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Abstract— Matching Markets have been studied for years in
several fields, like economics, operations research, and game
theory. We focus on the design of matching markets and handle
problems of assignments where each participant gets matched
(either to another participant or to an item), while participants
differ in preferences over their matches. We assume there is
no monetary exchange involved, which means the participants’
incentives and strategies rely exclusively on their personal pref-
erences.
Out of a variety of said problems, the focus will lay on the
stable marriage problem, house allocation problem, and housing
markets problem, while discussing their requirements, solutions,
key properties, and importance. We compare the latter two prob-
lems which raise some interesting properties and probabilistic
similarities.

I. INTRODUCTION

First, we will define some concepts that we will use below.

A. Definitions

1) Agents: We define a set of agents N , who participate in
our market.

2) Outcome: The result of a matching mechanism is called
an outcome o ∈ O, while O describes all possible outcomes.

3) Preference order: Each agent i ∈ N has a weak
preference order ⪰i∈ R over different matching outcomes O.
Agent i weakly prefers outcome o over o′: o ⪰i o

′.
Agent i strictly prefers outcome o over o′: o ⪰i o′ but not
o ⪯i o

′ ( =⇒ o ≻i o
′).

Agent i is indifferent about o and o′: o ∼i o
′.

4) Preference profile: We call ⪰:= (⪰1, . . . ⪰n) ∈ Rn a
preference profile, while n = |N |.

5) Choice: The choice Xi(R) of agent i ∈ N over a set of
objects or other agents R is the most preferred agent/object
among R based on i′s preferences.

6) Reports: While those true preferences are private to their
respective agents, Let ⪰̂i be a report of agent i, which might
differ from ⪰i, which we will see throughout the topic.

7) Mechanism: An algorithm, which computes a suitable
outcome g(⪰̂) ∈ O based on simultaneous reports by each
agent i ∈ N .
It is mentionable that the mechanism solely acts on the rules
g and has ⪰̂ as its only input.

8) Dictatorial: A matching mechanism is dictatorial if
the outcome of the mechanism mirrors a single participants
preferences, without consideration of others.

9) Dominant strategy: A dominant strategy is the best move
for an individual agent to make regardless of how other agents
act.

10) Strategy proofness: If it is a dominant-strategy equilib-
rium for each agent to report their real preferences (⪰i= ⪰̂i),
we call that mechanism strategy proof.

11) Blocking pair: A blocking pair is a pair of agents that
prefer eachother over their respective matches. An example for
a blocking pair would be (w,m) if m ≻w µ(m)∧w ≻m µ(w).
If ϕ ≻w µ(w), we also call (ϕ,w) a blocking pair, since w
could still break away after the matching.

12) Stable matching: A matching is stable if no pair of
participants prefer each other over their assigned matches.
More formally, matching µ is stable iff there is no blocking
pair.

13) Optimal matching: A matching is optimal when each
agent is matched with their most prefered achievable pref-
erence, while agent m is achievable to agent w if a stable
matching µ exists with µ(w) = m.

14) Pareto optimality: A assignment is pareto optimal if
there are no two agents i, k ∈ S, who would prefer to exchange
their assigned items with each other and therefore break away
(r′i ≻i ri ∧ r′k ⪰k rk).

15) Core: The core is a set of outcomes, which can’t be
improved by coalition of a subset of agents in the market.

16) Ex post Pareto optimality: Is a property for randomized
mechanisms and means that it is pareto optimal for each
possible outcome.

17) Blocking coalition: We define a blocking coalition as
a subset of agents, that can do better if they trade amongst
themselves (outside of the market).

18) Core assignment: An assignment is in core if there is
no blocking coalition.

19) Chain: A chain in a directed graph is a succession of
edges (and vertices) that connect two vertices in the graph. In
our definition, vertices can occur at most once in a chain. The
head of the chain is the last vertex in direction of the graph,
while the tail is the first vertex.

20) Cycle: We define cycles in graphs as a chain, where
head and tail are the same vertex.

B. Assumptions

To keep things simple and escape the results of the impos-
sibility theorem [1], there are a set of assumptions we have to
make. In two-sided matchings and assignment problems, we



assume agents to be indifferent about parts of the matching
or assignment in which they are not directly involved. Fur-
thermore, payments are not available thus agents strictly act
based on their personal preferences. Additionally, all problems
are simultaneous move games where all agents report their
(alleged) preferences at once.

II. TWO-SIDED MATCHING MARKETS

There are two disjoint sets of agents, in which we want to
match each participant from one set to at most one participant
from the other set, where the outcome is a matching µ. To
make this more intuitive, let M be a group of men, which
need to be matched to a set of women W for example for
marriage. Let µ(m) ∈ W ∪ {ϕ} and µ(w) ∈ M ∪ {ϕ}
denote a match between man m ∈ M and woman w ∈ W ,
while ϕ means that an agent is left unmatched. Clearly, if
m is matched with w, then w also has to be matched with
m. More formally: µ : M ∪ W → M ∪ W ∪ {ϕ}, while
µ(m) = w ⇐⇒ µ(w) = m. We assume, that agents
have strict preference orders over agents on the other side.
Let ≻m and ≻w, denote the strict preference order of man
m over women and of woman w over men respectively. E.g.
m1 ≻w m2 means that woman w had a strict preference of m1

over m2. If woman w prefers to stay unmatched, than being
matched with man m (m is unacceptable to w), we denote
ϕ ≻w m. Strict preference orders of participants over agents,
lead to weak preference orders over matchings, e.g. µ ∼m µ′,
if µ(m) = µ′(m) for man m (based on our first assumption).
First of all, we want our market to be safe to participate in. For
that, we need our one-on-one, two-sided matching mechanism
to be stable. To solve this so called stable marriage problem
we use the deferred acceptance procedure aka. Gale Shapley
algorithm [2].

A. Deferred Acceptance Procedure (Gale Shapley Algorithm)

• Input, Output: The deffered acceptance procedure (DA)
takes a preference profile over each agent as an input and
returns a stable matching.

• Description: It has one set of agents that iteratively make
offers (propose) to agents of the other set, while they
tentatively accept the best offers until they get a better
one.

• Time complexity: DA has a time complexity in O(nm),
while n is the number of men and m is the number of
women.

This algorithm offers two variants, which differ in which set of
agents carry out the proposals. The resulting matchings might
differ but are guaranteed to be stable. We will use our running
example and describe the women-proposing variant.

1) Woman proposing DA:
• First iteration (k = 1): Each woman proposes to her most

preferred man, who tentatively accepts his most preferred
proposal (or stays with ϕ) and rejects all other ones.

• Further iterations (k > 1):Each woman, who is not en-
gaged in a pair, proposes to her most preferred man, who
hasn’t rejected her offer yet (or ϕ if that is most preferred)

while men tentatively accept their most preferred proposal
(or ϕ), while rejecting others. Consider that men can
break off accepted pairs if they receive a better offer.
DA terminates, when there is no more proposal.

2) Woman optimal matching: The outcome of the woman
proposing DA is the woman’s optimal matching, which means
this mechanism is optimal for women. Thus there are no
incentives for women to falsely report their preferences in
woman proposing DA.

3) Lattice property: Stable matchings form a so-called
lattice. A lattice is an abstract algebraic structure or can also be
defined as a partially ordered set. While we are not interested
in the detailed mathematical properties of a lattice here, it
gives us a few interesting results.

• The join of two stable matchings µ ∨ µ′ also forms
a stable matching, which is as good or an even more
preferred outcome for each woman, since each woman
gets matched with the more preferred man out of both
matchings.

• The meet of two stable matchings µ ∧ µ′ also forms
a stable matching, which is as good or an even more
preferred outcome for each man, since each man gets
matched with the more preferred woman out of both
matchings.

• The woman-optimal stable matching (which is the result
of the woman proposing DA) is the least preferred
outcome for the men. If it is also the most preferred,
then it is the only stable matching.

It is important to understand, that agents don’t carry out
the actions of proposing and rejecting/accepting, but this is
handled by the algorithm only. The participants of the market
can only report a preference order. Based on the results we
have drawn above, one can see that it is a dominant strategy
for women to truthfully report their preferences (in women
proposing DA). This is not the case for men. Unfortunately,
there is no matching algorithm that would be stable and
strategy-proof for all agents [1]. So we can only guarantee
stability (over reported preferences).

III. ASSIGNMENT PROBLEMS

Assignments are problems, where agents s ∈ S with
preference orders are now matched with indivisible items
r ∈ R = {1, . . . , n} who don’t have any preferences (e.g.
students being assigned to dorm rooms). We use the same
notation for preference orders, while each agent s has a strict
preference order ≻s over items, which results in a weak
preference order over outcomes of the assignment (equivalent
to matching). Let rs ∈ R be the item (room) assigned to agent
(student) s ∈ S

A. House Allocation Problem

In the house allocation problem, agents, who have no initial
assignments are assigned to items. We will explain this based
on students s ∈ S being assigned to dorm rooms r ∈ R.
We want our assignment to be pareto optimal. Let n be the



number of students. We assume there are just as many students
as rooms available in our market (n := |S| = |R|).

1) Serial dictatorship (SD):
• Input: Priority order π of students and their respective

preference reports. Since our priority order π is a per-
mutation of set S there are exactly n! different possible
priority orders.

• Description: The mechanism iterates through given pri-
ority order and in each step k ∈ {1, . . . , n} assigns the
k’th agent their most preferred available item.

• First iteration (k = 1): We assign the first student s1 =
π(1) their most preferred dorm room rs1 = Xs1(R). Note
that this means that the algorithm is dictatorial for the first
student.

• Further iterations (k > 1): Now out of the still available
rooms Rk = R \ {rs1 , . . . , rsk−1

}, we give the k’th
student sk = π(k) their most preferred room out of Rk:
rsk = Xsk(Rk)

• Time complexity: O(n), while n is the number of agents.
The SD mechanism is strategy-proof and pareto optimal.

2) Random serial dictatorship (RSD): The serial dictator-
ship is unfair or at least poses the question of how to choose
priority order π. So we use the random serial dictatorship
mechanism.

• Input: Preference order of each agent.
• Description: The random serial dictatorship (RSD) runs

the SD mechanism on a random priority order. The
probability distribution is a uniform distribution over all
possible priority orders (permutations).

• Time complexity: Also O(n), with n as the number of
agents, since creating a random permutation also is in
O(n) (e.g. Fisher-Yates shuffle algorithm).

RSD is also strategy-proof and ex-post pareto optimal (pareto
optimal for each permutation) and anonymous.

B. Housing Markets Problem
Now we handle the assignment problem, where agents

already hold initial items, and we try to reassign those based
on each agent’s reported preferences. We want our assignment
to fulfill the core property.

1) Top Trading Cycles (TTC): The TTC mechanism essen-
tially detects trading cycles of agents and executes the trades.
This is done iteratively until there is no agent left to trade.

• Input: We take the simultaneous reports of each student,
as well as their currently held room as input.

• First iteration (k = 1): We build a directed graph with
students as nodes, while each student has one outgoing
edge pointing to the student holding their most preferred
item. We detect cycles (trading cycles), assign each agent
(from the cycle) the item of the agent they were pointing
to (trade) and remove them from the graph (with their
respective items). Let us denote S1 for the subset of
students, who traded in the first round and denote D1

for the dorm rooms that were traded in the first round.
• Further iterations (k > 1): We update the edges of the

remaining students to their most preferred items, which

are still available in the graph. Once again we detect
trading cycles and execute the trade for these students
Sk and remove them with their respective room Dk from
the graph. We repeat the process until there are no more
agents left in the graph. Note that Sk and Dk are the set
of students/rooms who trade/are traded in round k. This
is not to be confused with Rk from our SD mechanism,
which were the rooms left available in round k!

• Time complexity: O(n2) while n is the number of agents.
In each round of TTC, there is at least one cycle in the
constructed graph and no node is engaged in more than one
cycle.
In round k− 1, any student in Sk will only be part of a cycle
in the next round. These students form at least one chain,
while the head of the chain h points to a student in Sk−1,
since it can not point to a student outside of these both sets
S \ (Sk−1 ∪ Sk), because then this edge would not change in
the next round and thus not close the cycle. Naturally the head
can also not point to a student in Sk, because then they would
form a cycle that could be traded in round k−1, resulting this
cycle being part of Sk−1.

C. RSD and TTC

While the serial dictatorship sounds unfair the randomized
version also seems rudimentary. TTC seems more promising.
Still, RSD is used widely to tackle assignment problems.
One could get the idea to simulate the house allocation
problem with the housing markets problem (running the
TTC mechanism) using randomized initial assignments. This
randomization would also be a uniform distribution over all
possible assignments. Note that in our running example with
n students and dorm rooms, there would be n! possible initial
assignments. It turns out that the RSD is the same lottery
mechanism as our randomized TTC [3]. An intuition for this
is that in our TTC mechanism the different rounds form a kind
of priority order. Students from S1 have more priority than S2

and students S2 have more priority than the ones in S3 etc.
Thus using the RSD for house allocation problems seems to
be more justified now despite its simple approach.

IV. SUMMARY AND OUTLOOK

The presented mechanisms and their properties are essential
to having a safe or even fair market to participate in. Histor-
ically it shows that the right choice of matching mechanisms
had a huge impact on society. The unraveling of the medical
labor markets in the UK in the 1960s and 70s was fought
through a stable market design [4]. The mechanisms offer
flexibility, so further constraints and changes can be added.
For instance, a variance of the TTC was used in the student-
to-school assignment in the US. Also, the centralized matching
procedure in the US for matching medical students to hospitals
uses a student-proposing DA with small variations to consider
matching multiple students to one hospital [1]. Even though
the presented mechanisms are powerful solutions and are used
widely, there are still several relevant matching problems left.
To name a few there is the stable roommates problem, which



differs from the stable marriage problem in the fact that all
agents belong to the same set and can not be split into “men”
and “women”. Then there are also 1 : n matchings like the
college admissions problem, where one college can accept
multiple applicants. A more complex problem would be the
kidney paired donation, where a kidney recipient enters the
market along with a donor and these pairs have to be matched
with another compatible pair (e.g. by blood group). While
all these problems differ in their statement, the approach to
solving those is very similar and the properties which are used
are very close.
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