
PERSONAL - Finding Loop Invariants

Tips for finding Loop Invariants

TL;DR: Short Summary

Tip 1: invariant must contain variable we operate on and must be as precise as possible

Tip 2: "loop-carried" variables must be included in the loop invariant

Tip 3: create generalized tables to visualize the connections between variables inside the loop

Tip 4: there must be a relation between the variables needed to calculate in the loop and after
the loop

Tip 5: if the loop condition contains inequality, the counter should be "limited on the opposite side"
in order to reach equality

Tip 6: if certain program inputs are restricted, these restrictions about input variables should be
included in the loop invariant

Tip 7: if the variable in our loop invariant depends on some other value, it needs to be included in
some way in our loop invariant

Tip 8: when proving termination, must be included in the loop invariant

Tip 8.5: when proving termination, all variables required for calculating must be included in the
loop invariant

Detailed Tips

Tip 1: invariant must contain variable we operate on and must be as precise as possible

example:

 would be a bad invariant, since we cannot imply

similarly, would also be a bad invariant, since we still cannot imply

, however, would suffice

x

r

r

i ≥ 0 x = 2n

x ≥ 0 x = 2n

x = 2i

https://ttt.in.tum.de/recordings/Info2_2017_11_24-1/Info2_2017_11_24-1.mp4

Tip 2: "loop-carried" variables (variables which depend on their value from the previous loop
iteration) must be included in the loop invariant

example:

 would be a bad invariant, since we know nothing about

 would work, however

if, instead, was not dependent on its previous value, would suffice

Tip 3: create generalized tables to visualize the connections between variables inside the loop

example:

we see that and

x = ​ 3k∑k=0
i

y

x = ​ 3k ∧∑
k=0
i

y = 3i

y x = ​ 3k∑k=0
i

y = i! x = 2 ​ k!∑k=0
i

as such, a good invariant would be the conjunction of these two, namely

Tip 4: there must be a relation between the variables needed to calculate in the loop and after
the loop

example:

 cannot imply ; there needs to be some connection between
and or

we see that , and incorporating this into our loop invariant would allow us to
make the needed connection ()

Tip 5: if the loop condition contains inequality, the counter should be "limited on the opposite side"
in order to reach equality (e.g. if is decremented, include , else if is incremented, include

)

example:

x =
2 ​ k! ∧∑k=0

i
y = i!

x

x = 2i −2 32 2n +2 16∣n∣ n

i k

k = ∣n∣ + 4
I ≡ k = ∣n∣ + 4 ∧ x = 2i −2 32

i i ≥ 0 i

i ≤ n

compared to previous examples, would not suffice, since we cannot imply that
 (we need to show that, at that moment, holds)

we make our assertion stronger:

eventually, we reach , but still does not imply this assertion,
meaning we must include in our assertion ()

Tip 6: if certain program inputs are restricted (e.g. having to take the absolute value of an input
to only allow positive integers), these restrictions about input variables should be included in the
loop invariant

example:

this program doesn't work for some negative ...

as such, some construct is most likely included before the loop to handle problematic
inputs, which must be accounted for in the loop invariant

x = 2i i ≥
n i = n

(i < n ∧ x = 2i) ∨ (i ≥ n ∧ x = 2n) ⟸ (i < n ∧
x = 2i) ∨ (i = n ∧ x = 2n)

x = 2i ∧ i ≤ n x = 2i
i ≤ n I ≡ x = 2i ∧ i ≤ n

n

n

Tip 7: if the variable in our loop invariant depends on some other value, it needs to be included in
some way in our loop invariant - if the value constantly fluctuates between one value and another, a
simple formula will do, otherwise, do case-by-case if-then-else analysis (e.g.

)

example:

 is dependent on the value , which is either or in any iteration (but when we're
done)

as such, a simple formula suffices

Tip 8: when proving termination, must be included in the loop invariant

Tip 8.5: when proving termination, all variables required for calculating must be included in the
loop invariant

(c1 ⟹ ...) ∧ ... ∧
(c ​ ⟹n ...)

x b 0 1 0

I ≡ x = 4i + b

r

r

