
PERSONAL - Data Structures and Algorithms

Complexity

Different Cases

Landau-Notation

Properties of Big O Notation

Time Complexity

Expected Values

Amoritzed Analysis (Accounting Method)

Hashing

Hashing with Chaining

Universal Hashing

Perfect Hashing

Linear Probing

Sorting Algorithms and their Complexities

SelectionSort

InsertionSort

MergeSort

QuickSort

RadixSort

HeapSort

Summary of Sorting Algorithm Complexities

Selection using QuickSelect

Recursion Analysis and Master Theorem

Data Structures

Priority Queues

Binary Tree

Binary Heaps

Binary Heap example using Max-Heap

Binomial Trees

Binomial Heaps

Binary Search Tree

AVL-Trees

Summary: AVL-Tree Rotations

(a,b)-Trees

Graphs

Connectivity

Shortest Paths (SSSP)

DAG - Topological Sorting

Dijkstra’s Algorithm

Bellman-Ford

Shortest Paths (APSP)

Floyd-Warshall’s Algorithm

Johnson’s Algorithm

Minimum Spanning Trees

EDITOR’S NOTE: I highly recommend watching videos/demos of these topics and/or playing
around with these algorithms and concepts yourself, the definitions and examples in text form won’t
be enough to fully understand the concept behind these algorithms - they are merely here to
provide a rough blueprint

try and do the tutorial exerices, solve old exams or use a tool like TUMGAD to automatically
generate exercises and corresponding solutions

Complexity

Time Complexity: relation between growth of runtime and growth of input

: set of instances of an algorithm with different inputs

: runtime of an algorithm, usually measured in an actual unit of time (e.g.
nanoseconds)

Space Complexity: relation between used space / memory and growth of input

Different Cases

: set of instances of size

worst case:

pessimistic, but guarantees efficiency

average case: if , else

average, but doesn’t necessarily define usual behavior

best case:

I

T : I → N

I ​n n

t(n) = max{T (i) : i ∈ I ​}n

t(n) = ​ ​T (i)∣I ​∣n
1 ∑

i∈I ​n
I ​ ∈n N t(n) = ​P [i] ⋅∑

i∈I ​n
T (i)

t(n) = min{T (i) : i ∈ I ​}n

https://github.com/ossner/TUMGAD
https://en.wikipedia.org/wiki/Computational_complexity
https://en.wikipedia.org/wiki/Time_complexity
https://en.wikipedia.org/wiki/Space_complexity

best result possible, but very optimistic

Landau-Notation

limiting behavior when the argument tends towards a particular value or infinity

functions that do not grow faster asymptotically than (upper asymptotic bound)

 is at most a positive constant multiple of for all sufficiently
large values of

functions that grow slower than

functions that do not grow slower asymptotically than (lower asymptotic bound)

functions that grow faster than

functions that have the same growth rate as

 and

(!)

(!)

some use case examples…

, but also (also included in “greater” sets, since
defines the upper bound)

, but also (also included in “lesser” sets, since defines the lower
bound)

 (only one, since defines the intersection between the two previous
sets!)

placeholders:

instead of , one can write

instead of for , one can write

instead of , one can write

example:

-definitions:

g ∈ O(f(n)) = {g(n) ∣ ∃c > 0 ∃n ​ >0 0 ∀n ≥ n ​ :0 g(n) ≤ c ⋅ f(n)}

f

g(n) ∈ O(f(n)) ≡ g f

n

g ∈ o(f(n)) = {g(n) ∣ ∀C > 0 ∃n ​ >0 0 ∀n ≥ n ​ :0 g(n) ≤ C ⋅ f(n)}

f

o(f(n)) ⊆ O(f(n))

g ∈ Ω(f(n)) = {g(n) ∣ ∃c > 0 ∃n ​ >0 0 ∀n ≥ n ​ :0 g(n) ≥ c ⋅ f(n)}

f

g ∈ ω(f(n)) = {g(n) ∣ ∀C > 0 ∃n ​ >0 0 ∀n ≥ n ​ :0 g(n) ≥ C ⋅ f(n)}

f

ω(f(n)) ⊆ Ω(f(n))

g ∈ Θ(f(n)) = O(f(n)) ∩ Ω(f(n))

f

Θ(f(n)) ⊆ O(f(n)) Θ(f(n)) ⊆ Ω(f(n))

ω(f(n)) ∩ o(f(n)) = ∅

f(n) ∈ o(g(n)) ⟹ g(n) ∈ ω(f(n))

5n −2 7n ∈ O(n)2 O(n), O(n)...3 4 O

5n −2 7n ∈ Ω(n)2 Ω(n) Ω

5n −2 7n ∈ Θ(n)2 Θ

g(n) ∈ O(f(n)) g(n) = O(f(n))

f(n) + g(n) g(n) ∈ o(h(n)) f(n) + o(h(n))

O(f(n)) ⊆ O(g(n)) O(f(n)) = O(g(n))

n +3 n = n +3 o(n) =3 n (1 +3 o(1)) = O(n)3

lim

https://en.wikipedia.org/wiki/Big_O_notation

some more criteria:

when doing -calculations…

…for proving or , one can use in the proof

…for proving or , one can use in the proof

rules for -calculations:

L’Hospital:

if the result of is undefined, e.g. , , , , or , use L’Hospital’s
rule

logarithm rules:

from best to worst…
1.

2.

3.

4.

lim ​ ∣ ​∣ =n→∞ g(n)
f(n) 0 ⟹ f(n) ∈ o(g(n))

lim ​ ∣ ​∣ =n→∞ g(n)
f(n) 1 ⟹ f(n) ∈ ω(g(n))

lim ​ ∣ ​∣ =n→∞ g(n)
f(n) ∞ ⟹ f(n) ∈ ω(g(n))

lim ​ ∣ ​∣ =n→∞ g(n)
f(n)

c, 0 < c < ∞ ⟹ f(n) ∈ Θ(g(n))

f(n) ∈ O(g(n)) ⟺ lim ​ ∣ ​∣ <n→∞ g(n)
f(n) ∞

f(n) ∈ Ω(g(n)) ⟺ lim ​ ∣ ​∣ >n→∞ g(n)
f(n) 0

lim

f(x) ∈ o(g(x)) f(x) ∈ O(g(x)) ≤

f(x) ∈ ω(g(x)) f(x) ∈ Ω(g(x)) ≥

lim

lim ​ c ⋅n→∞ f(n) = c ⋅ (lim ​ f(n))n→∞

lim ​(f(n) +n→∞ g(n)) = lim ​ f(n) +n→∞ lim ​ g(n)n→∞

lim ​(f(n) ⋅n→∞ g(n)) = lim ​ f(n) ⋅n→∞ lim ​ g(n)n→∞

lim ​ f(n) =n→∞
p (lim ​ f(n))n→∞

p

lim ​ log f(n) =n→∞ log(lim ​ f(n))n→∞

lim ​n→∞ ​0
0 0 ⋅ ∞ ∞ − ∞ ​∞

∞ 00 ∞0

lim ​ ​ =n→∞ g(n)
f(n) lim ​ ​n→∞ g(n)′

f(n)′

ln(x ⋅ y) = ln(x) + ln(y)

ln(​) =
y
x ln(x) − ln(y)

ln(x) =y y ⋅ ln(x)

ln(e) = 1

ln(1) = 0

ln(​) =
x
1 − ln(x)

log ​(y) =x ​log(x)
log(y)

O(1)

O(logn)

O(n)

O(n logn)

5.

6.

7.

(!) growth rate of -order polynomials

properties (valid for and):

 for any constant

properties of derivatives (but not the other way around!):

if , then

if , then

if , then

if , then

Properties of Big O Notation

if is a sum of several terms, if there is one with the largest growth rate, it can be kept and
all others omitted

e.g.

if is a product of several factors, any constants (factors that do not depend on) can be
omitted

e.g.

if can be written as a finite sum of other functions, the fastest growing one determines the
order of

e.g.

product:

sum:

scalar multiplication:

 for any non-zero constant

Time Complexity

basic terminology:

O(n)2

O(2)n

O(n!)

k p(n) = ​a ​n ∈∑i=0
k

i
i Θ(n)k

O Ω

c ⋅ f(n) ∈ Θ(f(n)) c > 0

O(f(n)) + O(g(n)) = O(f(n) + g(n))

O(f(n)) ⋅ O(g(n)) = O(f(n) ⋅ g(n))

O(f(n) + g(n)) = O(f(n)) ⟺ g(n) ∈ O(f(n))

f (n) ∈′ O(g (n))′ f(n) ∈ O(g(n))

f (n) ∈′ Ω(g (n))′ f(n) ∈ Ω(g(n))

f (n) ∈′ o(g (n))′ f(n) ∈ o(g(n))

f (n) ∈′ ω(g (n))′ f(n) ∈ ω(g(n))

f(x)

f(x) = 6x −4 2x +3 5 → f(x) ∈ O(6x)4

f(x) x

f(x) = 6x →4 f(x) ∈ O(x)4

f

f

f(n) = 9 logn + 5(logn) +4 3n +2 2n ∈3 O(n)3

f ​ ∈1 O(g ​) ∧1 f ​ ∈2 O(g) ⟹2 f ​f ​ ∈1 2 O(g ​g ​)1 2

f ⋅ O(g) = O(fg)

f ​ ∈1 O(g ​) ∧1 f ​ ∈2 O(g) ⟹2 f ​ +1 f ​ ∈2 O(max(g ​, g ​))1 2

O(∣k∣ ⋅ g) = O(g) k

linear time:

constant time:

quadratic time:

runtime analysis - worst case for a given construct

 with being the body of

Expected Values

average case complexity:

definitions:

sample space : set of possible results

e.g. single dice roll , double dice roll

random variable: (variable, whose value is a random number)

e.g. dice roll, can be a number between 1 and 6

domain:

e.g. outcome / payout in € for gambling

expected value:

e.g. dice roll, …

…then

for a finite sample space and equally probable events:

rules for expected value calculation:

 for random variables and

 for any constant

complete example:

+€4 for hearts, +€7 for diamonds, -€5 for spades and -€3 for clubs

O(n)

O(1)

O(n)2

T (I) I

T (variable definition) = O(1)

T (comparison) = O(1)

T (return x) = O(1)

T (new Type(...)) = O(1) + O(T (constructor))

T (I ​; I ​) =1 2 T (I ​) +1 T (I ​)2

T (if(C) I ​ else I ​) =1 2 O(T (C) + max{T (I ​),T (I ​)})1 2

T (for(i = a; i < b; i++) I) = O(​(1 +∑i=a
b−1

T (I)))

T (e.m(...)) = O(1) + T (ss) ss m

t(n) = ​ p ​ ⋅∑i∈I ​n i T (i)

Ω

Ω = {1, 2, 3, 4, 5, 6} Ω = {(1, 1), (1, 2), ..., (6, 6)}

X : Ω → R

X

W ​ :=X X(Ω) = {x ∈ R∣∃ω ∈ Ω : X(ω) = x}

Pr[X = x] := Pr[X (x)] =−1
​ Pr[ω]∑ω∈Ω∣X(ω)=x

E[X] := ​x ⋅∑x∈W ​X
Pr[X = x] = ​X(ω) ⋅∑ω∈Ω Pr[ω]

∀x ∈ {1, ..., 6} : P [X = x] = ​6
1

E[X] = ​x ⋅∑x P [X = x] = 1 ⋅ P [X = 1] + 2 ⋅ P [X = 2] + ... + 6 ⋅
P [X = 6] = (1 + 2 + 3 + 4 + 5 + 6) ⋅ ​ =6

1 3.5

E[x] = ​ ​X(ω)∣Ω∣
1 ∑ω∈Ω

E[X + Y] = E[X] + E[Y] X Y

E[a ⋅ X] = a ⋅ E[X] a ∈ R

+€1 for any ace

: amount of money to get paid / pay

 per card

Amoritzed Analysis (Accounting Method)

amortized analysis: analyze costs (time, memory) of an algorithm by averaging out the worst
operations over time for a sequence of operations (upper bound of actual runtime
)

e.g. for a dynamic array, when “pushing” a new element in a full array, the array size needs to
be increased (doubled, for the sake of simplicity), but this only happens very rarely, so giving
the method a runtime of is quite pessimistic

instead, using amortized costs, we classify the runtime as , since that is what happens
most of the time

lecture method:

: set of operations

: runtime / upper bound of an operation

: runtime / upper bound of operation sequence

: token cost of an operation, account balance change caused by

: deposit to account

: withdraw from account

: amortized runtime of

: amortized runtime of operation sequence
(upper bound of actual runtime)

accounting method: define with the following properties…
1. for all valid operation sequences (i.e. no overdraft!)

2. is chosen as fittingly as possible let be as small as possible

1 account balance can never be negative

2 upper bound of worst-case operations is

final step: prove that can never be negative

hint: look at how to calculate the actual function and create a based on what the
exercise wants

Ω = {♥A,♥K, ...,♥2, ♦A, ♦K, ..., ♦2, ♣A, ♣K, ..., ♣2, ♠A, ♠K, ..., ♠2}

X

W ​ =X {−5, −4, −3, −2, 4, 5, 7, 8}

Pr[X = −3] = Pr[♠K] + ... + Pr[♠2] = ​ =52
12

​13
3

E[X] = 4 ⋅ ​ +52
12 5 ⋅ ​ +52

1 7 ⋅ ​ +52
12 8 ⋅ ​ +52

1 (−5) ⋅ ​ +52
12 (−4) ⋅ ​ +52

1 (−3) ⋅ ​ +52
12

(−2) ⋅ ​ =52
1

​ ≈52
43 €0.83

n (σ ​, ...,σ ​)1 n T

O(n)

O(1)

S = {σ ​, ...,σ ​}1 n

T (σ) σ ∈ S

T (σ ​, ...,σ ​) :=1 m T (σ ​)∑i=1
m

i (σ ​, ...,σ ​)1 m

Δ(σ) σ

Δ(σ) > 0

Δ(σ) < 0

A(σ) := T (σ) + Δ(σ) σ

A(σ ​, ...,σ ​) :=1 m A(σ ​)∑
i=1
m

i (σ ​, ...,σ ​)1 m

Δ : S → R
​ Δ(σ ​) ≥∑

i=1
m

i 0

Δ ≡ A(σ ​, ...,σ ​)1 m

→

→ O(m ⋅ max ​(A(σ)))σ∈S

​ Δ(σ ​) ≥∑
i=1
m

i 0

T (σ) Δ(σ)

https://brilliant.org/wiki/amortized-analysis/#the-accounting-method

Hashing

map data (keys) to fixed-value sizes (values) using a hash function to uniquely identify said data
in a hash table

in other words, convert keys into other values and store these new values at corresponding
positions inside a table

implemented using a dictionary (stores a set of elements where each element is identified via a
unique key)

universe of keys with (some very large positive integer)

: subset of actually used keys with significantly smaller than

general idea: let be an array with space for elements (hash table) and a function
 be used to map key to array index (hash function)

probability of hash collisions for equally spread out hash positions:

// implementing a hash table with hash function

// only for dynamic dictionaries

void insert(Object e){

 T[h(key(e))] = e;

}

// only for dynamic dictionaries

void remove(Key k){

 T[h(k)] = null;

}

// for static and dynamic dictionaries

Object find(Key k){

 return T[h(k)];

}

Hashing with Chaining

U ∣U ∣ = N

V ⊆ U ∣V ∣ = n N

T m h : U →
{0, ...,m − 1}

1 − o(1)

https://www.geeksforgeeks.org/what-is-hashing/
https://www.geeksforgeeks.org/c-program-hashing-chaining/

idea: avoid collisions (different keys mapped to the same value) by having each cell of the hash
table point to a linked list containing the hashed values

in other words, the hash table is an array, where each entry is a linked list

// init. array of linked lists

List<Object>[m] T;

// insert into linkedlist inside array

void insert(Object e){

 T[h(key(e))].insert(e);

}

// remove from linkedlist inside aray

void remove(Key k){

 T[h(k)].remove(k);

}

// find in linkedlist inside array

Object find(Key k){

 return T[h(k)].find(k);

}

space complexity:

time complexity:

O(n + m)

insert() :

remove() , find() :

 for -universal hash families

Universal Hashing

: constant

: family of hash functions

: size of hash, such that each hash function returns a hash code in range

a family of hash functions is -universal, if the probability of a hash collision between two keys
and when randomly chosing a hash function is less than or equal to

in other words: for all

formally: for all

(1-)universal family: -universal family of hash functions for

in other words: for all

formally: for all

(*) how to determine, whether or not a given family is universal:

statement: you are given a hash table of size (here), a set of keys (*here
) and the given mappings for each hash function

example:

question: is the hash family (here) universal?

answer: prove that

step 1: note collisions between each possible pair for each hash function

O(1)

O(1 + n/m)

O(1 + c ⋅ n/m) c

c > 0

H

m {0, 1, ...,m − 1}

c x

y h ∈ H ​

m
c

∣{h ∈ H : h(x) = h(y)}∣ ≤ ​∣H∣
m
c x = y

Pr[h(x) = h(y)] ≤ ​

m
c x = y

c c = 1

∣{h ∈ H : h(x) = h(y)}∣ ≤ ​∣H∣
m
1 x = y

Pr[h(x) = h(y)] ≤ ​

m
1 x = y

m m = 4
A,B,C,D,E h ​i

h ​ :1 A ↦ 1,B ↦ 1,C ↦ 1,D ↦ 3,E ↦ 3

h ​ :2 A ↦ 2,B ↦ 2,C ↦ 0,D ↦ 0,E ↦ 1

h ​ :3 A ↦ 3,B ↦ 1,C ↦ 0,D ↦ 3,E ↦ 2

h ​ :4 A ↦ 0,B ↦ 2,C ↦ 1,D ↦ 2,E ↦ 1

h ​ :5 A ↦ 1,B ↦ 3,C ↦ 1,D ↦ 2,E ↦ 0

h ​ :6 A ↦ 3,B ↦ 2,C ↦ 0,D ↦ 1,E ↦ 3

H ​i H ​ =1 {h ​,h ​,h ​,h ​}1 2 4 5

∣h ∈ H ​ :1 h(x) = h(y)∣ ≤ 1

A/B : h ​,h ​1 2

A/C : h ​,h ​1 5

A/D : ∅

A/E : ∅

B/C : h ​1

B/D : h ​4

https://en.wikipedia.org/wiki/Universal_hashing

step 2: check that the number of collisions at most 1 for any given pair; if not, the function
is not 1-universal, but at least universal with being the number of collisions

since , the family is -universal for

parameterized hash families: a hash function defines a family of hash
functions

 can be freely chosen, e.g. ,

if is a prime number, then with
 is a universal family of hash functions

lecture example - hashing an integer :

choose prime table size

e.g.

let

e.g.

separate bitstring (binary representation) into equal parts with bits each

e.g. , since

interpret each part as an integer

e.g. (an unsigned byte)

interpret key to compute hash value of as -vector of , with

e.g.

define some vector

e.g.

scalar product of and is

define as (scalar product of and ,
product modulo)

e.g.

Perfect Hashing

B/E : ∅

C/D : h ​2

C/E : h ​4

D/E : h ​1

c c

∣h ∈ H ​ :1 h(A) = h(B)∣ = ∣{h ​,h ​}∣ =1 2 2 H ​1 c

c ≥ 2

h ​ =b b ⋅ x mod m

H = {h ∣ b ∈b Z}

b h ​ =2 2x mod m h ​ =−400 −400x mod m

m H = {h ​ :a a ∈ {0, ...,m − 1} }k h ​(x) =a a ⋅ x
mod m

x

m

m = 269

w = ⌊log ​m⌋2

w = ⌊log ​ 269⌋ =2 8

x k w

k = 4 4 ⋅ 8 = 32

x ​ ∈i [0, ..., 2 −w 1]

x ​ ∈i [0, ..., 255]

x k x ​i x = (x ​, ...,x ​) ,x ​ ∈1 k
T

i

{0, ..., 2 −w 1}

x = (11, 7, 4, 3)T

a = (a ​, ..., a ​) , a ​ ∈1 k
T

i {0, ...,m − 1}

a = (2, 4, 261, 16)T

a x a ⋅ x = ​a ​x ​∑i=1
k

i i

h ​ :a x → {0, ...,m − 1} h ​(x) =a a ⋅ x mod m a x

m

h ​(x) =a (2x ​ +1 4x ​ +2 261x ​ +3 16x ​)4 mod 269

h ​(46915) =a (2 ⋅ 11 + 4 ⋅ 7 + 261 ⋅ 4 + 16 ⋅ 3) mod 269 = 66

https://en.wikipedia.org/wiki/Perfect_hash_function

“remember: no collisions.”

given:

static dictionary of length with keys

: -universal family of hash functions to

: number of collisions in for for every pair

expected number of collisions:

for at least half of the functions, applies

if , then at least half of the functions in are injective (no collisions)

strategy: double hashing with space complexity

step 1: hash key using a well-chosen hash function in a table of size (i.e.),
where each collision is packed into a bucket

set to , then

choose with few collisions from for

choose until

formally:

note: every tuple pair is counted twice! , then

for each hash , a bucket is created, so that each key mapped to gets inserted into

each bucket has keys

each bucket has size

sum of all bucket sizes effectively in due to low number of collisions

S n k ​, ..., k ​1 n

H ​m c {0, ...m − 1}

C(h) S h (x, y)

E[C(h)] ≤ ​

m

cn(n−1)

C(n) ≤ 2cn(n − 1)/m

m ≥ cn(n − 1) + 1 h H ​m

O(n)

O(n) m = αn

α ​ ⋅2 c m = ⌈ ​ ⋅2 c ⋅ n⌉

h H ​⌈ ​⋅c⋅n⌉2 h(k) ∈ {0, ..., ⌈ ​cn⌉ −2 1}

h C(h) ≤ ​ ⋅2 n

C(h) = ∣{(x, y) ∣ h(x) = h(y),x = y}∣ ≤ ​n2

(x, y) (y,x)

l B ​l l B ​l

b ​ =l ∣B ​∣l

m ​ =l c ⋅ b ​(b ​ −l l 1) + 1 ∈ O(b ​)l
2

O(n)

(!) good function, when for any

step 2: choose fitting for bucket from -universal family with

choose until no collisions

(!) good function, when for any with current
bucket size

when using arrays, the hash value of a key is with , where is a perfect
hash function, and the worst-case runtime complexity for a lookup is

Linear Probing

open hash function, allowing for collision-causing entries to be inserted at a free neighbouring
space

idea: store element in next free space, scanning from left to right and wrapping around

the original hash value of a key is its ideal position

// insert into next available spot if ideal spot taken

void insert(Object e) {

 i = h(key(e));

 while (T[i] != null && T[i] != e)

 i = (i + 1) % m;

 T[i] = e;

}

// find object using linear search

Object find(Key k) {

 i = h(k);

 while (T[i] != null && key(T[i]) != k)

 i = (i+1) % m;

α mod x ⟹ x > ​ ⋅2 n α

h ​l B ​l c H ​m ​l h ​(k) ∈l {0, ...,m ​ −l
1}

h ​l

α mod x ⟹ x ≥ b ​(b ​ −l l 1) + 1 α

b ​l

x s ​ +l h ​(x)l l = h(x) h

O(1)

https://en.wikipedia.org/wiki/Linear_probing

 return T[i];

}

pros:

no extra space complexity

cache-efficient, since we only look at neighbouring entries in the same array

deletion (move everything that is not on its ideal position back one space until blank position
reached, leave elements in ideal positions where they are!):

runtime:

Sorting Algorithms and their Complexities

SelectionSort

in-place, unstable, time complexity always , space complexity

idea: choose smallest element from remainder of array and swap places with element at start of
iteration

void selectionSort(Object[] a, int n) {

 for (int i = 0; i < n; i++) {

 int k = i;

 // find smallest element from unsorted sublist

 for (int j = i + 1; j < n; j++)

 if (a[j] < a[k])

 k = j;

 // swap with leftmost unsorted element

 swap(a, i, k);

 }

}

example:

O(1)

Θ(n)2 O(1)

https://www.geeksforgeeks.org/time-complexities-of-all-sorting-algorithms/
https://en.wikipedia.org/wiki/Selection_sort

Sorted Unsorted Least (unsorted)

() (11,25,12,22,64) 11

(11) (25,12,22,64) 12

(11,12) (25,22,64) 22

(11,12,22) (25,64) 25

(11,12,22,25) (64) 64

(11,12,22,25,64) ()

InsertionSort

in-place, stable, worst-case , average-case , best-case , space complexity

idea: take next element from array and insert into correct position by iterating backwards

void insertionSort(Object[] a, int n) {

 for (int i = 1; i < n; i++)

 // iterate backwards and insert at correct position

 for (int j = i − 1; j >= 0; j−−)

 if (a[j] > a[j + 1])

 swap(a, j, j + 1);

 else

 break;

}

example of a single iteration:

array: [5,10,19,1,14,3]

current element: 1

[5,10,19,1,14,3] (correct position? no swap 1 and 19)

[5,10,1,19,14,3] (correct position? no swap 1 and 10)

[5,1,10,19,14,3] (correct position? no swap 1 and 10)

[1,5,10,19,14,3] (correct position? yes)

MergeSort

not in-place, stable, worst-case , average-case , best-case ,
space complexity

idea: split array recursively into two parts, then merge together

step 1: divide unsorted list recursively by halving it until each sublist only has one element

step 2: merge until no sublists remain, with smaller elements coming before bigger ones in each
step

O(n)2 O(n)2 O(n)
O(1)

→

→

→

O(n logn) Θ(n logn) Ω(n logn)
O(n)

https://en.wikipedia.org/wiki/Insertion_sort
https://en.wikipedia.org/wiki/Merge_sort

look, there’s a million different implementations of MergeSort, go find one that suits you best.

example:

divide:

conquer:

QuickSort

in-place, unstable, worst-case , average-case , best-case ,
space complexity

idea: choose pivot element, then split array into elements smaller than pivot and greater or
equal to pivot

for each iteration, place pivot right at the end in the beginning for simplicity’s sake

let itemFromLeft be the first element starting from the left of the array that is larger than the

pivot and itemFromRight the first element starting from the right of the array that is smaller

than the pivot

once both have been found, swap places

if the index of itemFromLeft () is greater than that of itemFromRight (), stop and swap

pivot with itemFromLeft 's index

continue recursively for each array (lower or greater than pivot, leave pivot unchanged in final
array)

speedup: when there are only two or less elements in an array, sort in one go without pivot
element

void quickSort(int[] a, int l, int r) {

 if (l < r) {

 int p = a[r]; // choose rightmost element as pivot

 int i = l - 1; // left index

 int j = r; // right index

 do {

 // move left index

10, 5, 7, 19, 14, 1, 3

10, 5, 7, 19 ∣ 14, 1, 3

10, 5 ∣ 7, 19 ∣ 14, 1 ∣ 3

10 ∣ 5 ∣ 7 ∣ 19 ∣ 14 ∣ 1 ∣ 3

10 ∣ 5 ∣ 7 ∣ 19 ∣ 14 ∣ 1 ∣ 3

5, 10 ∣ 7, 19 ∣ 1, 14 ∣ 3

5, 7, 10, 19 ∣ 1, 3, 14

1, 3, 5, 7, 10, 14, 19

O(n)2 O(n logn) O(n logn)
O(n)

i j

https://en.wikipedia.org/wiki/Quicksort

 do {

 i++;

 } while (a[i] < p);

 // move right index

 do {

 j--;

 } while (j >= l && a[j] > p);

 // swap elements if possible

 if (i < j)

 swap(a, i, j);

 } while (i < j);

 // at end of iteration, move pivot into correct position

 swap (a, i, r);

 // do quicksort for lower and greater subarrays

 quickSort(a, l, i - 1);

 quickSort(a, i + 1, r);

 }

}

example using rightmost element as pivot:

current array: [10, 5, 19, 1, 14, 3]

pivot: 3

swapped 10 (first greater than 3 from left) and 1 (first smaller than 3 from right): [1, 5, 19,
10, 14, 3]

new array: [1][3][19, 10, 14, 5]

pivot: 5

new array: [1][3][5][10, 14, 19]

pivot: 19

new array: [1][3][5][10, 14][19]

pivot: 14

final: [1][3][5][10][14][19]

RadixSort

runtime always with number of keys and key length , space complexity

idea: create and distribute elements into buckets according to their radix, then merge buckets and
continue with new radix

O(k ⋅ n) n k O(n +
k)

https://en.wikipedia.org/wiki/Radix_sort

for decimal numbers: from rightmost digit to leftmost digit, create buckets for each present digit
(0-9), distribute numbers into corresponding buckets, merge buckets and repeat for next digit of
number

for words: from rightmost letter to leftmost letter, create buckets for each present letter (A-Z),
distribute words into corresponding buckets, merge buckets and repeat for next letter of word

example:

array: 012, 203, 003, 074, 024, 017, 112

buckets (rightmost digit): {012, 112}, {203, 003}, {074, 024}, {017}

array: 012, 112, 203, 003, 074, 024, 017

buckets (middle digit): {203, 003}, {012, 112, 017}, {024}, {074}

array: 203, 003, 012, 112, 017, 024, 074

buckets (leftmost digit): {003, 012, 017, 024, 074}, {112}, {203}

final: 003, 012, 017, 024, 074, 112, 203

HeapSort

in-place, unstable, runtime always , space complexity

uses min-heap, sorts in reverse order (lowest to highest)

HeapSort(Object[] H, int n) {

 // build min-heap from array

 build(H[0], ... , H[n − 1]);

 // deleteMin until heap empty

 for (i = n − 1; i >= 1; i−−) {

 swap(H, 0, i);

 H.length−−;

 siftDown(H, 0);

 }

}

O(n logn) O(1)

https://en.wikipedia.org/wiki/Heapsort

example[1]

Summary of Sorting Algorithm Complexities

Algorithm Best Case Average Case Worst Case Space Complexity

SelectionSort

InsertionSort

MergeSort

QuickSort

RadixSort

HeapSort

Selection using QuickSelect

idea: find -th smallest element in array of elements (numbering starts at 1)

similar to QuickSort, but we only look at one partition of the array

if is smaller than the index of the pivot element (also starting at 1), continue with left array and
same

if is greater than the index of the pivot element, continue with right array and
, where is the length of the left partition and is the length of the middle partition

(containing elements equal to pivot)

else, element found

example - finding 7th smallest element in array (5)

s = [3,1,4,1,5,9,2,6,5,3,5,8,9], k = 7 [1,1][2][3,4,5,9,6,5,3,5,8,9]

s = [3,4,5,9,6,5,3,5,8,9], k = 4 [3,4,5,5,3,5][6][9,8,9]

s = [3,4,5,5,3,5], k = 4 [3,4,3][5,5,5][] found: 5

O(n)2 O(n)2 O(n)2 O(1)

O(n) O(n)2 O(n)2 O(1)

O(n logn) O(n logn) O(n logn) O(n)

O(n logn) O(n logn) O(n)2 O(n)

O(nk) O(nk) O(nk) O(n + k)

O(n logn) O(n logn) O(n logn) O(1)

k n

k

k

k k = k − ∣a∣ −
∣b∣ ∣a∣ ∣b∣

→

→

→ →

https://en.wikipedia.org/wiki/Quickselect

Recursion Analysis and Master Theorem

divide-and-conquer algorithms: algorithms that recursively divide the problem into smaller
subproblems, that are then solved (conquered) and merged back together

runtime analysis of recursive functions is done using recurrence relations

recurrence relations define one or more base cases and a function to determine the rest

e.g. Fibonacci numbers

to solve recurrence relation, we need to get rid of the function’s recursiveness and find a closed
form

e.g. closed form of

method 1: iterative insertion

write first few steps by hand and try to deduce closed formula

e.g.

generalized:

method 2: guess then prove by induction

just wing it™

e.g.

intuitively, guess that and that for

in this case, we can prove that

induction basis: for ,

induction hypothesis: holds for some fixed

induction step: prove that …

as such, , i.e.

method 3: master theorem

follows a generalized formula of recurrence relations

F (x) = ​

⎩
⎨
⎧1

1
F (n − 2) + F (n − 1)

if n = 0
if n = 1
if n > 1

F (x) = ​ ​ − ​

​5
1 ((2

1+ ​5)
n

(2
1− ​5)

n

)

T (n) = ​ ​{a
T (n − 1) + n

if n = 0
if n > 0

T (1) = T (0) + 1 = a + 1

T (2) = T (1) + 2 = a + 1 + 2

T (3) = T (2) + 3 = a + 1 + 2 + 3

T (n) = a + (1 + 2 + ... + n) = a + ​ ∈2
n(n+1) O(n)2

f(n)

T (n) = ​ ​{3
T (n − 1) + 2n

if n = 1
if n > 1

f(n) = 2 −n+1 1 T (n) ≤ f(n) n ≥ 1

T (n) = f(n)

n = 1 T (1) = 3 = 2 −1+1 1

T (n) = f(n) n ∈ N
T (n + 1) = f(n + 1)

T (n) ∈ Θ(f(n)) T (n) ∈ Θ(2)n

https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)

: runtime for base case (conquer)

: number of new subproblems per recursive layer

: factor, by which the size of new subproblems per recursive layer is reduced

: runtime needed by current layer for dividing and merging

example (mergesort):

MergeSort splits the array in 2 () of size each for each recursive layer

the runtime of the base case is constant

the runtime of dividing and merging for each layer is linear

since , then

Data Structures

Priority Queues

abstract datatype, where each element is given a priority

Operation unsorted list sorted list

build()

insert()

min()

deleteMin()

Binary Tree

tree data structure, where each node (at most) has a left and a right child (which themselves are
binary trees)

leaf: node without children

inner node: node with at least one child

depth : number of edges from root to node (root depth 0)

T (n) = ​ ​{
a

d ⋅ T ​ + f(n)(
b

n)
if n = 1

if n >1

a ∈ Θ(1)

d

b

f(n) = c ⋅ n ∈ Θ(n)

T (n) = ​ ​ ​

⎩
⎨
⎧Θ(n)

Θ(n logn)
Θ(n)log ​ db

if d < b
if d = b
if d > b

d ​2
n

​(
b
n) → d =

2, b = 2

→ a ∈ Θ(1)

→ f(n) ∈ Θ(n)

T (n) = ​ ​{
a

2 ⋅ T ​ + f(n)(
2
n)

if n = 1

if n >1

d = b T (n) ∈ Θ(n logn)

O(n) O(n logn)

O(1) O(n)

O(n) O(1)

O(n) O(1)

t

https://en.wikipedia.org/wiki/Priority_queue
https://en.wikipedia.org/wiki/Binary_tree

height : depth from lowest node to root plus one (starting height 1)

perfect binary tree: nodes, leaves

a full binary tree with nodes has height

complete binary tree: the first levels make up a complete binary tree, there exists a
node on level such that there are no more nodes to the right of it

modifying a binary tree:

insert() :

delete() :

Binary Heaps

binary tree with…

form invariant: all layers are complete except for lowest layer

heap invariant (min-heap):

h

2 −h 1 2h−1

n ⌊log ​(n)⌋ +2 1

t − 1
e t

O(logn)

O(logn)

key(v.parent) ≤ key(v)

https://en.wikipedia.org/wiki/Binary_heap

can be stored using arrays, where a node with index has children at indices and
and parent node at

deleteMin() : replace root with last element in heap and sift down until heap invariant fulfilled,

 + runtime of siftDown(v)

// pseudocode

Element deleteMin(Heap<Element> H) {

 Element min = root of H;

 replace root of H with last element of H;

 siftDown(H, root of H);

 return min;

}

siftDown(v) : move node down according to min-heap invariant,

// pseudocode

siftDown(Heap<Element> H, Node v) {

 // cannot sift down if node is leaf

 if (isLeaf(v)) return;

 Node m;

 // choose direction

 if (key(v.left) < key(v.right)){

 m = v.left;

 }

 else {

 m = v.right;

 }

 // restore heap invariant or quit

 if (key(m) < key(v)) {

 swap content of m and v;

 siftDown(H, m);

 }

}

insert(e) : insert element at end of heap then sift up into place, + runtime of siftUp()

// pseudocode

insert(Heap<Element> H, Element e) {

i 2i + 1 2i + 2
⌊ ​⌋2
i−1

O(1)

O(logn)

O(1)

 Node v = insert e at end of H;

 siftUp(H, v);

}

siftUp(v) : move node up according to min-heap invariant,

// pseudocode

siftUp(Heap<Element> H, Node v) {

 while (v is not root && key(v.parent) > key(v)) {

 swap content of v and v.parent;

 v = v.parent;

 }

}

build(e1...en) :

insert elements unsorted into heap

do siftDown() for each node on layer bottom-up in reverse order (right to left)

in other words: the first elements of the actual array, handled in reverse order (e.g.
for [15,20,9,1,11,8,4,13,17] , one would do siftDown() for 1,9,20,15 in that order)

decreaseKey(v,k) :

decreaseKey(Heap<Element> H, Node v, int k) {

 if (k > key(v)) error();

 key(v) = k;

 siftUp(H, v);

}

increaseKey(v,k) :

increaseKey(Heap<Element> H, Node v, int k) {

 if (k < key(v)) error();

 key(v) = k;

 siftDown(H, v);

}

delete(v) : replace with last node in heap then do siftUp(v') or siftDown(v')

Binary Heap example using Max-Heap

insertion: adding 15 into heap by inserting it at the end, then sifting up until heap invariant (here
max-heap, i.e.) is restored

O(logn)

n

v t

⌊n/2⌋

O(logn)

O(logn)

v v′

key(parent) > key(child)

for visualization: let X be the spot where 15 will be inserted at first

place 15 there and check, if heap invariant is maintained since heap invariant is violated, sift
15 up and check again

since the heap invariant is violated once more, sift up once again since the node is now at
the root, we have successfully inserted the node into the heap

deletion: using the same max-heap as before

let 11 be the node we want to remove (equiv. deleteMax())

replace 11 with last node in heap, 4

sift down, then heap invariant is restored

Binomial Trees

→

→

a binomial tree of rank has a root node with children of rank , , … , 0 in that order[2]

maximum depth

depth has nodes ()

in total nodes

maximum degree in root

merging: root node with bigger key becomes new child of root with smaller key[3]

removing root: new binomial trees of ranks down to appear

r r − 1 r − 2

r

l ∈ {0, ..., r} ​(
l
r) ​

l!(r−l)!
r!

2r

r

r − 1 0

Binomial Heaps

set of binomial trees where each tree fulfills the min-heap invariant, there are no two trees with
the same rank and a min-pointer points to the root with the smallest key

a binomial heap with nodes contains at most binomial trees

the binary representation of tells us exactly the rank of the trees in our heap

z.B. there are trees of ranks 3,1,0

merging: equivalent to binary addition, with [4]

operations:

min() : return root with minimal key (located at min-pointer)

merge() : equivalent to binary addition

insert(e) : merge() with binomial tree of rank 0, containing only e

deleteMin() : remove min-root and merge() the children with the rest of the heap

n 1 + ⌊log ​(n)⌋2

n

n = 11 ​ =10 1011 ​ =b 1 ∗ 2 +3 1 ∗ 2 +1 1 ∗ 2 →0

O(logn) n = max{n ​,n ​}1 2

O(1)

O(logn)

O(logn)

O(logn)

https://en.wikipedia.org/wiki/Binomial_heap

decreaseKey(v,k) : set key(v) = k , then siftUp() in binomial tree of v and adjust min-

pointer if needed

remove(v) : first decreaseKey(v, -inf) , then deleteMin()

Binary Search Tree

binary tree with…

search tree invariant: left child smaller than parent, right child larger than parent

key invariant: each key is unique

degree invariant: a node can only have at most 2 children

locate(e) : begin at root of tree,

if , go to left child, else go to right child

return minimal node for which its key is greater or equal

insert(e) :

do locate(key(e)) until is reached

if , insert before in list, and create new search tree node with as
splitter key to fulfill search tree invariant

else, throw error

remove(k) :

do locate(k) until is reached

if

delete from list

delete parent key from tree

if not already deleted, replace node with next smaller node in tree

O(logn)

O(logn)

w O(logn)

key(v) ≥ k

e

O(logn)

e′

key(e) >′ key(e) e e′ key(e)

O(logn)

e

key(e) = k

e

v

else, throw error

cba with making original graphics here, just look in the slides or google it, the examples are good
enough

AVL-Trees

self-balancing binary search trees

fixes and height-balancing possibly needed after insertion and deletion

for any node, the height of its two subtrees differs by at most 1

balance factor = height of right subtree - height of left subtree [5]

time complexity: worst-case , best-case

inserting: start at root; if , go left, otherwise right; insert where free space available
then rotate

left rotation if balance factor of node is and balance factor of right child is or

right rotation if balance factor of node is and balance factor of left child is or

right-left rotation if balance factor of node is and right child has balance factor

left-right rotation if balance factor of node is and left child has balance factor of

deleting:

if node does not have a left child, move right child into its place

if node does not have a right child, move left child into its place

∈ {−1, 0, 1}

O(logn) Θ(logn)

k ​ ≥current v

2 +1 0

−2 −1 0

+2 −1

−2 +1

https://www.geeksforgeeks.org/introduction-to-avl-tree/
https://www.geeksforgeeks.org/insertion-in-an-avl-tree/
https://www.geeksforgeeks.org/deletion-in-an-avl-tree/

if node has left and right child, replace with node with next smaller key

balancing afterwards: same as before

searching works the same as in any standard binary search tree

Summary: AVL-Tree Rotations

if height differences for parent and child have the same sign, perform single rotation

if positive, perform left rotation

if negative, perform right rotation

if height differences for parent and child have different signs, perform double rotation

if +2 / -1, perform R-L–rotation

if -2 / +1, perform L-R-rotation

Source: https://www.geeksforgeeks.org/insertion-in-an-avl-tree/

T1, T2, T3 and T4 are subtrees.

S - single, D - double

S: RIGHT ROTATE

 z y

 / \ / \

 y T4 Right Rotate (z) x z

 / \ - - - - - - - - -> / \ / \

 x T3 T1 T2 T3 T4

 / \

 T1 T2

D: LEFT-RIGHT ROTATE

 z z x

 / \ / \ / \

 y T4 Left Rotate (y) x T4 Right Rotate(z) y z

 / \ - - - - - - - - -> / \ - - - - - - - -> / \ / \

T1 x y T3 T1 T2 T3 T4

 / \ / \

 T2 T3 T1 T2

S: LEFT ROTATE

 z y

 / \ / \

T1 y Left Rotate(z) z x

 / \ - - - - - - - -> / \ / \

 T2 x T1 T2 T3 T4

 / \

 T3 T4

D: RIGHT-LEFT ROTATE

 z z x

 / \ / \ / \

T1 y Right Rotate (y) T1 x Left Rotate(z) z y

 / \ - - - - - - - - -> / \ - - - - - - - -> / \ / \

 x T4 T2 y T1 T2 T3 T4

 / \ / \

T2 T3 T3 T4

(a,b)-Trees

variable definitions:

: root

 leaves

: number of children (ext. degree) of a node

: depth of a node

a search tree is called an -tree for and (alt.) if following
invariants are fulfilled:

form invariant: all leaves are at the same depth

degree invariant: for all internal nodes except for the root,

in other words, each node (except for the root) has at least and at most children

for the root node: (except if it’s a leaf)

w

n

d(v) v

t(v) v

G (a, b) a ≥ 2 b ≥ 2a − 1 a ≤ ​2
b+1

a ≤ d(v) ≤ b

a b

2 ≤ d(w) ≤ b

depth if

all operations

locate(k) works the same as in any search tree

insert(e) :

locate using locate(key(e))

if , insert before , otherwise throw error

insert and handle in into tree

case 1: if , finish

case 2: if , split in two and move splitter key (usually key at index or
median) up

case 2.5: if degree of parent node is now bigger, continue until eventually or root
has been split

remove(e) :

let be the node of

case 1: contains (lowest depth)

directly delete and

if now has less than children, steal or merge

case 2: does not contain (not on lowest depth)

let be the element directly before , included in

delete from and from list

replace remaining in tree with (i.e. replace key with value which contained pointer
to)

if now has less than children, steal or merge

steal if neighbouring node of has more than children, start with left neighbour

 left of : rightmost key in goes up, replaced key goes down into

 right of : leftmost key in goes up, replaced key goes down into

merge if neighbouring node of does not have more than children

merge with neighbouring node, preferably left node, by bringing down father element

d ≤ 1 + ⌊log ​ ​⌋a 2
n+1 n > 1

Θ(logn)

e′

key(e) < key(e)′ e e′

key(e) v

d(v) ≤ b

d(v) > b v ⌊b/2⌋

deg ≤ b

v e

v e

e v

v a

v e

e′ e v

e′ v e

e e′

e

v a

v′ v a

v′ v v′ v

v′ v v′ v

v′ v a

v

father node and adjacent nodes may need to be adjusted with steal / merge too afterwards,
since we’re taking a node away from it

if root is empty, remove it

for the same reason as before, if you want examples, look in the slides and go along with those

Graphs

representing a graph:

list of edges

+: space complexity, insert(Edge e) , insert(Node v) and remove(Key i) in

-: find(Key i, Key j) and remove(Key i, Key j) worst-case

adjacency matrix

+: can tell in if two nodes are neighbors, inserting and deleting edges in

-: space complexity , finding all neighbors of a node costs time

{1, 2}, {1, 3}, {2, 3}, {2, 4}, {2, 5}, {4, 5}

O(m)
O(1)

Θ(m)

​ ​ ​ ​ ​

⎝

⎛0
1
1
0
0

1
0
1
1
1

1
1
0
0
0

0
1
0
0
1

0
1
0
1
0⎠

⎞

O(1) O(1)

Θ(n)2 O(n)

adjacency arrays (top: indices of node in bottom array, bottom: neighboring node keys)

+: space complexity for directed graphs and for
undirected graphs

-: inserting and deleting edges is costly

adjacency lists (similar to arrays, but with linked lists)

+: inserting edges in , deleting edges in or with handle

when using adjacency lists with a hash table, all operations can be done in

-: usage of lists requires heap space and generally takes longer

when using adjacency lists with a hash table, the space complexity becomes

traversing a graph ():

breadth-first-search

horizontal before vertical

operates based on a FIFO-queue

useful for SSSP (single source shortest path) due to storing distance of each node to
source

algorithm:

insert node in queue

take front item of queue and add it to visited list

create list of vertex’s adjacent nodes, add ones not yet visited to the back of the queue

n + m + Θ(1) n + 2m + Θ(1)

O(1) O(d) O(1)

O(1)

O(n +
m)

O(∣V ∣ + ∣E∣)

https://www.youtube.com/watch?v=HZ5YTanv5QE

repeat steps 2 and 3 until queue is empty

order of expansion[6]:

depth-first search

vertical before horizontal

operates based on a stack

algorithm:

insert node onto stack

take top item of stack and add it to visited list

create list of vertex’s adjacent nodes, add ones not yet visited to the top of the stack

repeat steps 2 and 3 until stack is empty

order of expansion[7]:

extra variables:

dfsNum : exploration order

finishNum : finished order

types of edges:

root edge: edge from root outwards

https://www.youtube.com/watch?v=Urx87-NMm6c

forwards edge: to a successor

backwards edge: to a predecessor

using DFS to recognize DAGs:

DFS does not contain any backwards edges

for all edges , finishNum[v] > finishNum[w] (higher finish number points to lower

finish number)

Type of Edge dfsNum[v] < dfsNum[w] finishNum[v] > finishNum[w]

Root Edge yes yes

Forwards Edge yes yes

Backwards Edge no no

Rest no yes

Connectivity

a graph is connected if every pair of vertices in the graph is connected there is a path
between every pair of vertices

a graph with just one vertex is connected

an edgeless graph with two or more vertices is disconnected

a directed graph is called weakly connected if replacing all of its directed edges with undirected
edges produces a connected (undirected) graph

it is unilaterally connected if it contains a directed path from to or a directed path from to
for every pair of vertices

it is strongly connected, or simply strong, if it contains a directed path from to and a directed
path from to for every pair of vertices

(v,w)

≡

u v v u

u, v

u v

v u u, v

a connected component is a maximal connected subgraph of an undirected graph

each vertex belongs to exactly one connected component, as does each edge

a graph is connected if and only if it has exactly one connected component

the strong components are the maximal strongly connected subgraphs of a directed graph

Shortest Paths (SSSP)

case 1: edge costs 1 BFS

case 2: DAG, variable edge costs Topological Sorting

case 3: variable graph, positive edge costs Dijkstra

case 4: variable graph, variable edge costs Bellman-Ford

DAG - Topological Sorting

L ← Empty list that will contain the sorted elements

S ← FIFO-Queue of all nodes with no incoming edge

while S is not empty do

 remove a node n from S

 add n to L

 for each node m with an edge e from n to m do

 remove edge e from the graph

 if m has no other incoming edges then

 insert m into S

if graph has edges then

 return error (graph has at least one cycle)

else

 return L (a topologically sorted order)

Dijkstra’s Algorithm

→

→

→

→

https://algorithms.discrete.ma.tum.de/graph-algorithms/spp-dijkstra/index_de.html

used to find shortest paths between nodes in a weighted graph with positive weights

algorithm:

mark all nodes unvisited and create set of unvisited nodes

assign tentative distances to each node (0 for initial node, for all other nodes)

the tentative distance of a node is the length of the shortest path (so far) between said node
and the starting node

for the current node, calculate tentative distances of neighboring unvisited nodes through
current node

if newly calculated tentative distance is smaller than current distance, replace current
distance with tentative distance

mark current node as visited (remove from unvisited set)

if destination node is marked as visited or if smallest tentative distance among nodes in
unvisited set is infinity, stop

else, go to unvisited node with smallest tentative distance and go back to third step

time complexity:

Bellman-Ford[8]

works on graphs with negative edge weights

∞

O(∣E∣ + ∣V ∣ log ∣V ∣)

https://algorithms.discrete.ma.tum.de/graph-algorithms/spp-bellman-ford/index_de.html

fundamental idea: there are at most 	edges in one of our paths (because if there were
 or more, there would be a cycle)

algorithm:

initialize distance to source to 0 and all other nodes to infinity

for all edges: if the distance to the destination can be shortened by taking the edge, the
distance is updated to the new lower value

if , then

repeat last step times

if in the last iteration, distances are still being updated, then finally update these distances
to , indicating that there is a negative weight cycle

time complexity:

Shortest Paths (APSP)

Floyd-Warshall’s Algorithm

, please don’t use this

let dist be a |V| × |V| array of minimum distances initialized to ∞

(infinity)

for each edge (u, v) do

 dist[u][v] ← w(u, v)

for each vertex v do

∣V ∣ − 1
∣V ∣

dist[v] > dist[u] + weight((u, v)) dist[v] = dist[u] + weight((u, v))

∣V ∣ − 1

−∞

O(∣E∣ ⋅ ∣V ∣)

O(n)3

https://algorithms.discrete.ma.tum.de/graph-algorithms/spp-floyd-warshall/index_de.html

 dist[v][v] ← 0

for k from 1 to |V|

 for i from 1 to |V|

 for j from 1 to |V|

 if dist[i][j] > dist[i][k] + dist[k][j]

 dist[i][j] ← dist[i][k] + dist[k][j]

 end if

Johnson’s Algorithm

insert new temporary node with edge to all and

calculate using Bellman-Ford’s Algorithm and set for all

calculate modified edge costs

calculate for all without using Dijkstra’s Algorithm using the modified costs

calculate proper distances

example: first 3 stages

Minimum Spanning Trees

s (s, v) v c(s, v) = 0

d[s, v] ϕ[v] = d[s, v] v

(e) =c ϕ(v) + c(e) − ϕ(w)

[v,w]d v s

d[v,w] = [v,w] +d ϕ[w] − ϕ[v]

https://en.wikipedia.org/wiki/Johnson%27s_algorithm
https://en.wikipedia.org/wiki/Minimum_spanning_tree

Kruskal’s Algorithm ():

repeatedly choose a minimum-cost edge connecting two connected components until only one

connected component remains[9]

Prim’s Algorithm:

look at growing tree , initially consisting of any single node

add to an edge with minimal weight from a tree node to a node outside the tree (if there
are multiple possibilities, it doesn’t matter which)

repeat selection until all nodes in tree[10]

1. source: “https://commons.wikimedia.org/wiki/File:Heapsort-example.gif”, Swfung8 on Wikimedia,
19.04.2011, licensed under CC BY-SA 3.0, no changes made ↩︎

2. source: “https://en.wikipedia.org/wiki/File:Binomial_Trees.svg”, Lemontea (?) on Wikipedia,
19.03.2006, licensed under CC BY-SA 3.0, no changes made ↩︎

O(m logm)

T s

T

n

https://algorithms.discrete.ma.tum.de/graph-algorithms/mst-kruskal/index_de.html
https://algorithms.discrete.ma.tum.de/graph-algorithms/mst-prim/index_de.html
https://commons.wikimedia.org/wiki/File:Heapsort-example.gif
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://en.wikipedia.org/wiki/File:Binomial_Trees.svg
https://creativecommons.org/licenses/by-sa/3.0/deed.en

3. source: https://en.wikipedia.org/wiki/File:Binomial_heap_merge1.svg, Lemontea on Wikipedia,
15.05.2006, licensed under CC BY-SA 3.0, no changes made ↩︎

4. source: https://en.wikipedia.org/wiki/File:Binomial_heap_merge2.svg, Lemontea on Wikipedia,
15.05.2006, licensed under CC BY-SA 3.0, no changes made ↩︎

5. source: https://en.wikipedia.org/wiki/File:AVL-tree-wBalance_K.svg, Nomen4Omen on Wikipedia,
01.06.2016, licensed under CC BY-SA 4.0, no changes made ↩︎

6. source: https://en.wikipedia.org/wiki/File:Breadth-first-tree.svg, Alexander Drichel on Wikipedia,
28.03.2008, licensed under CC BY 3.0, no changes made ↩︎

7. source: https://commons.wikimedia.org/wiki/File:Depth-first-tree.svg, Alexander Drichel on
Wikimedia, 28.03.2008, licensed under CC BY 3.0, no changes made ↩︎

8. source: https://commons.wikimedia.org/wiki/File:Bellman–Ford_algorithm_example.gif, Michel
Bakni, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein (2001)
Introduction to Algorithms (2nd ed.), p. 589 ISBN: 9780262032933, 01.05.2021, licensed under CC
BY-SA 4.0, no changes made ↩︎

9. source: https://en.wikipedia.org/wiki/File:KruskalDemo.gif, Shiyu Ji on Wikipedia, 24.12.2016,
licensed under CC BY-SA 4.0, no changes made ↩︎

10. source: https://en.wikipedia.org/wiki/File:PrimAlgDemo.gif, Shiyu Ji on Wikipedia, 24.12.2016,
licensed under CC BY-SA 4.0, no changes made ↩︎

https://en.wikipedia.org/wiki/File:Binomial_heap_merge1.svg
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://en.wikipedia.org/wiki/File:Binomial_heap_merge2.svg
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://en.wikipedia.org/wiki/File:AVL-tree-wBalance_K.svg
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://en.wikipedia.org/wiki/File:Breadth-first-tree.svg
https://creativecommons.org/licenses/by/3.0/deed.en
https://commons.wikimedia.org/wiki/File:Depth-first-tree.svg
https://creativecommons.org/licenses/by/3.0/deed.en
https://commons.wikimedia.org/wiki/File:Bellman%E2%80%93Ford_algorithm_example.gif
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://en.wikipedia.org/wiki/File:KruskalDemo.gif
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://en.wikipedia.org/wiki/File:PrimAlgDemo.gif
https://creativecommons.org/licenses/by-sa/4.0/deed.en

