PERSONAL - Finding Loop Invariants

Tips for finding Loop Invariants

TL;DR: Short Summary

- Tip 1: invariant must contain variable we operate on and must be as precise as possible
- Tip 2: "loop-carried" variables must be included in the loop invariant
- Tip 3: create generalized tables to visualize the connections between variables inside the loop
- Tip 4: there must be a relation between the variables needed to calculate x in the loop and after the loop
- Tip 5: if the loop condition contains inequality, the counter should be "limited on the opposite side" in order to reach equality
- Tip 6: if certain program inputs are restricted, these restrictions about input variables should be included in the loop invariant
- Tip 7: if the variable in our loop invariant depends on some other value, it needs to be included in some way in our loop invariant
- Tip 8: when proving termination, r must be included in the loop invariant
- Tip 8.5: when proving termination, all variables required for calculating r must be included in the loop invariant

Detailed Tips

- Tip 1: invariant must contain variable we operate on and must be as precise as possible - example:
- $i \geq 0$ would be a bad invariant, since we cannot imply $x=2 n$
- similarly, $x \geq 0$ would also be a bad invariant, since we still cannot imply $x=2 n$
- $x=2 i$, however, would suffice

- Tip 2: "loop-carried" variables (variables which depend on their value from the previous loop iteration) must be included in the loop invariant
- example:
- $x=\sum_{k=0}^{i} 3 k$ would be a bad invariant, since we know nothing about y
- $x=\sum_{k=0}^{i} 3 k \wedge y=3 i$ would work, however

- if, instead, y was not dependent on its previous value, $x=\sum_{k=0}^{i} 3 k$ would suffice

- Tip 3: create generalized tables to visualize the connections between variables inside the loop
- example:
- we see that $y=i$! and $x=2 \sum_{k=0}^{i} k$!

\#	0	1	2	...	i
i	0	1	2	...	i
x	2	$\begin{aligned} & 2 \\ & +2 * 1 \end{aligned}$	$\begin{aligned} & \hline 2 \\ & +2 * \\ & +2 * 1 \\ & +2 * 1 * 2 \end{aligned}$	\cdots	
y	1	1	$1{ }^{*} 2$. .	1* ${ }^{*}$ * \ldots * i

- as such, a good invariant would be the conjunction of these two, namely $x=$ $2 \sum_{k=0}^{i} k!\wedge y=i!$

- Tip 4: there must be a relation between the variables needed to calculate x in the loop and after the loop
- example:
- $x=2 i^{2}-32$ cannot imply $2 n^{2}+16|n|$; there needs to be some connection between n and i or k
- we see that $k=|n|+4$, and incorporating this into our loop invariant would allow us to make the needed connection ($I \equiv k=|n|+4 \wedge x=2 i^{2}-32$)

- Tip 5: if the loop condition contains inequality, the counter should be "limited on the opposite side" in order to reach equality (e.g. if i is decremented, include $i \geq 0$, else if i is incremented, include $i \leq n$)
- compared to previous examples, $x=2 i$ would not suffice, since we cannot imply that $i \geq$ n (we need to show that, at that moment, $i=n$ holds)
- we make our assertion stronger: $(i<n \wedge x=2 i) \vee(i \geq n \wedge x=2 n) \Longleftarrow(i<n \wedge$ $x=2 i) \vee(i=n \wedge x=2 n)$
- eventually, we reach $x=2 i \wedge i \leq n$, but $x=2 i$ still does not imply this assertion, meaning we must include $i \leq n$ in our assertion ($I \equiv x=2 i \wedge i \leq n$)

- Tip 6: if certain program inputs are restricted (e.g. having to take the absolute value of an input n to only allow positive integers), these restrictions about input variables should be included in the loop invariant
- example:
- this program doesn't work for some negative n...

- as such, some construct is most likely included before the loop to handle problematic inputs, which must be accounted for in the loop invariant

- Tip 7: if the variable in our loop invariant depends on some other value, it needs to be included in some way in our loop invariant - if the value constantly fluctuates between one value and another, a simple formula will do, otherwise, do case-by-case if-then-else analysis (e.g. $(c 1 \Longrightarrow \ldots) \wedge \ldots \wedge$ $\left.\left(c_{n} \Longrightarrow \ldots\right)\right)$
- example:
- x is dependent on the value b, which is either 0 or 1 in any iteration (but 0 when we're done)
- as such, a simple formula $I \equiv x=4 i+b$ suffices

- Tip 8: when proving termination, r must be included in the loop invariant
- Tip 8.5: when proving termination, all variables required for calculating r must be included in the loop invariant

