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Abstract

The traditional approach of running maintenance and inspection
programs on a target machine can be enhanced by virtualizing
the device and moving the programs “out-of-the-box” to do in-
trospection from the outside. Though profiting from a higher
access level and separation from the virtual machine, this leads
to the fundamental problem of the semantic gap, as the hypervi-
sor is unaware of the semantic meaning in the machine memory
image. Our X-TIER system bridges this gap by injecting and
running code in the context of the virtual machine to obtain
or modify the desired information. This thesis presents lolredi-
rect, which extends the X-TIER framework to be able to redirect
system calls of any inspection program to the target machine.
This allows running any application without having to port it
to the hypervisor manually. All information will transparently
be acquired on hypervisor-level via the standard ABI the pro-
gram would use if ran directly inside the machine. That way,
inspection software can profit from the separation introduced
by virtualisation and still access all data structures of the target
machine. The key idea discussed in this thesis is the system call
capturing and redirection process. It includes a decision process
to determine whether to redirect data-relevant system calls in-
side the target machine, or to execute the system call without
redirection. For that, filename rules are utilized and the program
state is tracked according to the trapped system calls. The cor-
rectness of this approach was verified by comparing output of
Linux tools that were redirected, with output of the same invoka-
tion directly executed on the target machine. Tests showed that
the redirection layer has an average performance overhead of
11.2. The whole system was implemented and is published as a
free software project.
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Zusammenfassung

Das übliche Vorgehen beim Ausführen von Verwaltungs- und
Prüfungsprogrammen kann verbessert werden, indem man den
Zielrechner virtualisiert und die Maschine “von außerhalb” ana-
lysiert. Obwohl dieser Ansatz ein höheres Zugriffslevel erlaubt
und von der Zielmaschine getrennt ist, führt er zum fundamen-
talen Problem des semantischen Spalts, da der Hypervisor keine
Kenntnis über die Bedeutung des Speicherzustandes der Maschi-
ne hat. Dieser Spalt wird durch unser X-TIER System überbrückt,
indem Code in die Maschine injiziert und in ihrem Kontext aus-
geführt wird, um die gewünschten Informationen zu beschaffen
oder zu ändern. In diese Arbeit wird lolredirect vorgestellt, wel-
ches X-TIER so erweitert, dass Systemaufrufe von beliebigen
Programmen zur Zielmaschine weitergeleitet werden können.
So kann jedes Programm auf dem Hypervisor ausgeführt wer-
den, ohne es portieren zu müssen. Alle Informationen werden
transparent auf Hypervisorebene durch das Standard-ABI ak-
quiriert, welches benutzt werden würde, wenn das Programm
direkt in der Maschine laufen würde. So kann Software von
der Abschottung durch die Virtualisierung profitieren und hat
trotzdem Zugriff auf alle Datenstrukturen der Zielmaschine.
Die Kernprobleme, die in dieser Arbeit diskutiert werden, sind
Verfahren zum Abfangen und Weiterleiten von Systemaufru-
fen. Enthalten ist eine Entscheidungsprozedur, die bestimmt,
ob ein abgefangener Systemaufruf durch übermittelte Informa-
tionen in die Zielmaschine geleitet wird, oder ob der Aufruf
ohne Weiterleitung ausgeführt wird. Dafür werden Regeln für
Dateinamen und der Programmstatus verwendet, der durch ab-
gefangene Systemaufrufe mitgeschnitten wird. Die Korrektheit
dieses Ansatzes wurde durch Vergleiche der Ausgaben von Li-
nuxprogrammen geprüft, die mit der Weiterleitung und direkt
auf der Zielmaschine ausgeführt wurden. Tests haben ergeben,
dass die Weiterleitung die Ausführungszeit im Durchschnitt
um Faktor 11.2 verlangsamt. Das ganze System wurde als freie
Software implementiert und veröffentlicht.
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1 Introduction

1.1 Motivation

Like all advancements in modern technology, malware is become increasingly
sophisticated as well. At the same time, common defense mechanisms become
increasingly ineffective as more and more malware forms attack the heart of
the operating system (OS), the kernel, directly. As a consequence, security
applications running on the same machine are unable to detect and clean these
intrusions as information for protection is obtained from a compromised kernel.

To solve this problem, Garfinkel et al. [10] proposed virtual machine intro-
spection (VMI). This approach’s main idea is to rely on virtualisation: To isolate
security mechanisms from the system, the target virtual machine (VM) is pro-
tected by analyzing it from the hypervisor level. That way, interaction with
the target machine can be done securely and stealthy. In fact, the target system
will not even be aware of the monitoring, as long as no trace is left deliberately.
Accessing the data from the hypervisor layer allows read and write access to any
memory area, leading to the highest possible privilege level for interacting with
the machine. The hypervisor is a trusted instance for the access, able to analyze
the target machine without having to fear that any results might be forged due
to malware.

Although hypervisor access to the VM benefits from isolation, the fundamental
problem of the semantic gap [3] is introduced. The hypervisor is aware of the
low-level VM state, such as CPU registers and interface communication, but it
is missing the semantic knowledge to interpret the VM’s complete hardware
state correctly. For example, in a main memory area the VM stores concrete
information such as process states, the hypervisor is only able to see raw bytes.
Ideally, however, users should be allowed to perform the security analysis of
a VM with tools they are already familiar with. For instance, every advanced
GNU/Linux [12, 19] user will have acquired a broad knowledge about standard
command line utilities that can be very helpful for the detection and analysis of
malware such as strace. Due to the semantic gap these tools can’t be leveraged
in the case of VMI. Adapting these programs to function on hypervisor levels
is not feasible, ideally they should be able to work out of the box without any
modification conveniently.
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1 Introduction

It would be possible to allow reuse of existing programs if their communication
could be altered at a common interface. When looking for a common interface
which all programs use, one quickly discovers that all userspace programs use
system calls to communicate with the underlying kernel; they prove to be an
excellent interface to intercept and control the communication. Attaching to the
system call interface could allow to trap, skip and modify all syscall requests
done by userspace programs run on an isolated secure virtual machine (SVM).

The kernel on the target virtual machine (TVM) utilizes a system call interface
as well. If it was possible to detour syscalls from the security tool running in the
SVM to the TVM through the hypervisor, a secure and isolated analysis could
be achieved. As long as any data transported via the syscall can be delivered to
and fetched from the target VM, the executed analysis program would be fully
functional. This would even be possible for different kernel versions as long as
both system call interfaces are compatible.

1.2 Research Goals

The overall goal of this thesis is to study system call redirection as a possible
means for the automated porting of existing applications to the hypervisor level,
such that existing anti-malware solutions and analysis tools can be leveraged
from the hypervisor without modification.

In order to achieve this, several sub-problems have to be solved.
How can system calls be intercepted? A communication layer has to be identi-

fied that proves usable for the acquiring of any system call and its arguments for
redirection.

Is it required to redirect all system calls? It may be possible that redirecting all
captured syscalls leads to undesired behavior. The inspection program operation
and output could be affected.

Can system calls be identified for redirection? Assuming not all syscalls should
be forwarded to the target machine, a selection process has to be developed.

How can the system call relay and translation be achieved? Can it be done
without the VM noticing by leaving no traces in the machine? This would allow
stealthy introspection and security analysis of the target machine.

Finally, how can results be passed back to the program to ensure regular
execution? The inspection program expects that issued system calls return
correct information, which is required to originate from a different VM then.

2



1 Introduction

1.3 Outline

Besides the current introduction chapter summarizing the thesis’ subject and
purpose, background information regarding involved concepts for understand-
ing following sections is provided in chapter 2. In chapter 3, the detailed design
of a system call redirection framework is elaborated, including all necessary com-
ponents. Chapter 4 proposes a possible implementation that works in practice,
followed by chapter 5 which examines the implementation’s effectiveness and
discusses properties and potential problems of the design ideas. The design’s
properties are compared to similar and related projects in chapter 6. Finally,
chapter 7 proposes possible extensions for the future and concludes this thesis.

3



2 Foundation

This chapter will provide information for understanding later sections of this
thesis. It introduces fundamental concepts, on which the work described in this
thesis is based on.

2.1 System Calls

The operating system kernel is the only component directly interacting with
all machine hardware. The kernel provides an abstraction layer that can be
used by userspace programs regardlessly of the underlying hardware. The
communication between programs and the kernel is done through system calls.
The interaction protocol, called system call application binary interface (ABI),
defines how to invoke system calls and what corresponding arguments are
available on a platform. From file system access to playing audio, all information
that is not generated within the program itself is transferred to other programs
or the hardware via system calls.

To invoke syscalls, a program has to select the syscall function inside the kernel
by specifying the syscall id in a register. Arguments to that function are placed in
other registers such that the kernel can access the data once it gains control.

For example, for Linux on the x86 64 architecture, the syscall id is placed
in the rax register, the return address to jump to after the syscall was run in
rcx, arguments in rdi, rsi, rdx, r10, r8 and r9. The syscall instruction
then transferes control to the kernel’s predefined system call entry routine. The
starting address of this entry code is stored in a machine status register, namely
MSR LSTAR [15]. All function pointers of system call handler functions are stored
in the system call table. The entry function calls the desired function by looking up
the system call id in that table. When the kernel finishes executing the requested
syscall handler function, control is passed back to the userspace process so it can
continue to process the syscall results.

In order to avoid the need of updating userspace programs for different kernel
versions, the syscall ABI should not be changed. As Linux is committed to
userspace interface stability [32], its syscall ABI is only ever extended, and never
changed to prevent breaking functionality of userspace programs.

4



2 Foundation

To perform a relay of system calls to another operating system, ABIs of both
machines have to be the same, otherwise the system call redirection would re-
quire an additional translation layer for mapping the intended calls to a different
ABI.

Linux programs normally use another software layer before invoking syscalls:
the C library. libc provides functions for shared library loading, dynamic
memory management and lots of other helper functions. Usually, a programmer
never directly invokes the syscall instruction, but instead calls wrapper code
of the libc library that simplifies the usage of system calls.

2.2 Virtualisation

Virtualisation can be understood as simulating a computer on another computer.
While just implementing all the routines and interfaces for containing the vir-
tualized system is easily possible, this simulation introduces a big amount of
overhead. Great slowdowns are normal, as all instructions and actions of the
virtual CPU have to be simulated in software. The situation has improved signif-
icantly as processor vendors have added virtualisation extensions to their CPUs
[14, 22]. This means the CPU and the memory management unit are capable
of running the virtual machine natively, allowing a dramatic increase of the
simulation speed. The 7zip benchmark on an Intel i5-2520M has shown that by
using Linux kvm [18, 20] and VT-x hardware virtualisation, the machine speed is
increased by factor 6.3, compared to QEMU’s TCG [26] software virtualisation.
This is mainly achieved by new CPU features able to run a virtual machine in a
guest mode and use hardware state switching [18].

2.3 Virtual Machine Introspection

VMI is the process of gaining information about a virtualized computer from
outside the VM [10]. This implies a higher privilege level and therefore a higher
access level and control, but also the fundamental problem of the so-called
semantic gap [3].

Though the hypervisor is aware of the semantics of information that is being
transferred over the emulated I/O interfaces, the VM’s hardware state is just a
binary blob allocated by the hypervisor. The communication over I/O interface
has to follow the device’s specification, which implies sending information in
a known way. The hardware state, however, is managed internally, depending
on operating system type and versions. The key idea behind VMI is to generate
an usable view of the complete hardware state, for example to determine the
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location of data structures in memory. The enrichment of binary information
through semantic knowledge allows full interaction from the hypervisor level,
the semantic gap is bridged.

Pfoh et al. [24] proposed three general concepts to obtain information from a
TVM. These methods may be combined to describe all possible approaches for
bridging the gap. They will be summarized in the following.

The out-of-band delivery is the most commonly used pattern. VM information
is acquired based on semantics known prior to the analysis. The VM’s known
software architecture is not bound to the actual layout present in the machine,
so the system is not portable when the software architecture inside the VM
changes without updating the view generation. As the view generation takes
place outside of the TVM, there is no way malware could influence or corrupt
the analysis results.

Another analysis method is the in-band delivery, where a component inside the
TVM creates the view and delivers it to the hypervisor. Although this method
rather avoids the semantic gap than bridging it, parts of the VM state may not be
visible or even forged as this method may trust components that could possibly
be compromised. As shown by Sharif et al. [29], however, it is possible to design
and implement the in-band approach in such a way that these weaknesses can
be remedied if the in-band component is protected by the hypervisor.

The final pattern generates semantic knowledge from monitoring the TVM
hardware, it’s called derivation pattern. The VM’s hardware architecture provides
information e.g. by specific control registers which can be monitored by the
hypervisor. This information is bound to the hardware layout and can’t be
altered from the TVM. The virtual hardware architecture is read-only and can’t
be changed by a malicious entity.

The first two patterns are strictly tied to the TVM operating system. Any
semantic update has to be performed in the view generation as well. When
the hardware is exchanged, these approaches continue to function, whereas the
derivation pattern view generation needs to be updated. The in-band delivery is
the only one not fully isolated from the VM, additionally this pattern is incapable
of gathering information while the VM is suspended.

2.4 X-TIER

The system call redirection presented in this thesis heavily relies on the VM
code injection framework X-TIER [33]. X-TIER is able to inject and execute
kernel modules within a virtual machine. The machine is not aware of the
injection, as long as the executed code does not leave traces in the system (except
timing attacks). X-TIER is tightly integrated into the Linux kernel and QEMU,
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in particular to introduce new ioctls on /dev/kvm by extending the kvm kernel
module. These additions allow injecting kernel modules from hypervisor level
which can return output data via hypercalls back to the hypervisor.
X-TIER already meets several security requirements that should also be ful-

filled by the syscall redirection procedure. Isolation is provided by disabling
interrupts during the injection, and removing the code when external functions
are called. If errors occur during the injection, the hypervisor will handle them
and the TVM is still unaware of the introspection. Injections won’t leave any
trace within the VM, as long as the injected code does not deliberately modify
data structures. All routines needed for injecting and executing modules are
integrated into the hypervisor or the module itself, so the injection does not have
to rely on any TVM functions or data structures.

Overall, X-TIER allows to inject and execute code for the view generation
inside the VM. It therefore implements the in-band VMI pattern [24] in a secure
way to provide an extremely powerful and stealthy way of introspecting a TVM.
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3 Design

The key components discussed in this thesis are the system call trapping mech-
anism, the syscall analysis, the redirection decision process and program state
tracking. All these are required for the resulting system call redirection.

According to the research questions defined in 1.2, the first component needed
is a system call trapping mechanism to acquire a requested syscall’s id and its
arguments for further analysis from the SVM. This trapping mechanism must be
able to capture system calls of any program, to grant universal usability.

Next, it will be discussed whether it is required to redirect all system calls,
which leads to an identification process to determine the execution target ma-
chine.

When the system call should be executed on the TVM, a secure syscall relay
system must be designed. Using a combination of the VMI patterns, the semantic
gap is bridged in this step.

Resulting data from redirected syscalls has to be transferred back into the SVM
to make the redirection completely transparent to the inspection program.

All these requirements and their interactions can be seen in the overview
figure 3.1.

3.1 Syscall Capturing

We consider the security application whose system calls we want to redirect, as
well as the operating system it is running on, as trusted (the SVM). Consequently,
it is sufficient to obtain the system calls on system level. More sophisticated
approaches like bridging the semantic gap to trap the system calls from the SVM
in a secure and isolated manner, as it is possible with nitro developed by Pfoh
et al. [25], are therefore unnecessary.

Three approaches were evaluated for trapping system calls under Linux.
The simplest method is to hook the C library wrapper functions by utilizing

the dynamic linker environment variable LD PRELOAD. This redirects the call’s
invocation to custom code. LD PRELOAD instructs the linker to prefer symbols of
a given library over the ones it would normally link to. Providing hook functions
for the libc syscall wrappers can be used to access all system call arguments
easily, because the hook will be executed in the same address space as the security

8
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inspection
program

system
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module
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Figure 3.1: Overview of components

program. Unfortunately, it is not possible to skip system calls with this approach.
Additionally, this method cannot be used for trapping system calls of binaries
that were statically linked or use a custom C library. These disadvantages make
this approach unusable for our system.

Another way to capture system calls is using binary instrumentation. This can
easily be achieved by using the proprietary PIN tool [21]. All instructions are
monitored by the instrumentation utilities such that customized hooks are run
when reaching specified dynamic breakpoints such as the syscall instruction.
This approach allows to monitor any binary, including statically linked ones. All
registers can be updated with result data. Skipping system calls is possible by
incrementing the instruction pointer, so execution is resumed without a system
call being executed. The binary instrumentation does impact the execution
speed significantly, as every single instruction is analyzed before execution.
Currently, there is no free open-source software available for performing binary
instrumentation as performantly and conveniently as PIN, although the Valgrind
suite [23] could be extended to provide the necessary features elaborately.

One goal of the implementation of this thesis was the use of free (as in freedom)
software only, this simplifies adoption and allows interested people to easily
extend and optimize our system. This was a major argument against the usage
of PIN.

To implement the system call redirection framework with free software only,
the system call trapping mechanism chosen for this thesis is the Linux ptrace
system.
ptrace allows to request breakpoints for system calls. The interrupt is trig-

gered by the syscall entry routine on the SVM right before the actual syscall
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handler function is called. This allows syscall argument inspection and modifi-
cation by another program running on the same machine, before the syscall is
run. It is possible to examine and update any of the registers and the memory re-
gions of the monitored program. A popular software using most of the ptrace
features is the gdb debugger [31].

A custom userspace program employing ptrace was created to inspect and
analyze system calls to perform the syscall redirection. To simplify the analysis
procedure, this program is launched and then starts the intended inspection
application. For this reason, the launch tool will be called wrapper program in the
future.

When ptrace traps a system call before the actual handler was executed, the
control is passed to the wrapper program, which inspects the syscall id, type and
arguments. The wrapper program is a separate process, therefore it’s running
in a different address space than the wrapped inspection program, although
both are running on the SVM. This makes the analysis of system call arguments
challenging.

The syscall id and all arguments are stored in registers which the SVM kernel
can easily provide and modify when trapping the call. While integer arguments
are no challenge to fetch from the registers, the address space separation causes
structs, buffers and null-terminated strings referenced by pointers to be inacces-
sible. Luckily, modern kernels allow cross-process memory attachment, which is
used to obtain the memory corresponding to pointer arguments. These buffers
are copied from the tracked child process by said memory attaching, so all data
is moved to the wrapper and tracking program for analysis.

Arguments of known size (such as structs or buffers) can directly be trans-
ferred, as the cross-process memory transfer supports specifying memory chunk
lengths.

When accessing null-terminated arguments such as file names, the memory
must be copied chunk-by-chunk until the terminating null-byte was found. This
can be achieved by copying an arbitrary amount of memory from the target
string buffer; the copy must not exceed the page boundary though. This means
the null-terminator search has to be suspended at the next page boundary greater
than the pointer address. If no null-byte can be found within the copied memory,
the next page may be examined, until the terminating byte was found and the
complete string was copied to the tracking program.

Taking these steps allows the wrapper program to gain access to all system
calls and arguments that are invoked by the security application we would like
to forward to the TVM.

10
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3.2 Redirection Decision

To prevent the TVM from noticing the ongoing introspection, unwanted traces
must not be left. When redirecting all system calls, the process state, containing
opened files, storage and output would be saved on the TVM. This means that
only the trusted machine and the hypervisor can maintain any process state.
Additionally, resulting output should be displayed by the inspection program
running on the SVM.

As a result of that, only some of the syscalls can be forwarded into the target
machine. For example, the write system call will have to be run on the SVM
when displaying output on the terminal, but get redirected to the TVM when
writing to files.

All system calls handle information. This information may be relevant for the
user of the program, or deliver background information to and from underlying
kernel to perform maintenance or setup routines which ensure correct program
execution. The information could also transmit instructions for fetching or
storing data before it is presented to the user later.

We classify all syscalls into three categories:

• Syscalls for user-relevant data display or input

• Syscalls that modify or maintain program execution

• Syscalls that actually access/modify data

It is obvious which of these categories should be redirected into the TVM:
the data access/modification calls only. The program state system calls are
preformed e.g. for dynamic library loading, whilst data display syscalls could
print output to the terminal or files. Therefore user interaction and maintenance
syscalls have to be run on the SVM, data access and modification must be
redirected to the TVM. This boils down the redirection decision to a simple yes
or no.

When just monitoring all system calls of a program, there are only two sources
of information which allow to assign any trapped system call to the proposed
three categories:

• The information extracted from each trapped system call (syscall id and
argument data) as well as accumulation of past data (thus program state
and history)

• Additional information manually provided as a configuration beforehand
or dynamically on program invocation.
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The process to assign the trapped syscall to the three proposed categories by
using the two information sources will be discussed in the following sections.
This allows to answer the question: Should the system call be redirected or not?
If a system call could not be matched in the decision process, the default action
is to execute the call on the SVM regularly.

3.2.1 System Call Categories

Before any argument analysis is started, the system call id decides about the
effect intended by the invocation. This allows to put all available system calls
on a platform into four groups and perform the processing actions done just for
those four groups.

Some system calls should always provide altered information, their category
is called static modification. For example, the Linux syscalls getuid and getgid
should always return 0 to reflect the rights available to the TVM interaction. It’s
not necessary to perform a redirection for always returning 0, therefore these
calls are an easy mapping from syscall id to returned data.

Other system calls always have to be redirected, for example the uname syscall.
This system call must always obtain kernel version information from the TVM,
no further decision process is necessary. This category’s name is redirect always.

The most challenging category of system calls does not allow to generate a
redirection decision just by looking at the system call id. System call arguments
must be analyzed, it may even be required to class the arguments with the
tracked program state. This is the case for system calls like read and write
syscalls, their redirection depends on the value of their file descriptor argument.
However, just the file descriptor argument is still not enough information to
decide, as inherited file descriptors from parent processes (e.g. stdin/stdout)
must not be redirected. This additionally requires to compare arguments of
some system calls with the tracked program state. Syscalls in this category are
therefore redirection candidates.

Any syscall, regardless of its category, can be integrated to feed the program
state tracking in section 3.3.

3.2.2 Initstate Tracking

Initially, the redirection mechanism is turned off. When a program is run, the
shared library setup and other initializations are done by the libc library. This
setup also means a lot of syscalls, the loaded libraries are opened, read and
memory-mapped. This is clearly a setup routine: These syscalls can’t be redi-
rected otherwise, the program setup would acquire its dynamic libraries from
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the TVM.
To request more memory from the Kernel, libc uses the brk syscall to adapt

its memory break address, and therefore adapting the process’ memory size.
libc finalizes the library init section by two subsequent brk calls. The first
one is called with 0 as argument, the second one with some memory address
greater than 0. libc calls munmap on the ld.so.cache mapping when library
loading is over. These are simple rules to detect when the library loading section
is over and the syscall redirection can be activated. The rules do not apply for
programs using a different C library or programs that are statically linked. For
those programs, the rules can simply be deactivated.

3.2.3 Filename Analysis

As file access itself is managed by the kernel, a program needs an easy interface
to reuse opened files. In Linux, a file descriptor is used to reference a file in
syscalls.

This file descriptor is a simple integer value, which specifies the index inside a
file state table in the kernel.

When a program wants to interact with any file not opened yet, the path is
passed to an open syscall, so the kernel can handle the actual opening procedure,
create the file state entry and pass back the file descriptor for that file.

When opening a new file, the given filename is checked against simple rules
to decide whether the open syscall will be redirected or not. These rules are
provided before program launch as a modular configuration.

The default case is to redirect any file opening to the TVM.
There are some file names, that should never be redirected. For these, a

blacklist rule set is formed. Most programs have integrated localization features
or behave differently according to the terminal used. For localization, files are
normally placed in /usr/share/locale. Following the same directory layout,
terminal meta information files are found in /usr/share/terminfo. Access
to the terminal device itself takes place via the /dev/tty and /dev/pts/ file
system entries. Programs may dynamically load other linked libraries, which are
found in various /lib and /usr/lib folders. All these file name prefixes are
stored in a redirection blacklist. Theoretically, the localization or terminal files
could be obtained from the TVM as well. As these files are supporting the data
output only, there is, apart from possible version incompatibilities, no difference,
where they are obtained from. Loading them from the SVM will be faster due to
the circumvention of the whole redirection process.

In addition, filenames may be blacklisted based on defined substrings. Cur-
rently, if a filename contains the special phrase NOFWD, it won’t be redirected.
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This is useful for testing purposes, or for specifying output file names for com-
mands like tar cf myarchive-NOFWD.tar /etc/ssh/. This will pack the
TVM’s ssh folder and save the archive to a tar file on the SVM.

It may be a user’s request to intentionally open a file that would not be
redirected due to the blacklists. For that, an automatic white-list is created via
the arguments passed to the program invocation. This makes it possible to
obtain any file from the TVM, even libraries. However, when this library is
loaded/mmaped on program startup, the redirection will not be performed due
to the initstate tracking described in section 3.2.2. When the init section is over,
the whitelist makes it possible to e.g. redirect:

objdump -x /lib/ld-linux.so.2

This will fetch the code from the TVM and display the results on the SVM
terminal.

3.3 Program State Tracking

To maintain the stealthiness of the redirection process, no trace must be left
on the TVM. Any userspace program relies on state tracking by its kernel, for
example tracking of the working directory or opened file states. In order to leave
an unspoiled TVM system, each injection must be fully stateless; to achieve this,
the wrapper process needs to maintain all of the state of the process within the
SVM. All state information has to be provided and restored for each injection.

The state tracking is also required to support the redirection decision described
in 3.2.

3.3.1 File Descriptor Tracking

When open syscalls are trapped and redirected, an injected kernel module has to
call the sys open function of the TVM kernel to test whether the file is present
and accessible. If the sys open returns success, sys close is invoked right
after that on the returned file descriptor (fd) and the hypervisor is notified of
the result. This ensures no fds are left open on the TVM when the injection is
finished.

The only purpose of the open-injection was testing file availability. To be
able to do stateless injections in order to preserve stealthiness, all state tracking
that would normally be performed by the kernel is stored inside the wrapper
program to reflect the required kernel status for subsequent requests.

When opening fds, a file state entry is created in the tracking program. It
contains the same data fields that would normally be tracked by the kernel,
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such as seek position, open mode and flags. As the tracked inspection program
expects a standard file descriptor to be returned by the open syscall, a virtual fd
is passed back. It is the key value in the virtual fd state table.

Any captured system call that requests the usage of a file descriptor, will be
redirected to the TVM when a virtual fd is detected. As the TVM kernel is still
unaware of the file state, the state needs to be restored for each injection: The file
will be opened, seeked and closed for any read/write/stat/... call that is relayed
to the TVM. After executing read/write calls on a virtual file descriptor, the seek
position is stored and automatically updated in the virtual fd state table.

File descriptor duplications (dup) or mode changes through fcntl on virtual
fds are updated in the virtual fd state table when found, real file descriptors will
be tracked regularly by SVM kernel.

By tracking the file states on the SVM, even though the file contents are
requested from the TVM, the file is not left open between syscall injections.
Otherwise, this would be detectable.

3.3.2 Working Directory Tracking

Likewise, another important process state property to be tracked is its working
directory. The wrapper program is required to follow all working directory
requests, for example the chdir syscall. A simple cwd variable stores the
virtual working directory path; it is updated every time the tracked child program
requests working directory changes. When injections are triggered, all relative
filenames are converted to absolute filenames according to the current virtual
working directory. System calls with a filename file descriptor (e.g. fstat) or
working directory file descriptor (e.g. openat, statat) are also expanded to
absolute filenames by a quick lookup in the virtual fd table, so the TVM kernel
always receives deterministic, absolute filenames to process.

3.4 Redirection Procedure

After the decision has been made to redirect a system call, it’s time to actually
inject the equivalent code into the TVM. The redirection is only executed for
system calls in the categories redirect always or redirect candidate (see 3.2.1), and
only if the redirection decision mechanism explicitly allows the relay. The system
call trapping (section 3.1) and the redirection are combined with X-TIER to
relay the call into the TVM. This means that for each trapped system call, a
decision is made how to handle the call and whether to relay it. When redirected,
special code is injected to the TVM to bridge the semantic gap and perform
the requested view generation and data modification. This code creates its
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required state environment, performs the actual action and finally clears the
state. Resulting data is then passed to the wrapped program, so it can continue
its execution regularly.

3.4.1 Bridging the Semantic Gap

The technique utilized in this thesis is based on injecting code into the virtual
machine and letting the VM work with all its available semantics itself to perform
requested actions and return the desired data [33]. By executing this code in the
context of the VM, all structures, functions and settings present in the VM can
be used in the data processing. Using the VMI patterns proposed by Pfoh et al.
[24], this means the presented approach generates the information view through
in-band delivery. That way, the semantic gap is bridged and information can be
transferred in and out of the VM. The code injection and execution is managed
by X-TIER [33].

3.4.2 Injection Code Creation

To perform the view generation in-band, Linux kernel modules are created. These
will be injected and executed by X-TIER. For all system calls that transfer data
between the two machines, separate injection modules have to be created, each is
capable to relay exactly one system call.

The injection modules contain a function that will later be executed as their
entry point on the TVM. To ensure stealthiness, that function requires no external
state, and leaves no unintended traces on the TVM. This means that e.g. the
write syscall module does not get passed a file descriptor; instead it will be
given the full filename (see 3.3). When running the module, all required state
has to be restored for each injection invocation, meaning that it will first open
the destination file to receive a injection-local TVM-kernel file descriptor. With
that file descriptor, it seeks to the offset tracked by the virtual fd state table, then
writes the data. At last, it closes the injection-local file descriptor to fully clear the
injection state. Again, if the file would be left open until the next write syscall
is requested, the TVM kernel would be aware of the file state. Requiring to
open, seek and close a file on every read/write access leads to a performance
degregation, of course.

Because all state is maintained outside the TVM, many system calls can be
merged to single injection modules. For example, stat, fstat and fstatat
are identically executed on the TVM: the file descriptors are replaced by tracked
filenames; the working directory is managed and prepended as well (see 3.3).
This requires creating a single stat syscall module, as the only input the in-
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Figure 3.2: Visualization of the data flow

jection will get is the full path of the target file. The resulting stat struct is
then stored transparently into the tracked child process memory, as described in
section 3.1.

3.4.3 Data Transfer

The system call argument data has to be transferred into the TVM for the redi-
rection and system call results are transferred back to the SVM afterwards.
This section will describe the data flow needed for redirecting system calls, an
overview can be seen in figure 3.2.

The injection module’s entry function is called to execute the code. Module
arguments sent by the hypervisor are delivered to this entry function as standard
function arguments. All injection code and arguments are serialized to a single
memory chunk when passed to the hypervisor for injection.

Due to current size limitations of injected modules, the wrapper program will
automatically split up large buffers into smaller ones of 4KiB size, if possible.
For each split-up memory chunk, one injection is performed. Thus, e.g. large
write syscalls are split up into many smaller ones, bypassing size constraints.

Right before the hypervisor triggers the injection module execution, it will
prepare the TVM’s virtual CPU registers with the passed injection arguments
and buffer pointers. That way, data is accessible within the module and can be
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passed to the TVM kernel, utilizing wrapper functions.
For external function calls (i.e. TVM functions for actually invoking the system

call handler), wrapper functions are used to preserve the stealth goal of the frame-
work. When an external function is invoked from the module code, X-TIER
will temporarily remove the injected module [33]. Since that would also remove
possibly needed buffers from the memory, which were intentionally passed to
the external function call, the wrapper function moves the buffers to the TVM
kernel stack at a location provided by the hypervisor. Result buffers are also be
preallocated on the stack to allow the TVM kernel to fill in the result. Pointers
and integer arguments are stored to the appropriate virtual registers, right before
the hypervisor performs the external function call.

After the external function returned, the wrapper function fills the buffer of
the injection module, as the module memory is inserted and available again
when the external function returns. The data is copied from the kernel stack to
the mapped injection memory, so the injection module may pass back the data
buffers via structs to the hypervisor through hypercalls [33].

When the hypervisor finishes the injection, the wrapper program is notified
and can access all returned data from the data transfer. Any results are placed
in the tracked child process in order to transparently modify the syscall result.
Return values are placed into the appropriate registers, buffers are transferred
into the child process address space as described in section 3.1.

3.5 Returning Syscall Arguments

Now all system call data was obtained either through an injection, querying
program state or static values. When the decision has been made to execute
the syscall in the SVM, it will simply be run as if the contained program had
no redirector attached; the SVM kernel is instructed to continue the system call
execution normally.

Otherwise, the trapped system call is prevented from running on the SVM
by skipping it. The skipping can also be achieved by replacing the system call
id with another one and continue execution regularly. The replacement id has
to be chosen carefully, as this has to be a read-only system call with minimum
overhead, like getpid. Just skipping the call is still not enough though, the
resulting data obtained from the injection has to be returned properly. The
interception mechanism has to update the appropriate registers for the return
values of the syscall. Pointer arguments again present a greater challenge, but
using the same cross-process memory access techniques, the resulting data can
be placed in the target process’ memory.

The security application is able to operate completely unmodified as data was
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transparently inserted during the regular system call context switch. The ABI is
unchanged, the source of returned data was modified without having to prepare
the inspection program for this redirection.
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All the code implemented is published under the GNU GPLv3 license. Code
added to Linux and QEMU is licensed GNU GPLv2. The code repository can be
accessed through Github [16].

The implementation closely follows the design described in section 3. Al-
though the system is designed for relaying system calls between two separate
VMs, the implementation was simplified to run and trace the inspection program
on the hypervisor, i.e. in this implementation the SVM equals the hypervisor.
The source of the trapped system call can be arbitrarily more complex or simple,
as long as the system call id and arguments can be obtained and the call can be
skipped and alternated.

The system was, since it’s based on X-TIER, implemented on top of the kvm
hypervisor [18]. The userspace component interacting with kvm is QEMU [26].
X-TIER already provides a hypervisor communication channel for data transfer
and injection triggering [33], which is reused.

4.1 X-TIER Update

Before the implementation of the system call redirection framework could be
started, the existing code injection system X-TIER [33] was ported to bleeding
edge versions of Linux and QEMU [26]. As the Linux and QEMU code had
evolved, the update was nontrivial. Although git [11] did a fantastic job merging
the changes, some internal functions had been completely removed or changed
in Linux and QEMU, so manual updating was required.

The port was done from QEMU 1.5.0 to QEMU 1.6.2. Previously, the kvm
modifications were implemented in the backported out-of-tree kernel module,
for Linux version 3.6. These changes were ported to the in-tree kvm module for
kernel v3.14.0 and have been kept up to date until the most recent Linux version,
v3.17-rc4.

QEMU made a lot of internal changes, virtual CPU state structures had been
updated and memory region ownership was introduced. Address translation
helper functions present in QEMU were changed or replaced in a way X-TIER
was no longer compatible. These had to be reintroduced and X-TIER needed to
be adapted. The internal Linux changes were rather easy to adapt to; most of
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the functions and data structures were still available, although the virtual CPU
access structures changed heavily.

4.2 Injection Helper Library

Built on top of the updated version of the X-TIER framework, a generic injection
helper C++ library was created: libinject. This library provides a convenient
API for communicating with the hypervisor via QEMU. The communication is
done over QEMU’s monitor interface socket. QEMU then invokes ioctl on
/dev/kvm to pass any request to the kvm hypervisor, for example to trigger an
injection or fetch result data.

To begin communication with the hypervisor though QEMU, a init connection
function is available just requiring the target QEMU monitor TCP port as
argument. For hypervisor communication, send monitor command sends
passed commands over the established connection. Injections can be invoked
by inject module; required arguments are an X-TIER injection struct and a
pointer to a data reception struct; injection results will be stored to the latter struct.
Finally, the library can disconnect from the hypervisor via terminate connection.

4.3 Wrapper and Tracker Program

Using the libinject library, a generic program wrapper/tracking tool lolredirect
(lightweight outer layer redirector) was developed in C++11 for tracing and
intercepting the syscalls of any program, using the Linux ptrace subsystem. ptrace
can attach to a process on the same machine and provides a PTRACE SYSCALL
target that interrupts before and after a system call is called. This trapping
behavior is perfectly suitable for the redirection implementation.

4.3.1 Syscall Trapping

To start the redirection system, the program desired to run, with data obtained
from the TVM, is prefixed with a wrapper executable. This allows the wrapper
to launch the desired program and start tracking its state and the syscalls.

lolredirect simply acts as a prefix for any program a user wants to execute with
syscall redirection. This allows combining several commands with pipes on a
shell, some process in this pipe chain obtains its data from the TVM.
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This example demonstrates the usage of pipes for creating and viewing files on
the TVM:

echo "text n stuff" | ./lolredirect tee /tmp/file
./lolredirect cat /tmp/file | less

When the execution is started, internal state tracking is reset and the child
process is forked. The child process runs regularly as it would without any
redirection attached, but ptrace will trap any system call right before its syscall
handler is run in the SVM kernel. lolredirect is now able to analyze the system
call; for reading buffer arguments, the Linux syscall process vm readv is used.
To allow this inter-process memory attaching using that system call, the SVM
kernel is required to be compiled with CONFIG CROSS MEMORY ATTACH; this
is the case with all major Linux distributions. After all arguments have been
gathered, the state tracker can be updated and the redirection decision (see 3.2)
is made.

When the system call should not be redirected, ptrace is instructed to con-
tinue regular execution, until the next system call is trapped and the analysis
starts from its beginning.

If it was decided to indeed redirect the syscall, it needs to be skipped. ptrace
does not support skipping system calls, as that is obviously something very
unusual. When skipping calls without replacing or modifying the results from
the outside, a process will most likely end up with undefined behavior. Therefore,
a trick has to be done in order to let the SVM kernel ignore the trapped system
call: The id is replaced by a different one, namely to execute any syscall that
won’t modify any data. In our case, the getuid system call was chosen as it just
returns the user id number, requests no special arguments like file descriptors
and does not modify any other kernel structure. After the getuid “dummy-call”
returns, registers are updated with redirection results.

For this, ptrace conveniently traps again right after executing a system call.
lolredirect is able to set register values and fill buffers to transparently accomplish
the system call redirection. Depending on the system call id and the decision
mechanism, the data to be returned is either a representation of internal state
tracking (e.g. getcwd syscall) or the result of a code injection (e.g. read).

For code injections, libinject is used to inject a kernel module for each indi-
vidual syscall redirection (see section 3.4.2). Arguments are sanitized (e.g. file
descriptors to absolute filenames) and then serialized to a continuous mem-
ory chunk and then passed to libinject. This induces the code injection in the
hypervisor. After the injection returned and data was written to or gathered
from the TVM, libinject fetches the result buffers and passes them to lolredirect,
which in turn stores back these results into the memory of the tracked program.
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System call buffer arguments (e.g. the result of read) are filled by invoking the
cross-process memory write system call process vm writev.

That way, the tracked program is unaware of the redirection1, and gets all
data from the TVM delivered transparently to its memory as if the data ori-
gin/destination was on the SVM.

4.4 Blacklist Development

In order to create per-application profiles for the redirection file name blacklists,
the system call flow of the application should be analyzed. To investigate the
system calls a program is invoking, the strace tool proves to be really useful.
Combining the debug messages of lolredirect with the syscall flow obtained
with strace, figuring out what rules need to be adapted to ensure the correct
redirection decisions turns out to be rather easy. This was used to create the
general-purpose blacklists that seem to work very well.

4.5 Injection Code Creation

4.5.1 Module Parser

After implementing the kernel modules accomplishing the system call relay, the
modules must be preprocessed by X-TIER turn them into X-Modules [33]. The
conversion tool for creating these X-Modules is mainly an ELF [5] parser that
creates the necessary structures for the bundled executable loader. This ensures
executing the injected module does not rely on the TVM loader.

The X-Module generator and parser has been optimized and extended to be
able to parse external function wrappers with libelf. Before these improve-
ments, the patched symbol locations were assumed without verification, which
leads to patching problems with newer versions of gcc. After this enhancement,
the precise symbol location can be determined and stored in the X-Module.

The shellcode for the integrated loader has been extracted from the parser; it
was embedded as a char array before. Now it is easily possible to change the
shellcode without having to adapt hardcoded offsets in the parser. The build
system will automatically assemble the shellcode with nasm and integrate it into
the parser dynamically.

1It can, of course, ask the kernel about its ptrace state.
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4.5.2 Wrapper Generator

Instead of hand-writing all needed external function wrappers as it was needed
before, a generator script for creating these code snippets was written in Python.
While each wrapper for X-TIER had to be created manually, the proposed
wrapper generator is able to create C code with the required inline assembly by
specifying the desired in- and output variables. The generator supports integer
and buffer arguments, the code for the register and stack preparation is produced
automatically. That way, wrapper code is generated automatically for preparing
the kernel stack and registers with the arguments for an external function call as
needed by X-TIER [33]. The jump destination address for the external function,
previously hardcoded as well, is now dynamically extracted from the system
map file of the TVM kernel.
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Testing and development of the system call redirection system was done on
Gentoo GNU/Linux x86 64 (the hypervisor/SVM), using QEMU [26] and the
kvm hypervisor [20] for virtualisation of the TVM, as described in chapter 4.
The design can directly be applied to other common hypervisors like Xen or
VirtualBox, it is not strictly bound to kvm. The system currently implemented
is also tied to the Intel hardware virtualisation extensions, support for AMD
processors is possible in the future.

The testing machine is equipped with a Intel Core i5-2520M processor, 8GiB of
RAM and supports VT-d and VT-x hardware virtualisation. The hypervisor is
running with a SSD formatted with btrfs on a Thinkpad X220t. Development
took place during the SVM/hypervisor kernel versions v3.14.0to v3.17-rc4.

The operating system installed on the TVM is a common Debian unstable
system, running with its stock Linux kernel 3.14. The machine gets 1 GiB of
RAM, one processor and a virtual q35 board. The disk image is stored as qcow2,
with dynamic size allocation, capped to 10 GiB. The file system used is ext4.
Currently, the system uses 1.8 GiB on its single partition.

5.1 Functionality

All design requirements were successfully implemented. By attaching to the
communication interface all programs already use natively, it was possible to
create transparent behavior modification for system calls.

The system call trapping mechanism is located directly in the SVM kernel,
where any executed program will send its system calls anyway. Modifications
and possible detours do not require any modification in the tracked program
and the SVM kernel. Changing interface behavior without altering the semantics
allows omnipotent customization without updating the interface partner. Any
tested program could be executed, its system calls were trapped as expected.

The state tracker is responsible for keeping record of all state variables needed
by injections, which would otherwise be stored within the TVM kernel. The
state variables are directly dependent on the amount of syscalls available for
redirection. If more calls are added to the implementation, the needed state
variables can directly be added to the state tracking subsystem.

25



5 Experiments and Discussion

The interface for the redirection decision mechanism is directly related to the
state tracker and available system calls. The decision depends on the current
program state and trapped system call information. Extending the system with
more syscalls may allow adding further redirection rules based on new data
intercepted when trapping new syscalls.

The code injection is based on X-TIER, which modifies the kernel’s kvm
subsystem[33, 20]. Updating the SVM kernel does not affect proper operation,
the kernel ABI is updated but not changed. Thus, the system call ABI of the
SVM and TVM will stay the same, regardless of kernel updates, this means the
TVM can be updated as well. The code injection procedure stays the same, as
the hardware architecture will never be changed. Hence, our system is robust
for any potential update.

5.1.1 Implemented Syscalls

The system calls to be implemented were chosen by inspecting various coreutils
programs. Syscalls required for proper operation were implemented according
to the system call tracing provided by strace. Some of those system calls
will modify the internally tracked state and/or will actually be redirected and
injected into the TVM, as described in the design chapter 3.

The syscall injection modules were created as proposed in section 3.4.2, for
each system call to be injected, there is one injection module. Table 5.1 shows all
system calls that are currently supported for redirection or internal state tracking.

Although parts of the injection code, such as external function wrappers, can
be perfectly generated, the injection modules themselves have to be hand-written
to ensure proper operation. This is caused due to the fact that buffer preparation
and hypercall invocation for data transfer have to be specifically crafted for each
system call.

The implemented syscalls allow running many common utilities successfully.
For example, it is possible to use tar to archive files from the TVM and store
them to the SVM:

./lolredirect tar c /root/.ssh > /tmp/root-sshkeys.tar

The redirection is simply toggled by prepending the wrapper program.
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Syscall name purpose action
chdir change working directory track state
close close opened fd track state
dup duplicate an fd track state
dup2 known-value fd duplication track state
dup3 same as dup2, supports flags track state
fadvise64 declare file access pattern track state
fchdir change working dir by fd track state
fcntl change fd properties track state
fstat get file stats by fd inject
getcwd get current working directory query state
getdents get directory entries for fd inject
getegid get effective group id return static
geteuid get effective user id return static
getgid get group id return static
getresgid get real, effective and saved user id return static
getresuid get real, effective and saved group id return static
getuid get user id return static
lseek seek in a opened fd track state
lstat get filesystem link stats inject
newfstatat get file stats with working dir fd inject
open open a new file by name, get new fd inject & track
openat open a new file by name with working dir fd inject & track
read read data from opened fd inject & track
rename rename a file or folder inject
stat get file stats by filename inject
uname get kernel version information inject
unlink remove a file by name inject
write write data to opened fd inject & track

Table 5.1: List of implemented system calls
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By the following invokations, the data source for uname can be compared.
uname is invoked on the SVM with redirection first, then without redirection on
the SVM as well:

./lolredirect -- uname -a
Linux tvm-deb 3.14-2-amd64 #1 SMP Debian 3.14.15-2
(2014-08-09) x86_64 QEMU Virtual CPU
version 1.6.2 GenuineIntel GNU/Linux

uname -a
Linux jjpad.jj.sft.mx. 3.16.0-JJ+ #50 SMP PREEMPT
Fri Aug 8 22:54:55 CEST 2014 x86_64 Intel(R) Core(TM)
i5-2520M CPU @ 2.50GHz GenuineIntel GNU/Linux

5.1.2 Correctness

In order to verify correct operation of the redirection system, the output of
programs executed through the redirection mechanism on the SVM has to equal
the output if ran directly on the TVM. This assumes the TVM is not compromised,
so this comparison will show whether information is properly obtained from the
correct VM. To test the data correctness, a tool is executed in the TVM regularly,
its output is recorded to a file. After that, the tool is executed with the same
arguments on the SVM. The outputs should be identical, the comparison can
easily be done with diff. Of course, one has to consider the differences that
occur due to the stealthy redirection. For example, invoking ps on the TVM
directly will include itself in the resulting process list, whereas it will be hidden
when redirecting from the SVM. All tools listed in table 5.2 indeed provided the
correct output for native and redirected execution.

5.1.3 Performance Overhead

To evaluate the functionality of the implementation, applications of the coreutils
package and other well-known Linux utilities were tested for redirection over-
head. These tools will most likely be used with the system, obtaining a objective
performance comparison will help estimate expected performance losses.

To test the performance overhead, a small Python script was created to measure
the runtime of a program in nanoseconds. Common commands were selected
and executed 42 times to generate mean values for the time measurements. The
measurements are listed in table 5.2.

As the results indicate, the empirically determined overhead factor of the
system is about 11.2. Most time is spent packing and transferring the injection
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tool in-vm s redirect s syscalls on host injected overhead oh/injects
lsmod 0.073918 32.968546 817 128 689 446.01512 0.64733689
uptime 0.005702 7.079402 95 70 25 1241.5647 49.662588
netstat -tu 0.005371 0.120066 54 49 5 22.354496 4.4708992
cat /etc/passwd 0.056065 0.291910 42 36 6 5.2066352 0.86777253
cat /proc/cpuinfo 0.055451 0.306111 42 36 6 5.5203874 0.92006457
ps aux 0.430623 60.508296 1185 251 934 140.51339 0.15044260
grep root /etc/passwd 0.001969 0.208998 98 92 6 106.14424 17.690707
find /bin 0.212825 0.567590 218 200 18 2.6669329 0.14816294
ls -la / 0.083721 4.170284 313 255 58 49.811684 0.85882214
tar c /tmp/8files/ 0.003681 4.855124 226 138 88 1318.9688 14.988282
md5sum /etc/shadow 0.003884 0.330952 45 38 7 85.209063 12.172723
uname -a 0.002348 0.543520 53 40 13 231.48211 17.806316
pv /etc/ssh/rsakey 0.002336 0.574516 105 94 11 245.94007 22.358188
stat /etc/passwd 0.010880 1.621293 143 111 32 149.01590 4.6567469
touch /tmp/file 0.001048 0.056849 38 33 5 54.245229 10.849046
rm /tmp/file 0.001047 0.065695 64 61 3 62.745941 20.915314
average 0.059429 7.141822 221.125 102 119.125 260.46279 11.197713

Table 5.2: Performance overhead tests
in-vm: running tool in vm (seconds); redirect: runtime with redirection (seconds);
syscalls: number of captured syscalls; on host: number of syscalls on SVM;
injected: number of syscalls injected into TVM; overhead: redirect/in-vm-time ratio;

to the hypervisor, especially write-syscalls need time as each chunk written
leads to a separate injection. The performance impact on one-liner operations is
almost unnoticable, large data transfers do need additional time.

5.2 Security Considerations

Due to X-TIER’s security design, the TVM is not aware of the system call redirec-
tion and injection extensions as well. Only if a system call actively modifies any
data, performance counters, syslog and others are triggered in the TVM. This
implies that any injection into the TVM has to be stateless, a injection can’t rely
on any state data tracked by the TVM kernel. All inter-injection state variables
have to be tracked and passed to each injection to preserve perfect isolation, as
described in section 3.3.

Although lolredirect inherits most of the security aspects from X-TIER, the
following section discusses the differences applicable for the project.

5.2.1 VMI Classification

The approach presented in this thesis for conveniently bridging the semantic gap
[3] can be classified by patterns as proposed by Pfoh et al. [24]. The overview of
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property applied
guest OS portability Linux ABI only
address binding dependent on kernel addresses
isolation from guest secure execution in guest context
inspection of suspended VM module is run on guest CPU
full state availability yes

Table 5.3: Applicable VMI pattern properties

properties for the classification can be seen in table 5.3.
The design of the syscall redirection system falls in the “in-band” view genera-

tion category. The injected code is executed on the TVM CPU to get access to all
data structures and functions to bridge the semantic gap.

The system is currently incapable of working with any TVM operating system
other than Linux. This dependency is required as no ABI translation mechanism
was integrated; the system calls are forwarded to a Linux ABI only. Although no
BSD or Windows can be run currently, different versions/distributions of Linux
can be installed on the TVM easily.

The binding classification property is violated, as the current implementation
requires offset knowledge for the symbol table and system call handler functions.
Therefore, updating the TVM kernel without adapting the redirection system
will break functionality. The update is easily feasible though, only the system
map file is required to be available to the redirection framework.

The system is isolated from the TVM system, the injection mechanism itself
was designed minimalistic and no traces are left deliberately. All triggers for the
redirection mechanism are set off by the secured and separate SVM. This means
the system call trapping, the state tracking and the redirection mechanism are
isolated from the target machine. When a redirection occurs, injection and mod-
ule loading is completely independent of the TVM, this mechanism is isolated as
well. The injected module will interface the kernel either directly or via external
function calls. During the external function call, the module is removed by the
hypervisor to preserve the isolation. That way, only intended requests to the
TVM kernel will be delivered and fetched, all other communication paths are
completely separated from the machine.

The target machine cannot be inspected while suspended. As the injection will
be actually executed on the TVM CPU, it must not be paused to allow execution.
During injection preparation and removal, the TVM is indeed paused. When the
injection is executed, the CPU is operating normally, except that all interrupts are
disabled during the run. Should an external function call occur, the machine’s
CPU is paused again to prepare the module removal. The machine is then run
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until the function call returns regularly. After the external function returns, the
machine is paused again to reinsert the module for transferring back results. In
short, all inspection of the TVM will happen while the machine is running.

The access to the machine is provided by the hypervisor, which grants the
highest possible privilege level for working with the target machine. The intro-
spection itself will be run on kernel level of the TVM, with the extension that
data transfer to the hypervisor is possible. As the injection is running in the
context of the TVM kernel, the access level is the same as that of other kernel
code. This implies a full state availability, but also means that using forged kernel
functions cannot be directly detected. However, maliciously altered functions
will not be able to detect the performed injections as the module is removed on
each external function call. They can, however, detect suspicious calling patterns
such as open, close; open, seek, read, close; .... The use of pos-
sibly compromised kernel functions can be compensated by more complicated
injection modules, that perform all system call actions manually, without using
existing kernel helper functions.

5.2.2 Compromised TVM Kernel

With the current injection module implementation, detection of rootkits is not
easily possible. Although the injection is perfectly separated from the insecure
TVM, the injection modules do use the TVM functions to access and modify data
structures. If these functions are altered due to a rootkit infection on the TVM,
the system call redirection approach does not allow detecting and removing the
infection. The implemented kernel modules can be extended to modify kernel
data structures without calling existing kernel functions. Customized injection
modules would be able to introspect the machine for malware, but this is outside
the scope of this thesis; a different customized X-TIER-based system would be
a better-suited approach for that purpose.

5.2.3 Timing Attacks

It is possible for the TVM to detect the injections by timing attacks. Although no
traces are left in the memory, the time needed for injecting and executing can
be measured. When comparing the time the machine is used to have with the
additional time needed when injections occur, a difference can be calculated. This
awareness could then lead from different internal behavior to self-destruction,
which should be prevented.
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5.3 Limitations

Although the system was designed to be as general-purpose capable as possible,
restrictions and limitations in the usage do apply. Some of the current limitations
can be overcome as described in the future work section 7.1. The limitations
described in the following mainly impact the freedom of choice for the TVM and
its operating system.

5.3.1 Parallel Injections

It is currently impossible to trigger parallel injections into the VM. This is caused
by the simple QEMU interface currently used, which would have to be extended
by an injection queue. Introducing asynchronous access to the injection mecha-
nism would provide the necessary changes that would allow multiple programs
to access the VM data. A remaining problem would be deadlocks, as the injection
execution on the TVM would still be strictly linear and non-parallelized. Instead
of queuing requested injections, a truly parallel execution could be achieved by a
multi-core TVM. An example for a parallel injection would be a invocation like:
./lolredirect cat /tmp/file0 | ./lolredirect tee /tmp/file1
Both redirection wrapper programs would require an independent injection state
in the hypervisor, which is currently not implemented.

5.3.2 Multicore VMs

The system is currently incapable of doing redirections into multi-core virtual
machines. As all interrupts are disabled during execution of the injected code,
it’s guaranteed the VM won’t be aware of the injection. This runtime isolation
can be circumvented by other worker threads on the remaining CPUs, if they
were active during the injection. It would be possible to place other cores
into busy waiting loops during injections, leading to a performance loss for
the machine. When multiple CPUs are present, multiple injections could be
executed in parallel. Guaranteeing the compliance with all critical section locks
is the biggest challenge when running the system on a multicore VM, X-TIER is
currently incapable of such a feature.

5.3.3 ABI Differences

The system call argument semantics are assumed to be the same on the SVM
and TVM, especially the existence of system calls is assumed. By adding another
translation layer to handle ABI differences, a further performance drop would be

32



5 Experiments and Discussion

introduced, but the system would be able to relay system calls between different
ABIs. Relaying system calls from Linux tools to a Windows TVM would be a very
challenging task, mapping the semantics and available system calls is possible,
but requires a very complex translation system. The injection modules are able
to both modify any kernel data structure or call functions: The injection modules
could be designed to modify the relevant data structures directly instead of
relying on kernel functions. This could be a possible way of performing the
syscall relay even though the ABI of the TVM is different. Of course, missing
functionality in the TVM kernel can hardly be emulated or provided by the
redirection framework.

5.3.4 Required TVM Kernel Information

The X-Module generator parses the injection modules and enhances them by
prepending a standalone loader [33]. In this process, the parser requires jump
destination addresses for TVM kernel functions. These are currently provided
as the kernel’s system map file, produced upon kernel compilation. This file
provides a mapping between kernel symbols and their addresses, even if they
are not included in the run-time kernel symbol table. This is the case for system
call handler functions, as they are not marked to be exported. The integrated
X-Module loader also needs to know the location of the kernel symbol table to
be able to do lookups. That means the TVM kernel symbol table must be known
and provided to X-TIER in the preprocessing step. If these addresses change,
e.g. because of a kernel update or ASLR, it is currently impossible to run the
injection modules without updating them as well.

5.3.5 Redirection Rules

The currently implemented redirection rules in form of blacklists are just heuris-
tics. They can of course be adapted to new use-cases, but it will never be possible
to fully automatically decide where to send each syscall. The rules can be ex-
tended with per-application profiles, but it’s impossible specifying a ruleset that
will work perfectly with any application. The limitation hit here is commonly
known as the halting problem, a full ruleset automatization is not achievable.

5.3.6 System Call Restrictions

The system calls available to be implemented for redirection are also limited
due to the constraints given by X-TIER. As explained in section 3.3, all injected
system call modules have to be stateless. This makes it impossible to redirect
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system calls that are callback functions. For example, select or poll would
block until an event happens. The event will never occur, as all interrupts are
disabled during the injection. Registering callback functions like required by
ptrace is also impossible with the current design. The notification of a process
waiting for ptrace to pass control to it, is not achievable, the injected syscall
does not originate from a process the TVM kernel could possibly notify with a
process signal.

Memory mappings of files through mmap are impossible as well, the file would
have to be left open for direct access. It is possible of emulating the functionality
by storing a working copy of the memory image on the SVM and copy it back to
the TVM when needed. That would result in the same data flow as the working
write system call already provides, memory maps of TVM files can be avoided
that way.

The framework is currently incapable of handling the fork or clone system
calls. Due to the limitations of parallel injections as described in section 5.3.1, the
new process requires a separate and independent communication channel. If
that existed, it is unclear where the process should be run. The easier way would
be on the SVM, spawning it on the TVM violates the stealth goal, but could be
intended. The next problem to address is the origin of the binary data: Should it
be acquired from the TVM or the SVM, and then executed on the other machine?
These remain open subjects to find a reasonable solution for.
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This thesis extends the VMI [10] research area by providing a stealthy and
general-purpose way to introspect a TVM with common tools most users are
already familiar with. This approach bridges the semantic gap [3] by injecting
code to relay system calls. Other attempts that accomplished convenient access
the target machine are described in the following.

V M WAT C H E R [17] casts semantic definitions to the hypervisor, this allows
to reconstruct the VM data. The results can then be used to perform malware
checks on files, for example.

I N S I G H T [28] is a static memory analyzer, which is familiar with kernel
structures by using debug symbols and parsing parts of kernel source code.
Similar to I N S I G H T is K E R N E L O B J E C T P I N P O I N T E R [1], which can map
the dynamic kernel objects by static kernel source code and memory analysis for
access from the hypervisor.

V I R T U O S O [6] evolved into a industrial-wide established project [30], it’s
used for VPS management web interfaces to allow end users to display the
process and network status and many more useful information. V I R T U O S O
creates programs from recording the regular execution trace and converting it to
accesses from the hypervisor layer.

V M S T [7] implements data redirection to the hypervisor to generate intro-
spection tools. All instructions of the TVM are monitored to identify VMI related
data, redirection accesses are generated and integrated into the newly created
tool. This tool can then interact with the TVM memory on hypervisor level.

H Y P E R - B R I D G E [27] combines the tool generation and training features of
V I R T U O S O with the data redirection of V M S T. The created programs are able
to analyze and modify the TVM on hypervisor layer.

P R O C E S S I M P L A N T I N G [13] injects statically linked binaries into a target
process on the TVM. This code will run in the context and address space of the
victim process, it therefore shares its privileges. The code will be re-injected
every time the target process is scheduled, so the injected code does not remain
in the TVM. No kernel level access is possible, as the hijacked program is running
in userspace. This method allows to call functions and obtain data from the
VM through in-band delivery. No verification of kernel interaction is possible,
this means that a trusted VM kernel is required. Executing injected system calls
through the implanting in a victim process will utilize the TVM kernel for state
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tracking, as well as inherit the privileges from the victim process. Our approach
can execute any kernel function and may access and modify kernel structures
directly, having a higher privilege level.

S Y R I N G E [2] injects secure function calls into the VM. To prevent the execu-
tion of non-trusted code in the TVM, SYRINGE monitors the execution of all
function calls to verify execution of trusted-only code. The code is classified by
predefined rules. This approach is not designed for reading or manipulating
data structures of the TVM, there is no way to transfer back system call results,
as done by our method.

S A D E [4] can inject a kernel agent for function access from the hypervisor. To
obtain memory, it uses allocation functions of the TVM kernel. During execution,
the agent and the execution of TVM code is not protected by the hypervisor,
opposing to our approach. While our method uses hypercalls for transferring
back data, a special kernel page requiring to trust the TVM kernel is used in
S A D E . System calls can be injected with S A D E , but the design does not allow
full isolation, which is provided by our system.

E X T E R I O R [8] can synchronize data structures between a trusted and a
target VM. This requires an identical kernel and VM memory image, the state
is mirrored by copying updated data between both machines. Our approach
supports having different systems and kernel versions running, only their syscall
ABI has to be the same. In addition, E X T E R I O R relies on binary translation to
relay information between the SVM and TVM, which makes the approach slow.

H Y P E R S H E L L [9] implements a very similar approach to ours, so-called
R-system calls are redirected into a TVM. A helper process, that was spawned
before, receives and then invokes these system calls in the TVM, this approach is
using in-band delivery as well. Updated memory is synced to the master process
running on the SVM. This approach is not designed for security, but rather for
data centers managing many VMs from hypervisor level. As calls occur from
a helper process in the TVM, a trusted kernel is required. All process state is
maintained on the TVM, however our approach was explicitly designed to leave
no traces within the target machine.
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7 Conclusion

7.1 Future Work

7.1.1 System Call Trapping

The trapping mechanism for obtaining system call redirection candidates can be
extended by using arbitrarily more complex approaches. The system calls could
be trapped and redirected by systems like Nitro [25], which can capture system
calls at hypervisor level. Looking for other possible sources of trapped system
calls, it is theoretically possible to send the system calls through the Internet
as part of a RPC protocol, though that might be impractical due to the gigantic
performance loss.

7.1.2 Ruleset Adaption

The project can be easily extended to enhance and improve the system call
redirection. The redirection decision mechanism can be extended to include the
semantics of the tracked program, meaning that each application may require
different redirection rules. The currently implemented generic approach works
well enough, but sophisticated software may require a per-application rule-set.

7.1.3 ABI Translation

If the SVM and TVM have a different system call ABI, a translation layer would
be required to map calls. This could also mean skipping, reordering and creating
new syscalls to be able to meet the TVM’s ABI specifications. This could, for
example, open the possibility of having Windows as the TVM operating system.
Albeit requiring a sophisticated mapping system, it’s possible to run POSIX with
their syscalls redirected to a Windows machine.

7.1.4 System Call Support Extension

To support further advanced kernel features, more system call redirection mod-
ules can be created, but they have to meet the “being-stateless” requirements
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(see section 3.4.2), otherwise the injection could be detected. Creating socket
system call redirection is difficult but possible, recreating their state for each
invocation is possible but requires implementing lots of functionality. Blocking
syscalls like poll or select are likely impossible to be implemented with the
current X-TIER system design (see section 5.3.6).

7.1.5 Simultaneous Injection Support

Supporting parallel VM access can be achieved by creating an asynchronous
hypervisor control channel with an injection queue. That way, multiple programs
can be redirected to the VM in parallel, however the injection requests have to
be queued for linear execution.

The parallel VM access is also mandatory for supporting system calls like
fork and clone. The tracking program could simply accompany the fork, to
follow the possibly diverging program states separately. This approach would
run the forked program on the SVM, and redirect the syscalls in the described
manner. Another possibility would be to actually execute the forked process on
the TVM, which is definitely a nontrivial task to perform stealthily.

7.1.6 Timing Attack Mitigation

Apart from traces left within the TVM deliberately, the timing attacks described
in section 5.2 could be mitigated by reserving injection time slots that may or
may not be used. That way, it will be even harder for the TVM to detect the
introspection performed on it. An easier approach would be reporting wrong
time values to the TVM.

7.2 Summary

This thesis presented lolredirect, a general purpose and easy to use VM intro-
spection framework for bridging the semantic gap. The goal was to redirect
system calls of any program into a virtual machine stealthily. Previous solutions
were not able to perform transparent and isolated syscall relay, which is possible
with our kernel module injection approach using X-TIER. lolredirect wraps a
given program and traps all of its system calls by using ptrace. To ensure
proper program operation, not all system calls can be redirected, so a decision
mechanism selects which of the trapped syscalls are injected into a target VM.
The decision is based on tracking the program state (e.g. file descriptors), which
is maintained by monitoring the system calls. This replaces the state tracking
of the target machine kernel. Should a syscall be redirected, its arguments are
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sanitized to allow stateless injections. A kernel module is injected into the target
machine by X-TIER, which transfers back results via hypercalls. lolredirect then
stores back results into the memory of the redirected program to allow fully
transparent system call redirections.

We showed that this method works for common Linux utilities, with an
average overhead of factor 11.2. By hooking to an interface used by any program,
it is possible to forward system calls to introspect a target machine without
having to develop or generate tools working on the hypervisor layer. Instead,
existing programs can directly be used without modification.
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Glossary

ABI application binary interface.
Specification of the communication interface between two programs, at
machine code level . 4, 5, 19, 26, 30, 36, 37

fd file descriptor.
Integer number that references to the file state table entry . 14–16, 27

SVM secure virtual machine.
A secured virtual machine with a communication channel to its hypervi-
sor. All system calls to be redirected originate from programs run on this
machine . 2, 8–15, 17, 18, 20, 22, 23, 25, 26, 28–30, 32, 34, 36–38, 40

TVM target virtual machine.
Virtualized computer to be introspected by tools ran on a SVM. System call
injections will be placed into this machine . 2, 6–8, 10–18, 21–26, 28–38

VM virtual machine.
Emulated computer running on top of a hypervisor . 1, 2, 5–7, 16, 20, 28,
30, 35, 36, 38

VMI virtual machine introspection.
The process of obtaining information from a virtualized computer for
analysis or modification from the hypervisor level [10] . 1, 5, 7, 8, 16, 35
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