Machine Learning Cheatsheet (IN2064)

Linear Algebra shits and giggles

(AT)T = A
(AB)T = BT AT
(A+B)T = AT + BT

A= AT < A symmetric

A=—-AT < A anti-symmetric

trace of square matrix A is sum of diagonal elements
tr(A) =35y Aii

llzll2 = /3oy o7

llzl]r = 325 |l

|2]|oe = maw;|a;|

rank(A)= number of linearly independent co-
lumns/rows

Invertable matrix = Non-singular matrix =A~!
exists

Orthonomal matrix: columns are orthogonal

to eachother and are normalized (||z|lz = 1):
UTU = I = UUT (second equality holds only when
U is square).

Span of a set of vectors is the set of all vectors that
can be expressed as linear combination of them.
range of a matrix is span of its column vectors R(A).

Projection of y on span({z1,...,z,}) s
v € span({z1,...,2,}), while |[|[v — y||o is mini-
mal.

Proj(y;A) = argmingepullv — yllz =

A(ATA) =1 ATy

Nullspace N(A) = {z € R" : Az =0}

A € S™ x € R™ is a non-zero vector:
-2TAz >0 = A>0AisPD
-2TAx >0 = A>0Ais PSD
-2TAz <0 = A<0AisND
-2TAr <0 = A<0AisNSD
else indefinite

A € C is eigenvalue, z € C” is eigenvector if:

Az = Az,x #0
(M —-A)z=0

tr(A) =31 N, det(A) =TT, \i

rank(A) is number of nonzero eigenvalues

if eigenvectors are linearly independant: A = XAX !
Definiteness depends on sign of eigenvalues.

Gradient: (Vaf(A4)):; = aaféi)

Hessian: (V2 f(x));; = giféi)

Probability Theory
(B|A)P(A)

Bayes theorem P(A|B) = PPW
3(554)?)

T'(a+b a— N\B—
r(gz)r(z);)m M1 —a)ft

(m - ,Uc)}

Normal distribution a\lﬁ exp(—

Beta distribution Beta(a, b) =

Multivariant Gaussian
(.I - ,uc)TZ

(27T)D/2|E‘1/2 exp{

\.

K Nearest Neighbors

Classification: Look at k£ nearest neighbors and pick
majority vote.
ply = cla,k) = £ Ym0 s = ©)
9 = argmax p(y = c|z, k)
Weighted k-NN
py =clz, k) =5 ZLeNk(x) d(z, L)H(yz =c)
Z = ZzeNk(x d(m D)
d(x,x;) distance between z, x;
Regression:
1 will be the weighted mean of neighbors
Distance measures:
Ly norm: ), |u; — v
Lo norm: />, (u; —v;)?
Lo norm: max;|u; — v
Mahalanobis distance: +/(u —v)T$~
P(S)D and symmetric
Circument scaling issues:
Data standardization: x; ¢tq =

Hu —w),(2) is

Li—Hi
[er3
use mahalanobis distance with ¥ = diag(c?,...,0")

’ n

\.

Decision Trees

Classification: p(y = ¢|R) =

Nec,R
§ = argmax p(y = c|z) = argmax n. g
Improvement of split:
di(s,t) = i(t) — pri(tr) — pri(tr)
Impurity measures (7. = p(y = c|t))
Misclassification rate: ig = 1 — max,.m,
Entropy: ip = — Zci e, logy(me,)
Gini-index: i = = . m,(1 —m,) =1 -
Regression:
At leaves use mean instead over outputs
Use mean squared error as splitting heuristic

ZcieC 7T31

Probabilistic Inference

MLE
HA[LE = argmaxgp(D|9)
Here in MLE we are trying to guess/estimate our ran-
dom variable 6. We assume our data D is distributed
depending on 0. So OppE is our best guess. Looking
at D, 0/ seems to be the most likely 6.
Bayesian Inference:
p(8]D) = BEEH
Maximum a posteriori:
Estimating the MAP takes prior beliefs into account
and thus performs well if less data if available.
Oriap = argmaxyp(0|D)
p(D]0)p(0)

p(D)
= argmaxyp(D|0)p(0)
Estimating the posterior distribution:
Finding p(6|D) boils down to finding p(D). (Use pat-
tern matching)
Full Bayesian approach/analysis:

y|D fo (y,0|D)do
— [} plyl6. DIp(6ID)6 = J} p(ylo)p(6|D)ds

= argmax,

Linear regression
T

Linear regression: f(z) =w'z
Least square(%v loss function:
Ers(w) = % Zz‘:l(wT%‘ - yi)2
Closed form:
w* = argmin,, 1 (Xw — )T (Xw — y)
= (XTX)"' X"y(= wur)
Polynomial model: ¢; = R 5 R:
fuw(z) = wT(b(JJ)
Ers(w) = 5(®w —y)" (dw — y)
w* = (@T@)flq)Ty
Ridge regression: (controls overfitting)
N
Briage(w) = 5 s, [w” o(x:) — yil> + 3[[wl]3
equivalent to MAP estimation with Gaussian prior.
whg. = (®T® + AI)~1eTy

ridge




\

Linear Classification

Hyperplane as decision boundary defined by normal
vector w
= 0, if x on plane

w2z { > 0,if x normals side (class 1)

< 0,else
Generative model:
to obtain posterior p(y = c|z) x p(z|ly = ¢)p(y = ¢)
class conditionals p(z|y = ¢) we choose multivariant

normal
LDA:

L, — — — 1 —
posterior: p(y = 1[z) = ... = 5= = 0(a)
= log(p(rlyzl)p(yzl)) — . =wlz 4w

p(z|y=0)p(y=0)
w=%""(u1 — po)
wo = =51 X+ 5pd S po+Hlog ply =
= p(y =1|z) = o(w"z + wo)

For more classes we use softmax function:
exp(z;)

ey exp(z)
Naive Bayes:

continous data with likelihood as gaussian:

plzly = ¢) = N(z|pe,X.) — different X, for each
class unlike LDA!

a =z Wex + w{a: + wy — quadratic decision boun-
dary

Discriminative model:

Logistic regression: y|z ~ Bernoulli(o(w?z + wy)),
w, wq free parameters

E(w)

= >l (gilog(o(wTe;)) + (1 — y;log(1 — o(w”;)))
binary cross entropy, w* = argminF(w), also exists
with regularization

Multiclass logistic regression:

g; =

exp(wez?)

N c .
Elw) = =32im1 2 e yi,CIOg(m)a with yic
one hot vector

Optimization

) S —

Deep Learning

Optimization

Convexity: X is a convex set

= Vr,ye X+ (1-Nye X, Ae[0,1]

f(x) is convex on X <=

Vo,y € XAf(x) + (1 =N f(y) =2 f(Az+ (1= N)y)
A€ 0,1]

each local minimum is a global minimum

fy) = fx) + (y —2)"V f(z)

V2f(z) >0 (PSD)

Deep Learning

Convexity preserving operations:
let 1 : R? - R, fo : RY¥ - R be convex, and
g : R? = R be concave.
- h(z) = fi(z) + folx ) is convex
- h(z) = max{fi(x), f2(z)} is convex
- h(z) = c* fi(x) is convex if ¢ > 0
- h(x) = cx g1(x) is convex if ¢ <0
- h(x) = f1(Az + b) is convex
- h(z) = m(fi(x)) is convex if m : R — R is
convex and non decreasing
Gradient descent:
repeat:
1. Af:=-V(0)
2. Linesearch: t* = argmin,. o f(6 + tA0)
3. Update 6 := 0 + t* A6
until stopping criterion satisfied.
Introduce learning rate

b1 O—7 VA Tt00 Sr.nall — slow cotllvergen.ce '
Ttoo big — overshooting, oscillatio

Use learning rate adaption!

Newton method ?!

Stochastic gradient descent:

1. randomly pick a small subset (S) of the points

(minibatch)

2. compute gradient descent on minibatch

3. update 6,41 + 0, — 7 % % ZjES VL;(6:)

4. pick new subset and repeat with 2

A full iteration through the data D = Sy U

called epoch. (S; disjoint)

UG, s

—

Support Vector Machines

Instead of adding linear transformations (like in
logistic regression) we can learn these linear transfor-
mations too.

(learn w;;; where i=layer, j=input node, k=output
node)

Use cross entropy for loss function

By adding more hidden layers we get a deep neural
network

Activation functions:

Sigmoid: o(z) = 1-%%
ReLU(z) = max{0,z}
>
ELU(x) =" z20
ale™™ —1) else
tanh(x)

Leaky ReLU max(0.1z, x)

Swish zo(z)

Functions that can be compactly represented with &
layers may require exponentially many hidden units
when using k£ — 1 layers.

Different tasks

H Target p(y|x) Final layer Loss functior
Binary Bernoulli Sigmoid Bin-cross entjro
Discrete  Categorical ~ Softmax cross entropy
Continous  Gaussian Identity Squared ertor

For optimization often use gradient descent.

Linear classifier, find hyperplane with biggest margin
between two classes. m = ﬁ

b>1fory, =1
-1

wlz; +
wlz; +b <1 for gy,
= yi(wTz; +b) >
Minimize fo(w,b) =
subject to f;(w,b) =
Use Lagrangian:
L(w,b,a) = %wTw — Zivzl a;lyi(wla; +b) — 1]

N
w = Zizl Q3YiTq
if a; # 0, point lies on margin (support vector)
Soft margin SVM:
introduce slack variables: 7; > 0
g(a) = 2511 QG — % Zl Zj yiyjaiajxisz
Subject to >, a;y; =0
Rewrite as unconstrained:
mz’n/uw%wTw + C’Zfil max{0,1 — y;(wlz; + b)}
(hinge)

wlw

1
1
2 W
yi(wlz; +b) —1>0




¢ : RP — RM to make data linearly separable.
Kernel is valid if

k(z1,22) = ¢(x1)T¢(x2) can be represented as
product
Kernel matrix
k(xy,z1) k(z1,zN)
K= is PSD
k(zn,z1) k(zn,zN)

Kernel preserving operations:
Bl XXX 2R ky: XxX R XCRM
- k(w1,22) = k1 (21, 22) + k2(21, 2)

- k(z1,22) = cx ki(x1,x2) with ¢ > 0

- k(w1,20) = k1 (21, 22) * ka(21, 22)

- k(x1,22) = ki(o(x1), o(x2))

- k(x1,x2) = x1 Axa A square, symmetric, PSD




