallel access), infrequent updates can lead to inconsistencies

Shared Database
Application store their data on a common database
accessible to other applications.

> Define schema of database to meet needs of the
different applications

- Evaluation
> (+) consistency, rely on common data and query

model (SQL), concurrency
> (–) unified schema needed > complex, schema is volatile due to updates by software

vendors, possible performance bottleneck, deadlocks

2

Event Sink

Event
Source

Event Sinks

Event Sources

Notification
Service

App A App B

Shared Data

Ex
po

rt

Im
port

App A App B App C

Shared Data

http://home.in.tum.de/~schamel

Tobias Schamel Middleware
Remote Procedure Call
Application provide some of their procedures so that
they can be invoked remotely, initiating behaviour and
data exchange.

> Each application is object/component with
encapsulated data

> Provide APIs
- Evaluation

> (+) multiple interfaces on same data for different requesters, developers are used to this
> (–) high coupling as every application needs to negotiate interfaces with its neigbours,

performance issues due to remote procedure calls

Messaging
Every application is connected to a common messaging
system (used for data exchange and remote procedure
calls).
- Evaluation

> (+) Asynchronus communication > decoupling in
space/time/control, seperates integration decisions from application development

> (–) developers are not used to asynchronus design, testing/debugging harder, needs
additional „glue-code“ to fit everything together

3

App A

St
ub

App B

Skeleton

Function

Result

Message Bus

App A App B App C

http://home.in.tum.de/~schamel

Tobias Schamel Middleware

1: Remote Procedure Calls

1.1 – Remote Procedure Calls
What are Remote Procedure Calls?
Application provide some of their procedure in a public API to initiate procedures & data
exchange (hides network complexity > appears like local call).

RPC Communication
1. Client calls remote procedure

(like local call); issued request
to Client Stub

2. Parameters are encoded
3. Command is send to Server

Skeleton by RPC
4. Server Skeleton receives RPC
5. Parameters are decoded
6. Server executed procedure
- Process vice-versa to send back

procedure result.
- Call-by-Reference not working

> Need for copying (serialize)

RPC Binding
- Static binding (request/reply): hardcoded reference
- Dynamic binding (anonym. request/reply): additional layer to locate server (name service)

RPC Erros
Possible failures need to be handled (Network: lost request/reply, Client crash, Server crash).
- Recovery Capabilities (need depending on use-case)

> maybe: none
> at-least-once: time-out (c)
> at-most-once: time-out (c), track status of calls (s)
> exactly-once: time-out (c), track status of calls (s), tracking transaction system (s)

- Choose failure semantics based on call’s properties (avoid unecessary overhead)

4

(Un)marshalling

RPC Protocol

Server Skeleton

Network

Server

Proc(x, y)

Client

Proc(7, 13)

Client Stub

(Un)marshalling

RPC Protocol

http://home.in.tum.de/~schamel

Tobias Schamel Middleware

Client-Side Implementation
- Decoupling of control flow at client (asynchronus

RPC avoids potentially blocked threads)
> Locks would appear frequently due to: Network

latency, remote server overload, failures

Server-Side Implementation
- Single-threaded server (insufficient usage of resources)
- One thread per request (pot. unlimited number of threads)
- Thread pool with scheduler: limited number of threads + input queue

1.2 – Remote Method Invocation (RMI)
What is RMI?
In RMI objects in different processes communicate with each other. Remote interface show
remotely accessible methods of an
object.

RMI Communication
Object Request Broker (ORB):
Middleware to execute remote
calls.
- Identifies & locates remote

objects
- Executes method calls
- Manages objects’ lifecycle
- Binds client to server objects

Interface Definition Language (IDL)
- Purpose

> Describe objects’ interfaces of the objects being used by an application
> Server as input for stub & skeleton generation

- No single format available; possible e.g. in Java, C#

Nthreads = NCPU ⋅ UCPU ⋅ (1 +
W
C

) UCPU : usage, W : wait time, C : compute time

5

Client Side

Client

Server Side

Server

Stub

Communication
Subsystem

Communication
Subsystem

Skeleton

ORB

Name service

http://home.in.tum.de/~schamel

Tobias Schamel Middleware
Java RMI
- Interface of remote object: defined like Java Interface, must extend rava.rmi.Remote
- Stub class is generated from remote interface implementation using stub generator (via rmic)
- Any class class implementing a remote object must create a stub class (used as reference for

remote object)
1. Interface:

public interface Hello extends java.rmi.Remote {
 String sayHello() throws RemoteException;
}

2. Implementation of the interface:
class HelloImpl extends UniCastRemoteObject implements Hello {
 HelloImpl() throws Remote Exception{
 };
 public String sayHello() throws RemoteException {
 return „Hello World!“;
 }

3. Generating Stub Class:
> Compile interface implementation

javac HelloImpl.java
> Generate stub class by compiling with rmic

rmic HelloImpl HelloImpl_Stub.class
4. Server Program

public class Server {
 public static void main(…) {
 //sth
 Naming.rebind(„jrmi://„+regHost+“/helloobj“, new HelloImpl());
 System.out.println(„Hello Server ready!“);
 }
}

> At instantiation of HelloImpl via constructor skeleton and stub objects are instantiated, too
> Stub serves as reference to object (reference to stub is given by constructor)

5. Client Program
public class Client {
 public static void main(…) {
 //sth
 Hello obj = (Hello) Naming.lookup(„jrmi://„+regHost+“/helloobj“);
 System.out.println(obj.sayHello());
 }
}

> Lookup in naming service via symbolic name (helloobj), return stub for target object
6. Naming Services in Java

> Two possibilities: RMI registry (easy), JNDI service
 1) Server Program creates the RMI registry

try {
 LocateRegistry.createRegistry(Registry.REGISTRY_PORT);
}
catch (RemoteException e) { /* handle exception */ }

 2) Program rmiregistry started on server
$ rmiregistry &

> Client needs to know host name & port of registry to connect

→

6

http://home.in.tum.de/~schamel

Tobias Schamel Middleware

1.3 – Representational State Transfer (REST)
What is REST?
- request/reply styled interaction, alternative to RPC/RMI

> No sessions (connections) between requests
> No functional API, based on states (CRUD: create, read, update, delete)

- Server sends representation/state of a resource & manipulates it (based on HTTP commands)
> POST: create new (sub)-resource below the specified resource
> PUT: create specified resource (if existing > modify)
> PATCH: update partial resource
> GET: requests resource form server
> DELETE: deltes specified resource

REST vs. RPC
- REST: data-centric define resources usage: resources & entities
- RPC: procedure-centric define operations usage: actions (send messages, etc.)

→ →
→ →

7

http://home.in.tum.de/~schamel

Tobias Schamel Middleware

2: Messaging

2.1 – Basic Concept
Messaging
- Using message channels to transfer messages
- Problems to handle: routing, format, connecting endpoints to application (adapters)

Types of Message Channels
- Message channel: one application writing & one application reading from a channel
- Point-to-point channel: exactly one receiver will receive one message

> Easy load balancing by sending application (just send on different channels)
- Publish/Subscribe: message send to all interested subscribers

> One input duplicated to multiple (subscribed) outputs (each receiving exactly one)
- Invalid message channel: receiver moves inpropper messagages > diagnosis
- Dead letter channel: messages, which cannot be delivered/are expired > diagnosis
- Guaranted delivery channel: message deliverey guaranted in case of system fail

> Store-and-forward principle: messages are stored on safe hard-disk before sending
> Lowering performance

Channel Adapter
Connecting application and message system (on different layers/API).

Messaging Bridge
Connecting different messaging systems (with different protocols)

> set of channel adapters between messaging systems

Message Bus
Seperate applications use one generic bus
- Combination of: canonical data model, common command set, messaging infrastructure

Composition of Messages
1. Header: describes data (origin, destination, content, etc) < relevant to messaging system
2. Body: actual data meant for applications < relevant to applications

Basic Concepts (Issues)
- Message intent: what sender expects receiver to do
- Message response: response/confirmation expected?
- Huge amounts of data: typically not fitting into a single message
- Slow messages: sender does not know transmission time

8

http://home.in.tum.de/~schamel

Tobias Schamel Middleware
Types of Messages
- Command messages: invoke procedure in different application (looses coupling)
- Document messages: pass set of data to other application (timing less important)
- Event messages: event notification (event: instanteous & asynchronus state transition) real-time

> Push model: message combines document+event message
> Pull model: event message to notify observer, obs. sends request, obs. gets state reply

- Request/Reply messages: pair of request/reply messages on seperate channels
> Pattern: request via point-to-point/publish-subscribe, reply via point-to-point
> Return adress should be part of request
> Message should feature unique correlation identifier to match requests and replys

- Message sequences: used for larger amounts of data, which cannot be send in one message
> Sequence identifier: distinguishes sequences
> Position identifier: orders message of a sequence & unique identifier
> Size/End idicator: marks sequence’s end & number of messages

- Slow messages: expiration time if(expired) then DeadLetterChannel

2.2 – Practical Use
Java Messaging Service (JMS)
- Independent standard for asynchronus point-to-point & publish/subscribe messaging

> point-to-point: adressed to specific destination queues (message channels), each message
has one consumer, queues retain messages until successfully processed (guaranteed deliv.)

> publish/subscribe: messages are published to topics multiple consumers can subscribe to

JMS Message Composition
- Header: immutable header properties (e.g. messageID, timestamp)
- Properties: mutable key-value properties (e.g. state description)

> Optional fields for header edited while sending, only
- Body: one of five defined message types

> Message: emtpy, only header & properties
> StreamMessage: stream of Java primitive values
> MapMessage: set of key-value pairs
> TextMessage: String (e.g. XML-doc)
> ObjectMessage: serialized Java object
> BytesMessage: stream of uninterpretet bytes

→

9

http://home.in.tum.de/~schamel

Tobias Schamel Middleware

3: Data Represenation

3.1 – Message Translator
Message Translator
- The message translator translated messages from different systems using different formats to

ensure a stable communication.
- Messaging Systems often use a common internal standard to decrease coupling (exceptions

for real-time/high-performance services)

Levels of Transformation

Canconical Data Model
Common Data Format for messages to decrease number of needed adapters & coupling.

> Trade-off between maintainability & performance

3.2 – Data Formats
Binary Formats
- External Data Represenation (XDR)

> 4-byte blocks serialized in big-endian order (n bytes data, r bytes padding; n+r mod 4 = 0)
> Data types not encoded in binary (implicit typing)

- Abstract Syntax Notation One (ASN.1)
> Platform independent description of data-types
> Byte streams [tag, length, value]

- Java Object Serialization (JOS)
> Stream based transmission of serialized java objects implementing
java.util.Serializable

> Lots of meta data, only applicable in java environment
- Protobuf

> More efficient binary encoding than ASN.1 (by zig-zag encoding, variable length,

Layer Deals with Transformation Needs Tools & Techniques

Data Structures
(Application
Layer)

Entities, associations,
cardinality

Aggregate many-to-many
relation into one field

Structural mapping
patterns, ER diagrams,
class diagrams

Data Types Field names, data types,
value domains, constraints,
code values

Convert ZIP code from
numeric to String

EAI visual transformation
editors, XSL, database
lookups, custom code

Data
Represenation
(Syntax Layer)

Data formats (XML, JSON,
protofuf, etc.);
Character Sets (ASCII, UTF-8);
encryption, compression

Parse data representation
and render in a different
format; de/encrypt

XML parsers, EAI parser/
renderer tools, custom
APIs

Transport Communication protocols
(TCP/IP sockets, HTTP, etc.)

Move data across protocols
(w/o affecting content)

Channel Adapter
pattern, EAI adapters

10

http://home.in.tum.de/~schamel

Tobias Schamel Middleware
Text Formats
- Extensible Markup Language (XML)

> Widely applicable standard for data exchanged
> Human readable plain text, large overhead

- JavaScript Object Notation (JSON)
> Language independent format (easy integration)
> Less verbose than XML, still large overhead, human readable

11

http://home.in.tum.de/~schamel

Tobias Schamel Middleware

4: Matching and Routing

4.1 – PubSub
Routing
Directing messages to propper receiver.

Events
Events in form of messages that are filtered against certain queries (matching).

Matching
Given an event , a set of subsriptions > determine all subscriptions that match .
- Channel-Based Matching: channels categorize events, subscribers subscribe to channels
- Topic-Based Matching: subjects are categorized hierarchically in a tree-structure
- Content-Based Matching: filter (logical expressions) evaluating the

messages content (high decoupling, pot. performance issues)

4.2 – Algorithms for Content-Based Matching
1: Predicate Matching
Given a set of predicated and an event ,
identify all predicates evaluating to true
under resulting in a predicate bit vector.
- Top-Level Data Structure: hash-table on

attribute name
- General-Purpose Data Structure: ordered

list for each operator
- Specialized Matching for finite domains:

Table based matching

2: Subscription Matching
- Counting Algorithm: count number of satified predicates for each subscription and compare

with total number of predicates

4.3 – Distributed PubSub: Routing
Overview
- Broker = service instances: each broker manages a set of local clients (comp. router), each local

client is attached to exactly one broker
- Events are forwarded stepwise through broker network
- Requirements: Correctness & Accuracy, Performance, Scalability(, prevent cycles)

e S s ∈ S e

(key, operator, value)

e
p ∈ P

e

(key)

(key, value)

12

http://home.in.tum.de/~schamel

Tobias Schamel Middleware
Techniques
- Flooding: each event is delivered to all brokers, borker forwards to

> all neighbours if received from local client
> all neighbouring brokers except for delivering brokers

- Content-Based routing: each broker manages filter-based routing table
> Rounting entries: Filter, Destination
> Forwards to all entries evaluating to true, except for delivering broker

Routing Algorithms
Rounting algorithm is needed to keep routing entries for content-based routing updated.
- Simple Routing: each subscription added to every routing table, entries are spread via flooding
- Identity-Based Routing: uses identity test > identical filters are not forwarded
- Covering-Based Routing: if new filter is subset of existing > filter is not forwarded
- Merging-Based Routing: merging of files

> perfectly:
> imperfectly:

- Second routing table for forwarding the subscriptions

(F, D) →

E(F) = E(G) ∪ E(H)
E(F) ⊃ E(G) ∪ E(H)

13

http://home.in.tum.de/~schamel

Tobias Schamel Middleware

5: Management of Messaging Systems

5.1 – Managenent of Messaging Systems
Challenges
High rate of message throughput, potential failures and distributed architecture may be
challenging. To ensure a working messaging system, we do
- Monitoring and controlling > logging
- Obersving and analyzing message traffic
- Testing and debugging

5.2 – Monitoring and Control
Control Bus
Seperated message bus for logging- and control-messages, such as

> configurations messages: set parameters, etc.
> heartbeat messages: periodic messages for validating
> test-messages: run tests & validate outputs
> exceptions: alert operator about misbehaviour
> statistics: statistics on current performance
> live console: displays general health style of messaging systems

Detour
Seperates channels in two channels (normal delivery, additional processing). The Detour-Router is
instructed via the control bus.
- Simultaneous swtiching of multiple detour-routers is possible in a pub/sub architecture

5.3 – Observing and Analyzing Message Traffic
Observing and Analyzing Message Traffic
Tracking messages passing a channel provides information on potential misbehaviour. This
should not interfere with the normal flow of the messaging middleware.

Wire Tap
Tap main-channel and send a copy to secondary channel.
- Evaluation: minimal interference with system (+), latency due to routing through wire tap (–)

Message History
Attach a list of traversed applications/components the message passed.
- Evaluation: easy approach, just add ID (+), history attached to message, which is lost after

consumption (–)

Message Store
Whenever message is send, a duplicate is send to message store via control bus.
- Evaluation: easy (+), limited storage (–), increasing network traffic (–)

14

http://home.in.tum.de/~schamel

Tobias Schamel Middleware
Smart Proxy
1. Smart proxy intercepts message on request channel, stores ID & return adress, modifies return

adress to its listening channel
2. Message is forwarded to orginial target, processed, returned to Smart proxy
3. Smart proxy analyzes reply as desired, update return adress with original return adress from

storage, forward unmodified message to original return adress

5.4 – Testing and Debugging
Testing and Debugging
Control bus describes a number of approaches to monitor health of message processing system.

Test Message
Injecting messages into message stream and confirm health of systems by checking the reply.

> Test data generator: generates test message
> Test message injector: inserts tests message into regular message stream
> Test message separator: extracts processed test message from regular output stream
> Test data verifier: compares actual & expected results

- Evaluation: deeper level of testing (+), overhead & additional load (–)

15

http://home.in.tum.de/~schamel

Tobias Schamel Middleware

6: Application-Oriented Middleware

6.1 – Application Servers
Definition
Product in middle-tier of server-centric architecture providing middleware-services.

> e.g. Web service hosting, Deployment services,
monitoring/logging, caching

Java Enterprise Edition (Java EE)
Set of specifications of APIs and their interfaces for
generating web pages, transactional queries on data
bases, managing distributed queues, etc.

6.2 – Microservices
Definition
Microservies are an architectual style: developing
applications as a suite of small services.

Characteristics
1. Componentization of Services: services are

out of process components rather than in-
memory function calls

2. Organized arround Business Capabilities
(rather than technology-oriented teams)
> Conways Law: organisations designing a systems produce a structure, which is a copy of
their organization’s structure

3. Products, not Projects: not just developing; you build it, you run it
4. Smart Endpoints & Dump Pipes: decoupled cohesive applications, act like Unix filters
5. Decentralized Governance: no standardized technology platform, use right thing for right job
6. Decentralized Data Management: each service with its own database

> cosistency is challenging
7. Infrastructure Automatization: continious delivery (often applied for microservices)
8. Design for Failure: failure of a service is highly likely > must be handled
9. Evolutionary Design: control changes in single services without slowing down overall change

6.3 – Web Services
Service-Oriented Architecture
SOA represents business activity, is self-contained, is a black box for its consumers & may consists
of other underlying services.

16

http://home.in.tum.de/~schamel

Tobias Schamel Middleware
Web Services
Web services connect multiply components through the internet using standardized protocols.
- Simple Object Access Protocol (SOAP) > pasing XML-encoded data, {Evelope, Header, Body}
- Web Services Description Language (WSDL) > describes web services (how to invoke, etc.)
- Universal Description, Discovery and Integration (UDDI) > dynamically find other web services

Web Services and Middleware
Web service infrastructure relies on middleware on application and communication level.
- Evaluation: standardizes (+), overhead & inefficiency (–)

6.4 – Business Process Management
Business Processes
Interaction of different services are considered a business process. (Web) services interact to
implement a business process.

> Service Orchestration: local perspective, describes one party’s behavior
> Service Choregraphy: global perspective, decribes global interactions among all involved

parties

Business Process Execution Language (BPEL)
- Standard for service orchestartion
- XML-based
Activity Description Activity Description

Sequence Sequence of Activities Scope Fault/Exception Handlers

If Supports XQuery as condition compensate
Scope

Used with catch or compensation handler
elements

While Loop, supports XQuery as condition Rethrow Only used as an activity on a fault handler

repeatUntil do-while Loop, supports XQuery as condition Compen-sate In case of fault, a compensation action can be
triggered

forEach Loop, supports XQuery as condition Validate Validates XML data, can be used as an option
for assign activity

Pick Specifies a process to be executed according
to received event

extension
Activity

Custom activity implementation (has to be
supported/deployed in process engine)

Flow Parallel execution of processes

17

http://home.in.tum.de/~schamel

Tobias Schamel Middleware

7: Naming and Coordination in Distributed Systems

7.1 – Overview
Application of Naming
Naming and directory services are essential for distributed systems (name > physical address).
- Identification of an adress or attribute for a name (DNS)
- Identification of a machine for a service (RPC)
- Identification of a machine for an object (RMI)

7.2 – Domain Name System (DNS)
Domain Name System
Resolves domains to physical IP-addresses based on worldwide distributed database of
nameservers.
- Root domain: top of tree, unnamed level [(.)]
- Top level domain: indicates a country/region/type of organization [.de]
- Second level domain: names registered by an organization [tum.de]
- Subdomain: additional name, an organization can create [in.tum.de]

Name Server
Name servers resolute domains to their respective
physical addresses.
- Authoritative name server: responsible for

domain (max. one for each domain)
- Non-Authoritative name server: receives

information from other name servers and
answers requests by forwarding or loading
cached results

7.3 – Lightweight Directory Access Protocol (LDAP)
Directory Service
Customizable information store (distributed) for users to locate resources and services.
LDAP is a standardized network protocol for querying and updating information in dir. service.

7.4 – Coordination in Distributed Systems
Leader Election
In a set of distributed processes/servers one process should become the leader, the others
followers. Some Conditions shall be met:
- Termination: select leader within finite time
- Uniqueness: only one leader at a time
- Agreement: All processes are informed properly about the current leader

18

http://home.in.tum.de/~schamel

Tobias Schamel Middleware
Fault Tolerance
Fault-tolerance can be ensured by passive replication of the current state on all followers.

Mutual Exclusion
Leader controlls access to a critical section (only one follower in critical section at any time).

Multithreading with Synchronization Barrier
Whenever multiple proceses need to be synchronized, a synchronization barrier has to be
established. It prevents single processes to pursue until all processes are registered in a shared
datastructure (e.g. tree in Apache ZooKeeper).

7.5 – Apache ZooKeeper
What is Apache ZooKeeper?
Open source project for highly reliable distributed coordination (incl. maintaining distributed
cofiguration information, providing distributed synchronization, group services).
ZooKeeper Guarantees:
- Sequential Consistency: updates from clients will be applied in the order they were sent
- Atomicity: Updates either succeed or fail - no partial results
- Single System Image: only one server is visible to the world
- Reliability: applied updates are persistent until further changes are applied
- Timeliness: clients view of the system is up-to-date (within a time bound)

Data Model
Namespace ist similar to a file system (tree structure), where nodes can contain data & children.
- Each node is associated with an Access Control List.
- Clients can create watches on Znodes

API

ZooKeeper Server Components
- Request Database: database containing the entire data tree
- Atomic Broadcast: ensures same order of updates on each server, if it fails, all servers reset

Typical Communication
> one folower requests update (enqued)
> leader makes proposal and requests followers to acknowledge
> followers send back ACK proposals
> After majority send acknowledgement, leaders decides to commit
> followers execute leaders decision

create delete exists get data

Creates node at a
location in the tree

Deletes a node Tests, if a node exists at
a location

Reads the data from a
node

set data get children sync

Writes data to a node Retrieves a list of
children of a node

Waits for data to be
propagated

19

http://home.in.tum.de/~schamel

Tobias Schamel Middleware

8: Standardization

8.1 – Standardization
What is a Standard?
A level of quality attainment. Something used as a measure, norm or model in comparative
evaluations.

Benefits of Standardization
- Safety and reliability
- Support of government policies and legislation
- Interoperatbility (betweeen systems)
- Business benefits: market access, economies of scale, innovation, awareness
- Consumer choice

Issues of Standardizations
- Over- and under specification
- Features left out as consensus was not reached
- Agreement process may be to long
- Proliferations of standards, overlapping standards

8.2 – Case Study Standardization: CORBA
Storyline
CORBA (Common Object Request Broker Architecture) is a standard for RMI middleware. It
worked until the rise of the internet, when adoption of new guidelines was to slow to compete
with emerging other standards/protocols like HTTP and EJB (Enterprise Java Beans).
Guidelines where adopted in a democratic and slow process by a board of more and less
qualified experts.

Problems in Standardization Process
1. No required qualifications to participate in process
2. RFPs (request[s] for proposals) often call for unproven technology
3. Vendor respons to RFPs even when they have (known) technical flaws
4. Vendors have a conflict of interests when it comes to standardization
5. RFPs are often to complex as many features a merged into a single standard
6. Overseeing organ did not require a reference implementation in adoption process

8.3 – Strategies
Timing for Adoption

Early Adoption Influence standard, early to market, better
experience

Risk of failure, potential changes,
lack of support

Late Adoption Maturity of standard, support No influence, no innovation

20

http://home.in.tum.de/~schamel

Tobias Schamel Middleware

9: Queuing Theory

9.1 – Queueing Theory
Motivation
As number of requests are unknown & fluctuating, rate of requests and service time need to be
estimated in order to build stable system, which are capable of handling request peaks by
queuing the requests.
- How many service instances are needed to ensure stability?
- How many service instances are needed to guarantee a certain response time?

Queuing Theory
Queuing Theory provides meaningful estimations to answer the questions given above.

Performance Metrics
- Mean waiting time
- Server utilization

> time-proportion, the server is busy:
- Throughput

> average number of completed jobs per unit of time, maximum throughput as measurement
- Average number of customers waiting
- Distribution of the number of waiting customers

Stochastics in Queueing
1. arrival-process: inter-arrival time is modelled as a probabilistic distribution

> Arrival rate:

2. service-process: service time per Customer is modelled as a probabilistic distribution
These proccesses can be
- M (Markov): Exponential probability density
- D (Deterministic): All customers have the same value
- G (General): Any arbitrary probability distribution

Properties of Queueing Systems
- Calling population: how many possible calls
- Queue capacity: how many requests can be enqueued
- Service discipline: how are requests dequeued

Stability Conditions
A queue is stable, when it does not grow to infity over time.

server utilization = mean arrival-rate ⋅ mean service-time

λ =
1

mean inter-arrival time

[0,∞)
[0,∞)

[FIFO, LIFO, Prioritized, Randomized]

mean service time < mean inter-arrival time ⟹ stable Queue

21

http://home.in.tum.de/~schamel

Tobias Schamel Middleware

9.2 – Analysis of Queueing Systems
M/M/1 Queue
- M: exponentially distirbuted inter-arrival time
- M: exponentially distributed service-times
- 1 Single Server Queue
- Properties (Standard Assumptions)

> Infinite calling population
> Infitine queue capacity
> FIFO service discipline

Calculations
 traffic intensity (occupancy), busy time
 number of customers in the system
 empty system, idle time
 average service rate average arrival rate, throughput
 Mean number of customers in the system

 Total waiting time (incl. service time)

Exponential Distribution

Poisson distribution
- Describes the number of arrivals per unit of time, if inter-arrival time is exponential
- Individuals in the population are independent

> Probability of seeing arrivals in a period from to
> is used to define the interval
> is the total number of arrivals in the interval
> is the total avergae arrival rate in arrivals/sec

9.3 – Little’s Law
Little’s Law in Words
The long-term average number of customers in a stable system () is equal to the long-term
average effective arrival rate (), multiplied by the averagy time a customer spends in the system
(). Therefore it does not depend on arrival/service distribution.

 Mean number of customers Mean wainting time

ρ = λ ÷ μ
P(n) = ρn ⋅ (1 − ρ)
P(0) = 1 − ρ
μ λ
N =

ρ
1 − ρ

T =
1

μ − λ

f (x) = λ ⋅ e−λ⋅x where λ is the arrival/service rate
μ = 1 ÷ λ

Pn(t) =
(λ ⋅ t)n ⋅ e−λ⋅t

n!
n 0 t

t [0,t]
n [0,t]
λ

L
λ

W L = λ ⋅ W

L =
λ

μ − λ
W =

1
μ − λ

22

http://home.in.tum.de/~schamel

Tobias Schamel Middleware

9.4 – Analysis of Queueing Networks
Queuing Networks
Queues can be linked together to form a network of queues which reflect the flow of customers
through a number of different service stations.

Mean Arrival Rates at a Node

 number of nodes
 mean arrival rate into node
 the external arrival rate
 branching probability from to

—

λi = γi +
m

∑
j=1

pji ⋅ λi

m
λi i
γi
pij j i

23

http://home.in.tum.de/~schamel

Tobias Schamel Middleware

10: Excersises

10.1 – Modelling with Middleware Components
Cooperation Models
Classify Examples into their cooperation model. Consumers and Producers are given explicitly.

Integration Patterns
Classify the best-fitting integration pattern for given use cases. Reason the decision using
advantages and disadvatages of the choosen pattern.

10.2 – Remote Procedure Calls
RPC Execution
Note different flows of RPC communications between different clients and servers. Each step is
denoted as follows: , ,

RPC Failure Semantics
Note different flows of RPC communications, where servers and clients implement different
semantical approaches to failure. Failures can appear at different points.
 server crash server restart
 Message loss proccessing error
 Exception message timeout, resend
- Maybe semantics:

> Message loss:
> Processing error:
> Server crash:
> Client crash

- At-Most-Once semantics: one try, potential timeout
> similar to maybe
> Timeout:

- At-Least-Once semantics: repetition until no failure occurs
> Message loss: ;

> Processing error:
> Server crash:
> Client crash: similar to server crash

- Exactly-Once semantics: just one execution, further requests are ignored

REST
Edit a Web-Application using the known CRUD REST commands.
- Content Types: application/json (POST, PUT, (PATCH), DELETE), text/plain (GET)
- GET/DELETE: add query behind questionmark, e.g. shop.com/items?price_net[gt/lte]=100
- PUT (for updates): specific domain adressing resource, new content in put-message

c → s (msg) s ↻ (msg) s → c (msg)

s s *
c→s (msg) s↻(msg)
c → s (e) timeout

c→s (msg), □
c → s (msg), s↻(msg), □

c → s (msg), s, s * □
c → s (msg), c, s → c (msg), c * , □

c → s (msg), s ↻ (msg), timeout, □

c→s (msg), timeout, standard Communication, □
c → s (msg), s ↻ (msg), s→c (msg), timeout, c → s (msg), s ↻ (msg), s → c (msg) □

c → s (msg), s↻(msg), timeout, standard Communication, □
c → s (msg), s, s * ,timeout, standard Communication, □

24

http://home.in.tum.de/~schamel

Tobias Schamel Middleware

10.3 – Messaging
Message Types
Classify the best-fitting message type for given use cases. Reason the decision using advantages
and disadvatages of the choosen type.

Messaging R/R with queued transactions
Request and Reply queues are used to ensure exactly-once semantics.
Nochmal nachfragen

10.4 – Pub/Sub I
Content-Based Matching
Enter the given predicates into lists for each attribute and its associated binaryoperator. The
entries to the list are given as tuples of a value and a predicate ID.
A vector for each predicate is made, containing those servers, who demand for that predicate in
their subscription. A second vector lists the maximum subscriber hits, beeing the number of
appearences of a server in the predicate vector.
While Routing a message, a ‚hit count‘ vector is used to evaluate, wether a message needs to be
redirected.

Content-Based Routing
Subscribptions are rerouted in the system and entered into routing rables containting
subscriptions and publications.
Note the message flow through the network in the following notation:
- Message, which is not forwarded:
- Message, which is forwarded:
- Message, which is forwarded and split up:

10.5 – Pub/Sub II
Covering Filters
To minimize the overhead of checking subscription, merging algorithms are used.
Nochmal nachfragen - System?

Perfect Covering Filters
Create perfect covering filters from a set of input predicates. Note the perfect covering filter as its
argument set and try to use less predicates than initially provided.

Imperfect Covering Filters
Create covering filters which may cover more than intended but thereby lowering the amount of
needed predicates. Draft the set of additional covered values for each variable.

{∅} → ∅
{pn, bn, …, sn} → ∅

{pn, bn, …, {bm1,…, sm} | |{bm, …, sm}} → ∅

25

http://home.in.tum.de/~schamel

Tobias Schamel Middleware

10.6 – Middleware and Orchestration
State Machine Verification
State transformation are given as a tuple of , where is the source state, a
predicate (transformation only if true), (sending and waiting for an acknowledgement) /

 (waiting for to arrive), target state.
Draw the diagram including the message flows synchronizing the machines.

Composition
Draw the possibles flows through the system until end or deadlock for given parameters.

Deadlocks
List deadlock states and final states depending on the input parameters.

Discussion Micro-Services
How to design the transition towards microservices, advantages & disadvantages.

10.7 – Naming and Coordination I
DNS
Note the request flow through an given DNS hierarchy with different strategies for each server
(iterative/recursive) as tuples .

Zookeeper I
Apache Zookeeper
Nochmal nachfragen - wie detailliert?

10.8 – Naming and Coordination II
Zookeeper II
Apache Zookeeper
Nochmal nachfragen - wie detailliert?

RW-Lock
Fill out diagram showing the effect of R/W-Lock.

10.9 – Queueing
Queueing Theory
Questions on vaious applications of different Queue modells -> Cheatsheet.

Drive-In Bank Facility

(s0, p, [? | !]m , s1) s0 p
!m1 m1

?m1 m1 s1

s1 → s2(message)

26

http://home.in.tum.de/~schamel

	Middleware
	0: Motivation
	0.1 – Definiton
	0.2 – Cooperation Models
	0.3 – Integration Pattern
	1: Remote Procedure Calls
	1.1 – Remote Procedure Calls
	1.2 – Remote Method Invocation (RMI)
	1.3 – Representational State Transfer (REST)
	2: Messaging
	2.1 – Basic Concept
	2.2 – Practical Use
	3: Data Represenation
	3.1 – Message Translator
	3.2 – Data Formats
	4: Matching and Routing
	4.1 – PubSub
	4.2 – Algorithms for Content-Based Matching
	4.3 – Distributed PubSub: Routing
	5: Management of Messaging Systems
	5.1 – Managenent of Messaging Systems
	5.2 – Monitoring and Control
	5.3 – Observing and Analyzing Message Traffic
	5.4 – Testing and Debugging
	6: Application-Oriented Middleware
	6.1 – Application Servers
	6.2 – Microservices
	6.3 – Web Services
	6.4 – Business Process Management
	7: Naming and Coordination in Distributed Systems
	7.1 – Overview
	7.2 – Domain Name System (DNS)
	7.3 – Lightweight Directory Access Protocol (LDAP)
	7.4 – Coordination in Distributed Systems
	7.5 – Apache ZooKeeper
	8: Standardization
	8.1 – Standardization
	8.2 – Case Study Standardization: CORBA
	8.3 – Strategies
	9: Queuing Theory
	9.1 – Queueing Theory
	9.2 – Analysis of Queueing Systems
	9.3 – Little’s Law
	9.4 – Analysis of Queueing Networks
	10: Excersises
	10.1 – Modelling with Middleware Components
	10.2 – Remote Procedure Calls
	10.3 – Messaging
	Nochmal nachfragen
	10.4 – Pub/Sub I
	10.5 – Pub/Sub II
	Nochmal nachfragen - System?
	10.6 – Middleware and Orchestration
	10.7 – Naming and Coordination I
	Nochmal nachfragen - wie detailliert?
	10.8 – Naming and Coordination II
	Nochmal nachfragen - wie detailliert?
	10.9 – Queueing

