
Machine Learning Cheatsheet (IN2064)

(AT )T = A
(AB)T = BTAT

(A+B)T = AT +BT

A = AT ⇐⇒ A symmetric
A = −AT ⇐⇒ A anti-symmetric
trace of square matrix A is sum of diagonal elements
tr(A) =

∑n
i=1 Aii

||x||2 =
√∑n

i=1 x
2
i

||x||1 =
∑n

i=1 |xi|
||x||∞ = maxi|xi|
rank(A)=̂ number of linearly independent co-
lumns/rows
Invertable matrix =̂ Non-singular matrix =̂A−1

exists
Orthonomal matrix: columns are orthogonal
to eachother and are normalized (||x||2 = 1):
UTU = I = UUT (second equality holds only when
U is square).
Span of a set of vectors is the set of all vectors that
can be expressed as linear combination of them.
range of a matrix is span of its column vectors R(A).
Projection of y on span({x1, . . . , xn}) is
v ∈ span({x1, . . . , xn}), while ||v − y||2 is mini-
mal.
Proj(y;A) = argminv∈R(A)||v − y||2 =

A(ATA)−1AT y
Nullspace N(A) = {x ∈ Rn : Ax = 0}
A ∈ Sn, x ∈ Rn is a non-zero vector:

- xTAx > 0 =⇒ A > 0 A is PD
- xTAx ≥ 0 =⇒ A ≥ 0 A is PSD
- xTAx < 0 =⇒ A < 0 A is ND
- xTAx ≤ 0 =⇒ A ≤ 0 A is NSD
else indefinite

λ ∈ C is eigenvalue, x ∈ Cn is eigenvector if:

Ax = λx, x ̸= 0
(λI −A)x = 0

tr(A) =
∑n

i=1 λi , det(A) =
∏n

i=1 λi

rank(A) is number of nonzero eigenvalues
if eigenvectors are linearly independant: A = XΛX−1

Definiteness depends on sign of eigenvalues.

Gradient: (∇Af(A))ij =
∂f(A)
∂Aij

Hessian: (∇2
xf(x))ij =

∂2f(x)
∂xi∂xj

Linear Algebra shits and giggles

Bayes theorem P (A|B) = P (B|A)P (A)
P (B)

Normal distribution 1
σ
√
2π

exp(− 1
2 (

x−µ
σ )2)

Beta distribution Beta(a, b) = Γ(a+b)
Γ(a)Γ(b)x

a−1(1−x)β−1

Multivariant Gaussian
1

(2π)D/2|Σ|1/2 exp{−
1
2 (x− µc)

TΣ−1(x− µc)}

Probability Theory

Classification: Look at k nearest neighbors and pick
majority vote.
p(y = c|x, k) = 1

k

∑
i∈Nk(x)

I(yi = c)

ŷ = argmaxcp(y = c|x, k)
Weighted k-NN:
p(y = c|x, k) = 1

Z

∑
i∈Nk(x)

1
d(x,xi)

I(yi = c)

Z =
∑

i∈Nk(x)
1

d(x,xi)

d(x, xi) distance between x, xi

Regression:
ŷ = 1

Z

∑
i∈Nk(x)

1
d(x,xi)

yi
ŷ will be the weighted mean of neighbors
Distance measures:
L1 norm:

∑
i |ui − vi|

L2 norm:
√∑

i(ui − vi)2

L∞ norm: maxi|ui − vi|
Mahalanobis distance:

√
(u− v)TΣ−1(u− v), (Σ) is

P(S)D and symmetric
Circument scaling issues:
Data standardization: xi,std = xi−µi

σi

use mahalanobis distance with Σ = diag(σ2
1 , . . . , σ

n
n)

K Nearest Neighbors

Classification: p(y = c|R) =
nc,R∑

ci∈C nci,R

ŷ = argmaxcp(y = c|x) = argmaxcnc,R

Improvement of split:
δi(s, t) = i(t)− pLi(tL)− pRi(tR)
Impurity measures (πc = p(y = c|t))
Misclassification rate: iE = 1−maxcπc

Entropy: iH = −
∑

ci
πci log2(πci)

Gini-index: iG = −
∑

ci
πci(1− πci) = 1−

∑
ci∈C π2

ci
Regression:
At leaves use mean instead over outputs
Use mean squared error as splitting heuristic

Decision Trees

MLE
θMLE = argmaxθp(D|θ)
Here in MLE we are trying to guess/estimate our ran-
dom variable θ. We assume our data D is distributed
depending on θ. So θMLE is our best guess. Looking
at D, θMLE seems to be the most likely θ.
Bayesian Inference:

p(θ|D) = p(D|θ)p(θ)
p(D)

Maximum a posteriori:
Estimating the MAP takes prior beliefs into account
and thus performs well if less data if available.
θMAP = argmaxθp(θ|D)

= argmaxθ
p(D|θ)p(θ)

p(D)

= argmaxθp(D|θ)p(θ)
Estimating the posterior distribution:
Finding p(θ|D) boils down to finding p(D). (Use pat-
tern matching)
Full Bayesian approach/analysis:

p(y|D) =
´ 1
0
p(y, θ|D)dθ

=
´ 1
0
p(y|θ,D)p(θ|D)dθ =

´ 1
0
p(y|θ)p(θ|D)dθ

Probabilistic Inference

Linear regression: f(x) = wTx
Least squared loss function:
ELS(w) =

1
2

∑N
i=1(w

Txi − yi)
2

Closed form:
w∗ = argminw

1
2 (Xw − y)T (Xw − y)

= (XTX)−1XT y(= wML)
Polynomial model: ϕj = Rd → R :
fw(x) = wTϕ(x)
ELS(w) =

1
2 (Φw − y)T (Φw − y)

w∗ = (ΦTΦ)−1ΦT y
Ridge regression: (controls overfitting)

Eridge(w) =
1
2

∑N
i=1[w

Tϕ(xi)− yi]
2 + λ

2 ||w||
2
2

equivalent to MAP estimation with Gaussian prior.
w∗

ridge = (ΦTΦ+ λI)−1ΦT y

Linear regression
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Hyperplane as decision boundary defined by normal
vector w

wTx


= 0, if x on plane

> 0, if x normals side (class 1)

< 0, else
Generative model:
to obtain posterior p(y = c|x) ∝ p(x|y = c)p(y = c)
class conditionals p(x|y = c) we choose multivariant
normal
LDA:
posterior: p(y = 1|x) = . . . = 1

1+exp(−a) = σ(a)

a = log(p(x|y=1)p(y=1)
p(x|y=0)p(y=0) ) = . . . = wTx+ w0

w = Σ−1(µ1 − µ0)
w0 = − 1

2µ
T
1 Σ

−1µ1+
1
2µ

T
0 Σ

−1µ0+log p(y = 1)p(y = 0)
=⇒ p(y = 1|x) = σ(wTx+ w0)
For more classes we use softmax function:
σi =

exp(xi)∑K
k=1 exp(xk)

Naive Bayes:
continous data with likelihood as gaussian:
p(x|y = c) = N (x|µc,Σc) → different Σc for each
class unlike LDA!
a = xTW2x + wT

1 x + w0 → quadratic decision boun-
dary
Discriminative model:
Logistic regression: y|x ∼ Bernoulli(σ(wTx + w0)),
w,w0 free parameters
E(w)

=
∑N

i=1(yi log(σ(w
Txi)) + (1− yi log(1− σ(wTxi)))

binary cross entropy, w∗ = argminE(w), also exists
with regularization
Multiclass logistic regression:

E(w) = −
∑N

i=1

∑C
c=1 yi,c log(

exp(wcx
T )∑

c′ exp(w
T
c x)

), with yic
one hot vector

Linear Classification

Convexity: X is a convex set
⇐⇒ ∀x, y ∈ X.λx+ (1− λ)y ∈ X,λ ∈ [0, 1]
f(x) is convex on X ⇐⇒
∀x, y ∈ X.λf(x) + (1− λ)f(y) ≥ f(λx+ (1− λ)y)
λ ∈ [0, 1]
each local minimum is a global minimum
f(y) ≥ f(x) + (y − x)T∇f(x)
∇2f(x) ≥ 0 (PSD)

Optimization

Convexity preserving operations:
let f1 : Rd → R, f2 : Rd → R be convex, and
g : Rd → R be concave.

- h(x) = f1(x) + f2(x) is convex
- h(x) = max{f1(x), f2(x)} is convex
- h(x) = c ∗ f1(x) is convex if c ≥ 0
- h(x) = c ∗ g1(x) is convex if c ≤ 0
- h(x) = f1(Ax+ b) is convex
- h(x) = m(f1(x)) is convex if m : R → R is

convex and non decreasing
Gradient descent:
repeat:
1. ∆θ := −∇(θ)
2. Linesearch: t∗ = argmint>0f(θ + t∆θ)
3. Update θ := θ + t∗∆θ
until stopping criterion satisfied.
Introduce learning rate

θt+1 ← θt−τ ∇∆θ

{
τtoo small→ slow convergence

τtoo big→ overshooting, oscillation

Use learning rate adaption!
Newton method ?!
Stochastic gradient descent:
1. randomly pick a small subset (S) of the points
(minibatch)
2. compute gradient descent on minibatch
3. update θt+1 ← θt − τ ∗ n

|S|
∑

j∈S ∇Lj(θt)

4. pick new subset and repeat with 2
A full iteration through the data D = S1 ∪ . . .∪ Sn is
called epoch. (Si disjoint)

Optimization

Instead of adding linear transformations (like in
logistic regression) we can learn these linear transfor-
mations too.
(learn wijk where i=layer, j=input node, k=output
node)
Use cross entropy for loss function
By adding more hidden layers we get a deep neural
network

Deep Learning

Activation functions:
Sigmoid: σ(x) = 1

1+e−x

ReLU(x) = max{0, x}

ELU(x) =

{
x x ≥ 0

α(e−x − 1) else

tanh(x)
Leaky ReLU max(0.1x, x)
Swish xσ(x)
Functions that can be compactly represented with k
layers may require exponentially many hidden units
when using k − 1 layers.
Different tasks

Target p(y|x) Final layer Loss function

Binary Bernoulli Sigmoid Bin-cross entropy
Discrete Categorical Softmax cross entropy
Continous Gaussian Identity Squared error

For optimization often use gradient descent.

Deep Learning

Linear classifier, find hyperplane with biggest margin
between two classes. m = 2

||w||
wTxi + b ≥ 1 for yi = 1
wTxi + b ≤ 1 for yi = −1
=⇒ yi(w

Txi + b) ≥ 1
Minimize f0(w, b) =

1
2w

Tw
subject to fi(w, b) = yi(w

Txi + b)− 1 ≥ 0
Use Lagrangian:
L(w, b, α) = 1

2w
Tw −

∑N
i=1 αi[yi(w

Txi + b)− 1]

w =
∑N

i=1 αiyixi

if αi ̸= 0, point lies on margin (support vector)
Soft margin SVM:
introduce slack variables: ηi ≥ 0
g(α) =

∑N
i=1 αi − 1

2

∑
i

∑
j yiyjαiαjx

T
i xj

Subject to
∑

i αiyi = 0
0 ≤ αi ≤ C
Rewrite as unconstrained:
minw,b

1
2w

Tw + C
∑N

i=1 max{0, 1 − yi(w
Txi + b)}

(hinge)

Support Vector Machines

2



ϕ : RD → RM to make data linearly separable.
Kernel is valid if
k(x1, x2) = ϕ(x1)

Tϕ(x2) can be represented as
product
Kernel matrix

K =

k(x1, x1) . . . k(x1, xN )
. . . . . . . . .

k(xN , x1) . . . k(xN , xN )

 is PSD

Kernel preserving operations:
k1 : X × X → R, k2 : X × X → R,X ⊆ RM

- k(x1, x2) = k1(x1, x2) + k2(x1, x2)
- k(x1, x2) = c ∗ k1(x1, x2) with c > 0
- k(x1, x2) = k1(x1, x2) ∗ k2(x1, x2)
- k(x1, x2) = k1(ϕ(x1), ϕ(x2))
- k(x1, x2) = x1Ax2 A square, symmetric, PSD

Kernels
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