PERSONAL - Finding Loop Invariants

Tips for finding_Loop Invariants

TL;DR: Short Summary

e Tip 1: invariant must contain variable we operate on and must be as precise as possible
e Tip 2: "loop-carried" variables must be included in the loop invariant
e Tip 3: create generalized tables to visualize the connections between variables inside the loop

e Tip 4: there must be a relation between the variables needed to calculate x in the loop and after
the loop

e Tip 5: if the loop condition contains inequality, the counter should be "limited on the opposite side"
in order to reach equality

e Tip 6: if certain program inputs are restricted, these restrictions about input variables should be
included in the loop invariant

e Tip 7: if the variable in our loop invariant depends on some other value, it needs to be included in
some way in our loop invariant

e Tip 8: when proving termination, 7 must be included in the loop invariant
e Tip 8.5: when proving termination, all variables required for calculating 7 must be included in the
loop invariant

Detailed Tips

e Tip 1: invariant must contain variable we operate on and must be as precise as possible
o example:

= ¢ > 0 would be a bad invariant, since we cannot imply x = 2n
= similarly, > 0 would also be a bad invariant, since we still cannot imply x = 2n

= x = 2%, however, would suffice

https://ttt.in.tum.de/recordings/Info2_2017_11_24-1/Info2_2017_11_24-1.mp4

e Tip 2: "loop-carried" variables (variables which depend on their value from the previous loop
iteration) must be included in the loop invariant

o example:

L = 22:0 3k would be a bad invariant, since we know nothing about Y

= 22:0 3k A y = 3i would work, however

= if, instead, y was not dependent on its previous value, T = ZZ:O 3k would suffice

o Tip 3: create generalized tables to visualize the connections between variables inside the loop
o example:

» weseethaty =iland z = 2 22:0 k!

#lela 2 . i
ilefa 2 . i
X112 2 2 . 2
+ 2 *1|+2 *1 + 2 *1
+ 2 ¥ 1 % 32 + 2 %1 % 2
+
+ 2 %1%, *1
yil|1l 1#* 2 . 1#=2% ... %1

= as such, a good invariant would be the conjunction of these two, namely x =
i .
2> ok Nny =1

=
Il
Il
Il
-
1]
M
=
=
_=
o)

e Tip 4: there must be a relation between the variables needed to calculate x in the loop and after
the loop

o example:

= 2 = 2i% — 32 cannot imply 2n? + 16|n
and i or k

: there needs to be some connection between n

» we see that k = |n| + 4, and incorporating this into our loop invariant would allow us to
make the needed connection (I = k = |n| + 4 A z = 2i* — 32)

<>

k
Ik

b
k =k + 4

I ===k=|n| +4AND x = 2i"- 32 fp—
}FES=HD

e Tip 5: if the loop condition contains inequality, the counter should be "limited on the opposite side"

in order to reach equality (e.g. if ¢ is decremented, include ¢ > 0, else if ¢ is incremented, include
1< n)

x = 2n + 16|n]|

o example:

= compared to previous examples, x = 27 would not suffice, since we cannot imply that 7 >
n (we need to show that, at that moment, 2 = n holds)

= we make our assertion stronger: (i < nAx =2i)V(i>nAx=2n) <= (i<nA
r=2i)V(i=nAz=2n)

= eventually, we reach x = 2¢ A 7 < n, but x = 21 still does not imply this assertion,
meaning we must include ¢ < ninour assertion (I = x =2i A1 < n)

21 AND i <= n

=
Il
1
Il
-
Il

¢ Tip 6: if certain program inputs are restricted (e.g. having to take the absolute value of an input n

to only allow positive integers), these restrictions about input variables should be included in the
loop invariant

o example:

= this program doesn't work for some negative n...

[
Il
Il
Il

-
Il

2i AND i <= n

= as such, some construct is most likely included before the loop to handle problematic
inputs, which must be accounted for in the loop invariant

...AND n >= 8

e Tip 7: if the variable in our loop invariant depends on some other value, it needs to be included in
some way in our loop invariant - if the value constantly fluctuates between one value and another, a
simple formula will do, otherwise, do case-by-case if-then-else analysis (e.g. (cl —) VAN
(cn = ..)))

o example:

= x is dependent on the value b, which is either 0 or 1 in any iteration (but 0 when we're
done)

= as such, a simple formula I = x = 47 + b suffices

b - b

4
=1
|

¢ Tip 8: when proving termination, 7 must be included in the loop invariant

e Tip 8.5: when proving termination, all variables required for calculating 7 must be included in the
loop invariant

