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EDITOR’S NOTE: I highly recommend watching videos/demos of these topics and/or playing
around with these algorithms and concepts yourself, the definitions and examples in text form won’t
be enough to fully understand the concept behind these algorithms - they are merely here to
provide a rough blueprint

try and do the tutorial exerices, solve old exams or use a tool like TUMGAD to automatically
generate exercises and corresponding solutions

Complexity

Time Complexity: relation between growth of runtime and growth of input

: set of instances of an algorithm with different inputs

: runtime of an algorithm, usually measured in an actual unit of time (e.g.
nanoseconds)

Space Complexity: relation between used space / memory and growth of input

Different Cases

: set of instances of size 

worst case: 

pessimistic, but guarantees efficiency

average case:  if , else 

average, but doesn’t necessarily define usual behavior

best case: 

I

T : I → N

I ​n n

t(n) = max{T (i) : i ∈ I ​}n

t(n) = ​ ​T (i)∣I ​∣n
1 ∑

i∈I ​n
I ​ ∈n N t(n) = ​P [i] ⋅∑

i∈I ​n
T (i)

t(n) = min{T (i) : i ∈ I ​}n

https://github.com/ossner/TUMGAD
https://en.wikipedia.org/wiki/Computational_complexity
https://en.wikipedia.org/wiki/Time_complexity
https://en.wikipedia.org/wiki/Space_complexity


best result possible, but very optimistic

Landau-Notation

limiting behavior when the argument tends towards a particular value or infinity

functions that do not grow faster asymptotically than  (upper asymptotic bound)

 is at most a positive constant multiple of  for all sufficiently
large values of 

functions that grow slower than 

functions that do not grow slower asymptotically than  (lower asymptotic bound)

functions that grow faster than 

functions that have the same growth rate as 

 and 

(!) 

(!) 

some use case examples…

, but also  (also included in “greater” sets, since 
defines the upper bound)

, but also  (also included in “lesser” sets, since  defines the lower
bound)

 (only one, since  defines the intersection between the two previous
sets!)

placeholders:

instead of , one can write 

instead of  for , one can write 

instead of , one can write 

example: 

-definitions:

g ∈ O(f(n)) = {g(n) ∣ ∃c > 0 ∃n ​ >0 0 ∀n ≥ n ​ :0 g(n) ≤ c ⋅ f(n)}

f

g(n) ∈ O(f(n)) ≡ g f

n

g ∈ o(f(n)) = {g(n) ∣ ∀C > 0 ∃n ​ >0 0 ∀n ≥ n ​ :0 g(n) ≤ C ⋅ f(n)}

f

o(f(n)) ⊆ O(f(n))

g ∈ Ω(f(n)) = {g(n) ∣ ∃c > 0 ∃n ​ >0 0 ∀n ≥ n ​ :0 g(n) ≥ c ⋅ f(n)}

f

g ∈ ω(f(n)) = {g(n) ∣ ∀C > 0 ∃n ​ >0 0 ∀n ≥ n ​ :0 g(n) ≥ C ⋅ f(n)}

f

ω(f(n)) ⊆ Ω(f(n))

g ∈ Θ(f(n)) = O(f(n)) ∩ Ω(f(n))

f

Θ(f(n)) ⊆ O(f(n)) Θ(f(n)) ⊆ Ω(f(n))

ω(f(n)) ∩ o(f(n)) = ∅

f(n) ∈ o(g(n)) ⟹ g(n) ∈ ω(f(n))

5n −2 7n ∈ O(n )2 O(n ), O(n )...3 4 O

5n −2 7n ∈ Ω(n )2 Ω(n) Ω

5n −2 7n ∈ Θ(n )2 Θ

g(n) ∈ O(f(n)) g(n) = O(f(n))

f(n) + g(n) g(n) ∈ o(h(n)) f(n) + o(h(n))

O(f(n)) ⊆ O(g(n)) O(f(n)) = O(g(n))

n +3 n = n +3 o(n ) =3 n (1 +3 o(1)) = O(n )3

lim

https://en.wikipedia.org/wiki/Big_O_notation


some more criteria:

when doing -calculations…

…for proving  or , one can use  in the proof

…for proving  or , one can use  in the proof

rules for -calculations:

L’Hospital:

if the result of  is undefined, e.g. , , , ,  or , use L’Hospital’s
rule

logarithm rules:

from best to worst…
1. 

2. 

3. 

4. 

lim ​ ∣ ​∣ =n→∞ g(n)
f(n) 0 ⟹ f(n) ∈ o(g(n))

lim ​ ∣ ​∣ =n→∞ g(n)
f(n) 1 ⟹ f(n) ∈ ω(g(n))

lim ​ ∣ ​∣ =n→∞ g(n)
f(n) ∞ ⟹ f(n) ∈ ω(g(n))

lim ​ ∣ ​∣ =n→∞ g(n)
f(n)

c, 0 < c < ∞ ⟹ f(n) ∈ Θ(g(n))

f(n) ∈ O(g(n)) ⟺ lim ​ ∣ ​∣ <n→∞ g(n)
f(n) ∞

f(n) ∈ Ω(g(n)) ⟺ lim ​ ∣ ​∣ >n→∞ g(n)
f(n) 0

lim

f(x) ∈ o(g(x)) f(x) ∈ O(g(x)) ≤

f(x) ∈ ω(g(x)) f(x) ∈ Ω(g(x)) ≥

lim

lim ​ c ⋅n→∞ f(n) = c ⋅ (lim ​ f(n))n→∞

lim ​(f(n) +n→∞ g(n)) = lim ​ f(n) +n→∞ lim ​ g(n)n→∞

lim ​(f(n) ⋅n→∞ g(n)) = lim ​ f(n) ⋅n→∞ lim ​ g(n)n→∞

lim ​ f(n) =n→∞
p (lim ​ f(n))n→∞

p

lim ​ log f(n) =n→∞ log(lim ​ f(n))n→∞

lim ​n→∞ ​0
0 0 ⋅ ∞ ∞ − ∞ ​∞

∞ 00 ∞0

lim ​ ​ =n→∞ g(n)
f(n) lim ​ ​n→∞ g(n)′

f(n)′

ln(x ⋅ y) = ln(x) + ln(y)

ln( ​) =
y
x ln(x) − ln(y)

ln(x ) =y y ⋅ ln(x)

ln(e) = 1

ln(1) = 0

ln( ​) =
x
1 − ln(x)

log ​(y) =x ​log(x)
log(y)

O(1)

O(logn)

O(n)

O(n logn)



5. 

6. 

7. 

(!) growth rate of -order polynomials 

properties (valid for  and ):

 for any constant 

properties of derivatives (but not the other way around!):

if , then 

if , then 

if , then 

if , then 

Properties of Big O Notation

if  is a sum of several terms, if there is one with the largest growth rate, it can be kept and
all others omitted

e.g. 

if  is a product of several factors, any constants (factors that do not depend on ) can be
omitted

e.g. 

if  can be written as a finite sum of other functions, the fastest growing one determines the
order of 

e.g. 

product:

sum:

scalar multiplication:

 for any non-zero constant 

Time Complexity

basic terminology:

O(n )2

O(2 )n

O(n!)

k p(n) = ​a ​n ∈∑i=0
k

i
i Θ(n )k

O Ω

c ⋅ f(n) ∈ Θ(f(n)) c > 0

O(f(n)) + O(g(n)) = O(f(n) + g(n))

O(f(n)) ⋅ O(g(n)) = O(f(n) ⋅ g(n))

O(f(n) + g(n)) = O(f(n)) ⟺ g(n) ∈ O(f(n))

f (n) ∈′ O(g (n))′ f(n) ∈ O(g(n))

f (n) ∈′ Ω(g (n))′ f(n) ∈ Ω(g(n))

f (n) ∈′ o(g (n))′ f(n) ∈ o(g(n))

f (n) ∈′ ω(g (n))′ f(n) ∈ ω(g(n))

f(x)

f(x) = 6x −4 2x +3 5 → f(x) ∈ O(6x )4

f(x) x

f(x) = 6x →4 f(x) ∈ O(x )4

f

f

f(n) = 9 logn + 5(logn) +4 3n +2 2n ∈3 O(n )3

f ​ ∈1 O(g ​) ∧1 f ​ ∈2 O(g ) ⟹2 f ​f ​ ∈1 2 O(g ​g ​)1 2

f ⋅ O(g) = O(fg)

f ​ ∈1 O(g ​) ∧1 f ​ ∈2 O(g ) ⟹2 f ​ +1 f ​ ∈2 O(max(g ​, g ​))1 2

O(∣k∣ ⋅ g) = O(g) k



linear time: 

constant time: 

quadratic time: 

runtime analysis - worst case  for a given construct 

 with  being the body of 

Expected Values

average case complexity: 

definitions:

sample space : set of possible results

e.g. single dice roll , double dice roll 

random variable:  (variable, whose value is a random number)

e.g. dice roll,  can be a number between 1 and 6

domain: 

e.g. outcome / payout in € for gambling

expected value: 

e.g. dice roll, …

…then 

for a finite sample space and equally probable events: 

rules for expected value calculation:

 for random variables  and 

 for any constant 

complete example:

+€4 for hearts, +€7 for diamonds, -€5 for spades and -€3 for clubs

O(n)

O(1)

O(n )2

T (I) I

T (variable definition) = O(1)

T (comparison) = O(1)

T (return x) = O(1)

T (new Type(...)) = O(1) + O(T (constructor))

T (I ​; I ​) =1 2 T (I ​) +1 T (I ​)2

T (if(C) I ​ else I ​) =1 2 O(T (C) + max{T (I ​),T (I ​)})1 2

T (for(i = a; i < b; i++) I) = O( ​(1 +∑i=a
b−1

T (I)))

T (e.m(...)) = O(1) + T (ss) ss m

t(n) = ​ p ​ ⋅∑i∈I ​n i T (i)

Ω

Ω = {1, 2, 3, 4, 5, 6} Ω = {(1, 1), (1, 2), ..., (6, 6)}

X : Ω → R

X

W ​ :=X X(Ω) = {x ∈ R∣∃ω ∈ Ω : X(ω) = x}

Pr[X = x] := Pr[X (x)] =−1
​ Pr[ω]∑ω∈Ω∣X(ω)=x

E[X] := ​x ⋅∑x∈W ​X
Pr[X = x] = ​X(ω) ⋅∑ω∈Ω Pr[ω]

∀x ∈ {1, ..., 6} : P [X = x] = ​6
1

E[X] = ​x ⋅∑x P [X = x] = 1 ⋅ P [X = 1] + 2 ⋅ P [X = 2] + ... + 6 ⋅
P [X = 6] = (1 + 2 + 3 + 4 + 5 + 6) ⋅ ​ =6

1 3.5

E[x] = ​ ​X(ω)∣Ω∣
1 ∑ω∈Ω

E[X + Y ] = E[X] + E[Y ] X Y

E[a ⋅ X] = a ⋅ E[X] a ∈ R



+€1 for any ace

: amount of money to get paid / pay

 per card

Amoritzed Analysis (Accounting Method)

amortized analysis: analyze costs (time, memory) of an algorithm by averaging out the worst
operations over time for a sequence of  operations  (upper bound of actual runtime 
)

e.g. for a dynamic array, when “pushing” a new element in a full array, the array size needs to
be increased (doubled, for the sake of simplicity), but this only happens very rarely, so giving
the method a runtime of  is quite pessimistic

instead, using amortized costs, we classify the runtime as , since that is what happens
most of the time

lecture method:

: set of operations

: runtime / upper bound of an operation 

: runtime / upper bound of operation sequence 

: token cost of an operation, account balance change caused by 

: deposit to account

: withdraw from account

: amortized runtime of 

: amortized runtime of operation sequence 
(upper bound of actual runtime)

accounting method: define  with the following properties…
1.  for all valid operation sequences (i.e. no overdraft!)

2.  is chosen as fittingly as possible  let  be as small as possible

1  account balance can never be negative

2  upper bound of worst-case operations is 

final step: prove that  can never be negative

hint: look at how to calculate the actual  function and create a  based on what the
exercise wants

Ω = {♥A,♥K, ...,♥2, ♦A, ♦K, ..., ♦2, ♣A, ♣K, ..., ♣2, ♠A, ♠K, ..., ♠2}

X

W ​ =X {−5, −4, −3, −2, 4, 5, 7, 8}

Pr[X = −3] = Pr[♠K] + ... + Pr[♠2] = ​ =52
12

​13
3

E[X] = 4 ⋅ ​ +52
12 5 ⋅ ​ +52

1 7 ⋅ ​ +52
12 8 ⋅ ​ +52

1 (−5) ⋅ ​ +52
12 (−4) ⋅ ​ +52

1 (−3) ⋅ ​ +52
12

(−2) ⋅ ​ =52
1

​ ≈52
43 €0.83

n (σ ​, ...,σ ​)1 n T

O(n)

O(1)

S = {σ ​, ...,σ ​}1 n

T (σ) σ ∈ S

T (σ ​, ...,σ ​) :=1 m T (σ ​)∑i=1
m

i (σ ​, ...,σ ​)1 m

Δ(σ) σ

Δ(σ) > 0

Δ(σ) < 0

A(σ) := T (σ) + Δ(σ) σ

A(σ ​, ...,σ ​) :=1 m A(σ ​)∑
i=1
m

i (σ ​, ...,σ ​)1 m

Δ : S → R
​ Δ(σ ​) ≥∑

i=1
m

i 0

Δ ≡ A(σ ​, ...,σ ​)1 m

→

→ O(m ⋅ max ​(A(σ)))σ∈S

​ Δ(σ ​) ≥∑
i=1
m

i 0

T (σ) Δ(σ)

https://brilliant.org/wiki/amortized-analysis/#the-accounting-method


Hashing

map data (keys) to fixed-value sizes (values) using a hash function to uniquely identify said data
in a hash table

in other words, convert keys into other values and store these new values at corresponding
positions inside a table

implemented using a dictionary (stores a set of elements where each element is identified via a
unique key)

universe  of keys with  (some very large positive integer)

: subset of actually used keys with  significantly smaller than 

general idea: let  be an array with space for  elements (hash table) and a function 
 be used to map key to array index (hash function)

probability of hash collisions for equally spread out hash positions: 

// implementing a hash table with hash function 


// only for dynamic dictionaries


void insert(Object e){

    T[h(key(e))] = e;


}

// only for dynamic dictionaries


void remove(Key k){

    T[h(k)] = null;


}

// for static and dynamic dictionaries


Object find(Key k){

    return T[h(k)];

}

Hashing with Chaining

U ∣U ∣ = N

V ⊆ U ∣V ∣ = n N

T m h : U →
{0, ...,m − 1}

1 − o(1)

https://www.geeksforgeeks.org/what-is-hashing/
https://www.geeksforgeeks.org/c-program-hashing-chaining/


idea: avoid collisions (different keys mapped to the same value) by having each cell of the hash
table point to a linked list containing the hashed values

in other words, the hash table is an array, where each entry is a linked list

// init. array of linked lists


List<Object>[m] T;


// insert into linkedlist inside array


void insert(Object e){

    T[h(key(e))].insert(e);


}

// remove from linkedlist inside aray


void remove(Key k){

    T[h(k)].remove(k);


}

// find in linkedlist inside array


Object find(Key k){

    return T[h(k)].find(k);


}

space complexity: 

time complexity:

O(n + m)



insert() : 

remove() , find() : 

 for -universal hash families

Universal Hashing

: constant

: family of hash functions

: size of hash, such that each hash function returns a hash code in range 

a family of hash functions is -universal, if the probability of a hash collision between two keys 
and  when randomly chosing a hash function  is less than or equal to 

in other words:  for all 

formally:  for all 

(1-)universal family: -universal family of hash functions for 

in other words:  for all 

formally:  for all 

(*) how to determine, whether or not a given family is universal:

statement: you are given a hash table of size  (here ), a set of keys (*here 
) and the given mappings for each hash function 

example:

question: is the hash family  (here ) universal?

answer: prove that 

step 1: note collisions between each possible pair for each hash function

O(1)

O(1 + n/m)

O(1 + c ⋅ n/m) c

c > 0

H

m {0, 1, ...,m − 1}

c x

y h ∈ H ​

m
c

∣{h ∈ H : h(x) = h(y)}∣ ≤ ​∣H∣
m
c x = y

Pr[h(x) = h(y)] ≤ ​

m
c x = y

c c = 1

∣{h ∈ H : h(x) = h(y)}∣ ≤ ​∣H∣
m
1 x = y

Pr[h(x) = h(y)] ≤ ​

m
1 x = y

m m = 4
A,B,C,D,E h ​i

h ​ :1 A ↦ 1,B ↦ 1,C ↦ 1,D ↦ 3,E ↦ 3

h ​ :2 A ↦ 2,B ↦ 2,C ↦ 0,D ↦ 0,E ↦ 1

h ​ :3 A ↦ 3,B ↦ 1,C ↦ 0,D ↦ 3,E ↦ 2

h ​ :4 A ↦ 0,B ↦ 2,C ↦ 1,D ↦ 2,E ↦ 1

h ​ :5 A ↦ 1,B ↦ 3,C ↦ 1,D ↦ 2,E ↦ 0

h ​ :6 A ↦ 3,B ↦ 2,C ↦ 0,D ↦ 1,E ↦ 3

H ​i H ​ =1 {h ​,h ​,h ​,h ​}1 2 4 5

∣h ∈ H ​ :1 h(x) = h(y)∣ ≤ 1

A/B : h ​,h ​1 2

A/C : h ​,h ​1 5

A/D : ∅

A/E : ∅

B/C : h ​1

B/D : h ​4

https://en.wikipedia.org/wiki/Universal_hashing


step 2: check that the number of collisions at most 1 for any given pair; if not, the function
is not 1-universal, but at least  universal with  being the number of collisions

since , the family  is -universal for 

parameterized hash families: a hash function  defines a family of hash
functions 

 can be freely chosen, e.g. , 

if  is a prime number, then  with 
 is a universal family of hash functions

lecture example - hashing an integer :

choose prime table size 

e.g. 

let 

e.g. 

separate bitstring  (binary representation) into  equal parts with  bits each

e.g. , since 

interpret each part as an integer 

e.g.  (an unsigned byte)

interpret key  to compute hash value of as -vector of , with 

e.g. 

define some vector 

e.g. 

scalar product of  and  is 

define  as  (scalar product of  and ,
product modulo )

e.g. 

Perfect Hashing

B/E : ∅

C/D : h ​2

C/E : h ​4

D/E : h ​1

c c

∣h ∈ H ​ :1 h(A) = h(B)∣ = ∣{h ​,h ​}∣ =1 2 2 H ​1 c

c ≥ 2

h ​ =b b ⋅ x mod m

H = {h ∣ b ∈b Z}

b h ​ =2 2x mod m h ​ =−400 −400x mod m

m H = {h ​ :a a ∈ {0, ...,m − 1} }k h ​(x) =a a ⋅ x
mod m

x

m

m = 269

w = ⌊log ​m⌋2

w = ⌊log ​ 269⌋ =2 8

x k w

k = 4 4 ⋅ 8 = 32

x ​ ∈i [0, ..., 2 −w 1]

x ​ ∈i [0, ..., 255]

x k x ​i x = (x ​, ...,x ​) ,x ​ ∈1 k
T

i

{0, ..., 2 −w 1}

x = (11, 7, 4, 3)T

a = (a ​, ..., a ​) , a ​ ∈1 k
T

i {0, ...,m − 1}

a = (2, 4, 261, 16)T

a x a ⋅ x = ​a ​x ​∑i=1
k

i i

h ​ :a x → {0, ...,m − 1} h ​(x) =a a ⋅ x mod m a x

m

h ​(x) =a (2x ​ +1 4x ​ +2 261x ​ +3 16x ​)4 mod 269

h ​(46915) =a (2 ⋅ 11 + 4 ⋅ 7 + 261 ⋅ 4 + 16 ⋅ 3) mod 269 = 66

https://en.wikipedia.org/wiki/Perfect_hash_function


“remember: no collisions.”

given:

static dictionary  of length  with keys 

: -universal family of hash functions to 

: number of collisions in  for  for every pair 

expected number of collisions: 

for at least half of the functions,  applies

if , then at least half of the functions  in  are injective (no collisions)

strategy: double hashing with  space complexity

step 1: hash key using a well-chosen hash function in a table of size  (i.e. ),
where each collision is packed into a bucket

set  to , then 

choose  with few collisions from  for 

choose  until 

formally: 

note: every tuple pair is counted twice! , then 

for each hash , a bucket  is created, so that each key mapped to  gets inserted into 

each bucket has  keys

each bucket has size 

sum of all bucket sizes effectively in  due to low number of collisions

S n k ​, ..., k ​1 n

H ​m c {0, ...m − 1}

C(h) S h (x, y)

E[C(h)] ≤ ​

m

cn(n−1)

C(n) ≤ 2cn(n − 1)/m

m ≥ cn(n − 1) + 1 h H ​m

O(n)

O(n) m = αn

α ​ ⋅2 c m = ⌈ ​ ⋅2 c ⋅ n⌉

h H ​⌈ ​⋅c⋅n⌉2 h(k) ∈ {0, ..., ⌈ ​cn⌉ −2 1}

h C(h) ≤ ​ ⋅2 n

C(h) = ∣{(x, y) ∣ h(x) = h(y),x = y}∣ ≤ ​n2

(x, y) (y,x)

l B ​l l B ​l

b ​ =l ∣B ​∣l

m ​ =l c ⋅ b ​(b ​ −l l 1) + 1 ∈ O(b ​)l
2

O(n)



(!) good function, when  for any 

step 2: choose fitting  for bucket  from -universal family  with 

choose  until no collisions

(!) good function, when  for any  with current
bucket size 

when using arrays, the hash value of a key  is  with , where  is a perfect
hash function, and the worst-case runtime complexity for a lookup is 

Linear Probing

open hash function, allowing for collision-causing entries to be inserted at a free neighbouring
space

idea: store element in next free space, scanning from left to right and wrapping around

the original hash value of a key is its ideal position

// insert into next available spot if ideal spot taken


void insert(Object e) {

    i = h(key(e));


    while (T[i] != null && T[i] != e)


        i = (i + 1) % m;


    T[i] = e;


}

// find object using linear search


Object find(Key k) {

    i = h(k);


    while (T[i] != null && key(T[i]) != k)


        i = (i+1) % m;


α mod x ⟹ x > ​ ⋅2 n α

h ​l B ​l c H ​m ​l h ​(k) ∈l {0, ...,m ​ −l
1}

h ​l

α mod x ⟹ x ≥ b ​(b ​ −l l 1) + 1 α

b ​l

x s ​ +l h ​(x)l l = h(x) h

O(1)

https://en.wikipedia.org/wiki/Linear_probing


    return T[i];

}

pros:

no extra space complexity

cache-efficient, since we only look at neighbouring entries in the same array

deletion (move everything that is not on its ideal position back one space until blank position
reached, leave elements in ideal positions where they are!):




runtime: 

Sorting Algorithms and their Complexities

SelectionSort

in-place, unstable, time complexity always , space complexity 

idea: choose smallest element from remainder of array and swap places with element at start of
iteration

void selectionSort(Object[] a, int n) {


    for (int i = 0; i < n; i++) {


        int k = i;

        

        // find smallest element from unsorted sublist


        for (int j = i + 1; j < n; j++)


            if (a[j] < a[k]) 


                k = j;


        

        // swap with leftmost unsorted element


        swap(a, i, k);


    }

}

example:

O(1)

Θ(n )2 O(1)

https://www.geeksforgeeks.org/time-complexities-of-all-sorting-algorithms/
https://en.wikipedia.org/wiki/Selection_sort


Sorted Unsorted Least (unsorted)

() (11,25,12,22,64) 11

(11) (25,12,22,64) 12

(11,12) (25,22,64) 22

(11,12,22) (25,64) 25

(11,12,22,25) (64) 64

(11,12,22,25,64) ()

InsertionSort

in-place, stable, worst-case , average-case , best-case , space complexity 

idea: take next element from array and insert into correct position by iterating backwards

void insertionSort(Object[] a, int n) {


    for (int i = 1; i < n; i++)


        // iterate backwards and insert at correct position


        for (int j = i − 1; j >= 0; j−−)

            if (a[j] > a[j + 1])


                swap(a, j, j + 1);


            else 


                break;


}

example of a single iteration:

array: [5,10,19,1,14,3]

current element: 1

[5,10,19,1,14,3] (correct position? no  swap 1 and 19)

[5,10,1,19,14,3] (correct position? no  swap 1 and 10)

[5,1,10,19,14,3] (correct position? no  swap 1 and 10)

[1,5,10,19,14,3] (correct position? yes)

MergeSort

not in-place, stable, worst-case , average-case , best-case ,
space complexity 

idea: split array recursively into two parts, then merge together

step 1: divide unsorted list recursively by halving it until each sublist only has one element

step 2: merge until no sublists remain, with smaller elements coming before bigger ones in each
step

O(n )2 O(n )2 O(n)
O(1)

→

→

→

O(n logn) Θ(n logn) Ω(n logn)
O(n)

https://en.wikipedia.org/wiki/Insertion_sort
https://en.wikipedia.org/wiki/Merge_sort


look, there’s a million different implementations of MergeSort, go find one that suits you best.

example:

divide:

conquer:

QuickSort

in-place, unstable, worst-case , average-case , best-case ,
space complexity 

idea: choose pivot element, then split array into elements smaller than pivot and greater or
equal to pivot

for each iteration, place pivot right at the end in the beginning for simplicity’s sake

let itemFromLeft  be the first element starting from the left of the array that is larger than the

pivot and itemFromRight  the first element starting from the right of the array that is smaller

than the pivot

once both have been found, swap places

if the index of itemFromLeft  ( ) is greater than that of itemFromRight  ( ), stop and swap

pivot with itemFromLeft 's index

continue recursively for each array (lower or greater than pivot, leave pivot unchanged in final
array)

speedup: when there are only two or less elements in an array, sort in one go without pivot
element

void quickSort(int[] a, int l, int r) {

    if (l < r) {

        int p = a[r]; // choose rightmost element as pivot


        int i = l - 1; // left index


        int j = r; // right index


        do {

            // move left index


10, 5, 7, 19, 14, 1, 3

10, 5, 7, 19 ∣ 14, 1, 3

10, 5 ∣ 7, 19 ∣ 14, 1 ∣ 3

10 ∣ 5 ∣ 7 ∣ 19 ∣ 14 ∣ 1 ∣ 3

10 ∣ 5 ∣ 7 ∣ 19 ∣ 14 ∣ 1 ∣ 3

5, 10 ∣ 7, 19 ∣ 1, 14 ∣ 3

5, 7, 10, 19 ∣ 1, 3, 14

1, 3, 5, 7, 10, 14, 19

O(n )2 O(n logn) O(n logn)
O(n)

i j

https://en.wikipedia.org/wiki/Quicksort


            do {


                i++;


            } while (a[i] < p);


            


            // move right index


            do {


                j--;


            } while (j >= l && a[j] > p);


            


            // swap elements if possible


            if (i < j)


                swap(a, i, j);


        } while (i < j);

        

        // at end of iteration, move pivot into correct position


        swap (a, i, r);


        // do quicksort for lower and greater subarrays


        quickSort(a, l, i - 1);


        quickSort(a, i + 1, r);


    }

}

example using rightmost element as pivot:

current array: [10, 5, 19, 1, 14, 3]

pivot: 3

swapped 10 (first greater than 3 from left) and 1 (first smaller than 3 from right): [1, 5, 19,
10, 14, 3]

new array: [1][3][19, 10, 14, 5]

pivot: 5

new array: [1][3][5][10, 14, 19]

pivot: 19

new array: [1][3][5][10, 14][19]

pivot: 14

final: [1][3][5][10][14][19]

RadixSort

runtime always  with number of keys  and key length , space complexity 

idea: create and distribute elements into buckets according to their radix, then merge buckets and
continue with new radix

O(k ⋅ n) n k O(n +
k)

https://en.wikipedia.org/wiki/Radix_sort


for decimal numbers: from rightmost digit to leftmost digit, create buckets for each present digit
(0-9), distribute numbers into corresponding buckets, merge buckets and repeat for next digit of
number

for words: from rightmost letter to leftmost letter, create buckets for each present letter (A-Z),
distribute words into corresponding buckets, merge buckets and repeat for next letter of word

example:

array: 012, 203, 003, 074, 024, 017, 112

buckets (rightmost digit): {012, 112}, {203, 003}, {074, 024}, {017}

array: 012, 112, 203, 003, 074, 024, 017

buckets (middle digit): {203, 003}, {012, 112, 017}, {024}, {074}

array: 203, 003, 012, 112, 017, 024, 074

buckets (leftmost digit): {003, 012, 017, 024, 074}, {112}, {203}

final: 003, 012, 017, 024, 074, 112, 203

HeapSort

in-place, unstable, runtime always , space complexity 

uses min-heap, sorts in reverse order (lowest to highest)

HeapSort(Object[] H, int n) {


    // build min-heap from array


    build(H[0], ... , H[n − 1]);


    // deleteMin until heap empty


    for (i = n − 1; i >= 1; i−−) {

        swap(H, 0, i);


        H.length−−;


        siftDown(H, 0);


    }

}

O(n logn) O(1)

https://en.wikipedia.org/wiki/Heapsort


example[1]

Summary of Sorting Algorithm Complexities

Algorithm Best Case Average Case Worst Case Space Complexity

SelectionSort

InsertionSort

MergeSort

QuickSort

RadixSort

HeapSort

Selection using QuickSelect

idea: find -th smallest element in array of  elements (numbering starts at 1)

similar to QuickSort, but we only look at one partition of the array

if  is smaller than the index of the pivot element (also starting at 1), continue with left array and
same 

if  is greater than the index of the pivot element, continue with right array and 
, where  is the length of the left partition and  is the length of the middle partition

(containing elements equal to pivot)

else, element found

example - finding 7th smallest element in array (5)

s = [3,1,4,1,5,9,2,6,5,3,5,8,9], k = 7  [1,1][2][3,4,5,9,6,5,3,5,8,9]

s = [3,4,5,9,6,5,3,5,8,9], k = 4  [3,4,5,5,3,5][6][9,8,9]

s = [3,4,5,5,3,5], k = 4  [3,4,3][5,5,5][]  found: 5

O(n )2 O(n )2 O(n )2 O(1)

O(n) O(n )2 O(n )2 O(1)

O(n logn) O(n logn) O(n logn) O(n)

O(n logn) O(n logn) O(n )2 O(n)

O(nk) O(nk) O(nk) O(n + k)

O(n logn) O(n logn) O(n logn) O(1)

k n

k

k

k k = k − ∣a∣ −
∣b∣ ∣a∣ ∣b∣

→

→

→ →

https://en.wikipedia.org/wiki/Quickselect


Recursion Analysis and Master Theorem

divide-and-conquer algorithms: algorithms that recursively divide the problem into smaller
subproblems, that are then solved (conquered) and merged back together

runtime analysis of recursive functions is done using recurrence relations

recurrence relations define one or more base cases and a function to determine the rest

e.g. Fibonacci numbers 

to solve recurrence relation, we need to get rid of the function’s recursiveness and find a closed
form

e.g. closed form of 

method 1: iterative insertion

write first few steps by hand and try to deduce closed formula

e.g. 

generalized: 

method 2: guess  then prove by induction

just wing it™

e.g. 

intuitively, guess that  and that  for 

in this case, we can prove that 

induction basis: for , 

induction hypothesis:  holds for some fixed 

induction step: prove that …

as such, , i.e. 

method 3: master theorem

follows a generalized formula of recurrence relations

F (x) = ​

⎩
⎨
⎧1

1
F (n − 2) + F (n − 1)

if n = 0
if n = 1
if n > 1

F (x) = ​ ​ − ​

​5
1 (( 2

1+ ​5 )
n

( 2
1− ​5 )

n

)

T (n) = ​ ​{a
T (n − 1) + n

if n = 0
if n > 0

T (1) = T (0) + 1 = a + 1

T (2) = T (1) + 2 = a + 1 + 2

T (3) = T (2) + 3 = a + 1 + 2 + 3

T (n) = a + (1 + 2 + ... + n) = a + ​ ∈2
n(n+1) O(n )2

f(n)

T (n) = ​ ​{3
T (n − 1) + 2n

if n = 1
if n > 1

f(n) = 2 −n+1 1 T (n) ≤ f(n) n ≥ 1

T (n) = f(n)

n = 1 T (1) = 3 = 2 −1+1 1

T (n) = f(n) n ∈ N
T (n + 1) = f(n + 1)

T (n) ∈ Θ(f(n)) T (n) ∈ Θ(2 )n

https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)


: runtime for base case (conquer)

: number of new subproblems per recursive layer

: factor, by which the size of new subproblems per recursive layer is reduced

: runtime needed by current layer for dividing and merging

example (mergesort):

MergeSort splits the array in 2 ( ) of size   each for each recursive layer 

the runtime of the base case is constant 

the runtime of dividing and merging for each layer is linear 

since , then 

Data Structures

Priority Queues

abstract datatype, where each element is given a priority

Operation unsorted list sorted list

build()

insert()

min()

deleteMin()

Binary Tree

tree data structure, where each node (at most) has a left and a right child (which themselves are
binary trees)

leaf: node without children

inner node: node with at least one child

depth : number of edges from root to node (root depth 0)

T (n) = ​ ​{
a

d ⋅ T ​ + f(n)(
b

n)
if n = 1

if n >1

a ∈ Θ(1)

d

b

f(n) = c ⋅ n ∈ Θ(n)

T (n) = ​ ​ ​

⎩
⎨
⎧Θ(n)

Θ(n logn)
Θ(n )log ​ db

if d < b
if d = b
if d > b

d ​2
n

​(
b
n) → d =

2, b = 2

→ a ∈ Θ(1)

→ f(n) ∈ Θ(n)

T (n) = ​ ​{
a

2 ⋅ T ​ + f(n)(
2
n)

if n = 1

if n >1

d = b T (n) ∈ Θ(n logn)

O(n) O(n logn)

O(1) O(n)

O(n) O(1)

O(n) O(1)

t

https://en.wikipedia.org/wiki/Priority_queue
https://en.wikipedia.org/wiki/Binary_tree


height : depth from lowest node to root plus one (starting height 1)

perfect binary tree:  nodes,  leaves

a full binary tree with  nodes has height 

complete binary tree: the first  levels make up a complete binary tree, there exists a
node  on level  such that there are no more nodes to the right of it




modifying a binary tree:

insert() : 



delete() : 



Binary Heaps

binary tree with…

form invariant: all layers are complete except for lowest layer

heap invariant (min-heap): 

h

2 −h 1 2h−1

n ⌊log ​(n)⌋ +2 1

t − 1
e t

O(logn)

O(logn)

key(v.parent) ≤ key(v)

https://en.wikipedia.org/wiki/Binary_heap


can be stored using arrays, where a node with index  has children at indices  and 
and parent node at 

deleteMin() : replace root with last element in heap and sift down until heap invariant fulfilled, 

 + runtime of siftDown(v)

// pseudocode


Element deleteMin(Heap<Element> H) {


    Element min = root of H;


    replace root of H with last element of H;


    siftDown(H, root of H);


    return min;

}

siftDown(v) : move node down according to min-heap invariant, 

// pseudocode


siftDown(Heap<Element> H, Node v) {


    // cannot sift down if node is leaf


    if (isLeaf(v)) return;


    

    Node m;


    // choose direction


    if (key(v.left) < key(v.right)){


        m = v.left;


    }

    else {

        m = v.right;


    }

    

    // restore heap invariant or quit


    if (key(m) < key(v)) {


        swap content of m and v;


        siftDown(H, m);


    }

}

insert(e) : insert element at end of heap then sift up into place,  + runtime of siftUp()

// pseudocode


insert(Heap<Element> H, Element e) {


i 2i + 1 2i + 2
⌊ ​⌋2
i−1

O(1)

O(logn)

O(1)



    Node v = insert e at end of H;


    siftUp(H, v);


}

siftUp(v) : move node up according to min-heap invariant, 

// pseudocode


siftUp(Heap<Element> H, Node v) {


    while (v is not root && key(v.parent) > key(v)) {


        swap content of v and v.parent;


        v = v.parent;


    }

}

build(e1...en) :

insert  elements unsorted into heap

do siftDown()  for each node  on layer  bottom-up in reverse order (right to left)

in other words: the first  elements of the actual array, handled in reverse order (e.g.
for [15,20,9,1,11,8,4,13,17] , one would do siftDown()  for 1,9,20,15  in that order)

decreaseKey(v,k) : 

decreaseKey(Heap<Element> H, Node v, int k) {


    if (k > key(v)) error();


    key(v) = k;


    siftUp(H, v);


}

increaseKey(v,k) : 

increaseKey(Heap<Element> H, Node v, int k) {


    if (k < key(v)) error();


    key(v) = k;


    siftDown(H, v);


}

delete(v) : replace  with last node  in heap then do siftUp(v')  or siftDown(v')

Binary Heap example using Max-Heap

insertion: adding 15 into heap by inserting it at the end, then sifting up until heap invariant (here
max-heap, i.e. ) is restored

O(logn)

n

v t

⌊n/2⌋

O(logn)

O(logn)

v v′

key(parent) > key(child)



for visualization: let X be the spot where 15 will be inserted at first

place 15 there and check, if heap invariant is maintained  since heap invariant is violated, sift
15 up and check again

since the heap invariant is violated once more, sift up once again  since the node is now at
the root, we have successfully inserted the node into the heap

deletion: using the same max-heap as before

let 11 be the node we want to remove (equiv. deleteMax() )



replace 11 with last node in heap, 4



sift down, then heap invariant is restored



Binomial Trees

→

→



a binomial tree of rank  has a root node with children of rank , , … , 0 in that order[2]

maximum depth 

depth  has  nodes ( )

in total  nodes

maximum degree  in root

merging: root node with bigger key becomes new child of root with smaller key[3]

removing root: new binomial trees of ranks  down to  appear

r r − 1 r − 2

r

l ∈ {0, ..., r} ​(
l
r) ​

l!(r−l)!
r!

2r

r

r − 1 0



Binomial Heaps

set of binomial trees where each tree fulfills the min-heap invariant, there are no two trees with
the same rank and a min-pointer points to the root with the smallest key

a binomial heap with  nodes contains at most  binomial trees

the binary representation of  tells us exactly the rank of the trees in our heap

z.B.  there are trees of ranks 3,1,0

merging: equivalent to binary addition,  with [4]



operations:

min() : return root with minimal key (located at min-pointer)

merge() : equivalent to binary addition

insert(e) : merge()  with binomial tree of rank 0, containing only e

deleteMin() : remove min-root and merge()  the children with the rest of the heap

n 1 + ⌊log ​(n)⌋2

n

n = 11 ​ =10 1011 ​ =b 1 ∗ 2 +3 1 ∗ 2 +1 1 ∗ 2 →0

O(logn) n = max{n ​,n ​}1 2

O(1)

O(logn)

O(logn)

O(logn)

https://en.wikipedia.org/wiki/Binomial_heap


decreaseKey(v,k) : set key(v) = k , then siftUp()  in binomial tree of v  and adjust min-

pointer if needed

remove(v) : first decreaseKey(v, -inf) , then deleteMin()

Binary Search Tree

binary tree with…

search tree invariant: left child smaller than parent, right child larger than parent

key invariant: each key is unique

degree invariant: a node can only have at most 2 children

locate(e) : begin at root  of tree, 

if , go to left child, else go to right child

return minimal node for which its key is greater or equal 

insert(e) : 

do locate(key(e))  until  is reached

if , insert  before  in list, and create new search tree node with  as
splitter key to fulfill search tree invariant

else, throw error

remove(k) : 

do locate(k)  until  is reached

if 

delete  from list

delete parent key  from tree

if not already deleted, replace node with next smaller node in tree

O(logn)

O(logn)

w O(logn)

key(v) ≥ k

e

O(logn)

e′

key(e ) >′ key(e) e e′ key(e)

O(logn)

e

key(e) = k

e

v



else, throw error

cba with making original graphics here, just look in the slides or google it, the examples are good
enough

AVL-Trees

self-balancing binary search trees

fixes and height-balancing possibly needed after insertion and deletion

for any node, the height of its two subtrees differs by at most 1

balance factor = height of right subtree - height of left subtree [5]



time complexity: worst-case , best-case 

inserting: start at root; if , go left, otherwise right; insert where free space available
then rotate

left rotation if balance factor of node is  and balance factor of right child is  or 

right rotation if balance factor of node is  and balance factor of left child is  or 

right-left rotation if balance factor of node is  and right child has balance factor 

left-right rotation if balance factor of node is  and left child has balance factor of 

deleting:

if node does not have a left child, move right child into its place

if node does not have a right child, move left child into its place

∈ {−1, 0, 1}

O(logn) Θ(logn)

k ​ ≥current v

2 +1 0

−2 −1 0

+2 −1

−2 +1

https://www.geeksforgeeks.org/introduction-to-avl-tree/
https://www.geeksforgeeks.org/insertion-in-an-avl-tree/
https://www.geeksforgeeks.org/deletion-in-an-avl-tree/


if node has left and right child, replace with node with next smaller key

balancing afterwards: same as before

searching works the same as in any standard binary search tree

Summary: AVL-Tree Rotations

if height differences for parent and child have the same sign, perform single rotation

if positive, perform left rotation

if negative, perform right rotation

if height differences for parent and child have different signs, perform double rotation

if +2 / -1, perform R-L–rotation

if -2 / +1, perform L-R-rotation

Source: https://www.geeksforgeeks.org/insertion-in-an-avl-tree/


T1, T2, T3 and T4 are subtrees.


S - single, D - double


S: RIGHT ROTATE


         z                                      y 


        / \                                   /   \


       y   T4      Right Rotate (z)          x      z


      / \          - - - - - - - - ->      /  \    /  \ 


     x   T3                               T1  T2  T3  T4


    / \

  T1   T2

  



D: LEFT-RIGHT ROTATE


     z                               z                           x


    / \                            /   \                        /  \ 


   y   T4  Left Rotate (y)        x    T4  Right Rotate(z)    y      z


  / \      - - - - - - - - ->    /  \      - - - - - - - ->  / \    / \


T1   x                          y    T3                    T1  T2 T3  T4


    / \                        / \


  T2   T3                    T1   T2


  

S: LEFT ROTATE


  z                                y


 /  \                            /   \ 


T1   y     Left Rotate(z)       z      x


    /  \   - - - - - - - ->    / \    / \


   T2   x                     T1  T2 T3  T4


       / \

     T3  T4


     

D: RIGHT-LEFT ROTATE


   z                            z                            x


  / \                          / \                          /  \ 


T1   y   Right Rotate (y)    T1   x      Left Rotate(z)   z      y


    / \  - - - - - - - - ->     /  \   - - - - - - - ->  / \    / \


   x   T4                      T2   y                  T1  T2  T3  T4


  / \                              /  \


T2   T3                          T3   T4

(a,b)-Trees

variable definitions:

: root

 leaves

: number of children (ext. degree) of a node 

: depth of a node 

a search tree  is called an -tree for  and  (alt. ) if following
invariants are fulfilled:

form invariant: all leaves are at the same depth

degree invariant: for all internal nodes except for the root, 

in other words, each node (except for the root) has at least  and at most  children

for the root node:  (except if it’s a leaf)

w

n

d(v) v

t(v) v

G (a, b) a ≥ 2 b ≥ 2a − 1 a ≤ ​2
b+1

a ≤ d(v) ≤ b

a b

2 ≤ d(w) ≤ b



depth  if 

all operations 

locate(k)  works the same as in any search tree

insert(e) :

locate  using locate(key(e))

if , insert  before , otherwise throw error

insert  and handle in  into tree

case 1: if , finish

case 2: if , split  in two and move splitter key (usually key at index  or
median) up

case 2.5: if degree of parent node is now bigger, continue until eventually  or root
has been split

remove(e) :

let  be the node of 

case 1:  contains  (lowest depth)

directly delete  and 

if  now has less than  children, steal or merge

case 2:  does not contain  (not on lowest depth)

let  be the element directly before , included in 

delete  from  and  from list

replace remaining  in tree with  (i.e. replace key with value which contained pointer
to )

if  now has less than  children, steal or merge

steal if neighbouring node  of  has more than  children, start with left neighbour

 left of : rightmost key in  goes up, replaced key goes down into 

 right of : leftmost key in  goes up, replaced key goes down into 



merge if neighbouring node  of  does not have more than  children

merge  with neighbouring node, preferably left node, by bringing down father element

d ≤ 1 + ⌊log ​ ​⌋a 2
n+1 n > 1

Θ(logn)

e′

key(e) < key(e )′ e e′

key(e) v

d(v) ≤ b

d(v) > b v ⌊b/2⌋

deg ≤ b

v e

v e

e v

v a

v e

e′ e v

e′ v e

e e′

e

v a

v′ v a

v′ v v′ v

v′ v v′ v

v′ v a

v



father node and adjacent nodes may need to be adjusted with steal / merge too afterwards,
since we’re taking a node away from it

if root is empty, remove it

for the same reason as before, if you want examples, look in the slides and go along with those

Graphs

representing a graph:

list of edges

+:  space complexity, insert(Edge e) , insert(Node v)  and remove(Key i)  in 

-: find(Key i, Key j)  and remove(Key i, Key j)  worst-case 

adjacency matrix

+: can tell in  if two nodes are neighbors, inserting and deleting edges in 

-: space complexity , finding all neighbors of a node costs  time

{1, 2}, {1, 3}, {2, 3}, {2, 4}, {2, 5}, {4, 5}

O(m)
O(1)

Θ(m)

​ ​ ​ ​ ​

⎝

⎛0
1
1
0
0

1
0
1
1
1

1
1
0
0
0

0
1
0
0
1

0
1
0
1
0⎠

⎞

O(1) O(1)

Θ(n )2 O(n)



adjacency arrays (top: indices of node in bottom array, bottom: neighboring node keys)

+: space complexity  for directed graphs and  for
undirected graphs

-: inserting and deleting edges is costly

adjacency lists (similar to arrays, but with linked lists)



+: inserting edges in , deleting edges in  or  with handle

when using adjacency lists with a hash table, all operations can be done in 

-: usage of lists requires heap space and generally takes longer

when using adjacency lists with a hash table, the space complexity becomes 

traversing a graph ( ):

breadth-first-search

horizontal before vertical

operates based on a FIFO-queue

useful for SSSP (single source shortest path) due to storing distance of each node to
source

algorithm:

insert node in queue

take front item of queue and add it to visited list

create list of vertex’s adjacent nodes, add ones not yet visited to the back of the queue

n + m + Θ(1) n + 2m + Θ(1)

O(1) O(d) O(1)

O(1)

O(n +
m)

O(∣V ∣ + ∣E∣)

https://www.youtube.com/watch?v=HZ5YTanv5QE


repeat steps 2 and 3 until queue is empty

order of expansion[6]:



depth-first search

vertical before horizontal

operates based on a stack

algorithm:

insert node onto stack

take top item of stack and add it to visited list

create list of vertex’s adjacent nodes, add ones not yet visited to the top of the stack

repeat steps 2 and 3 until stack is empty

order of expansion[7]:



extra variables:

dfsNum : exploration order

finishNum : finished order

types of edges:

root edge: edge from root outwards

https://www.youtube.com/watch?v=Urx87-NMm6c


forwards edge: to a successor

backwards edge: to a predecessor

using DFS to recognize DAGs:

DFS does not contain any backwards edges

for all edges , finishNum[v] > finishNum[w]  (higher finish number points to lower

finish number)

Type of Edge dfsNum[v] < dfsNum[w] finishNum[v] > finishNum[w]

Root Edge yes yes

Forwards Edge yes yes

Backwards Edge no no

Rest no yes

Connectivity

a graph is connected if every pair of vertices in the graph is connected  there is a path
between every pair of vertices

a graph with just one vertex is connected

an edgeless graph with two or more vertices is disconnected

a directed graph is called weakly connected if replacing all of its directed edges with undirected
edges produces a connected (undirected) graph

it is unilaterally connected if it contains a directed path from  to  or a directed path from  to 
for every pair of vertices 

it is strongly connected, or simply strong, if it contains a directed path from  to  and a directed
path from  to  for every pair of vertices 

(v,w)

≡

u v v u

u, v

u v

v u u, v



a connected component is a maximal connected subgraph of an undirected graph

each vertex belongs to exactly one connected component, as does each edge

a graph is connected if and only if it has exactly one connected component

the strong components are the maximal strongly connected subgraphs of a directed graph

Shortest Paths (SSSP)

case 1: edge costs 1  BFS

case 2: DAG, variable edge costs  Topological Sorting

case 3: variable graph, positive edge costs  Dijkstra

case 4: variable graph, variable edge costs  Bellman-Ford

DAG - Topological Sorting

L ← Empty list that will contain the sorted elements


S ← FIFO-Queue of all nodes with no incoming edge


while S is not empty do


    remove a node n from S


    add n to L


    for each node m with an edge e from n to m do


        remove edge e from the graph


        if m has no other incoming edges then


            insert m into S


if graph has edges then


    return error   (graph has at least one cycle)


else 

    return L   (a topologically sorted order)

Dijkstra’s Algorithm

→

→

→

→

https://algorithms.discrete.ma.tum.de/graph-algorithms/spp-dijkstra/index_de.html


used to find shortest paths between nodes in a weighted graph with positive weights

algorithm:

mark all nodes unvisited and create set of unvisited nodes

assign tentative distances to each node (0 for initial node,  for all other nodes)

the tentative distance of a node is the length of the shortest path (so far) between said node
and the starting node

for the current node, calculate tentative distances of neighboring unvisited nodes through
current node

if newly calculated tentative distance is smaller than current distance, replace current
distance with tentative distance

mark current node as visited (remove from unvisited set)

if destination node is marked as visited or if smallest tentative distance among nodes in
unvisited set is infinity, stop

else, go to unvisited node with smallest tentative distance and go back to third step

time complexity: 

Bellman-Ford[8]

works on graphs with negative edge weights

∞

O(∣E∣ + ∣V ∣ log ∣V ∣)

https://algorithms.discrete.ma.tum.de/graph-algorithms/spp-bellman-ford/index_de.html


fundamental idea: there are at most 	edges in one of our paths (because if there were 
 or more, there would be a cycle)

algorithm:

initialize distance to source to 0 and all other nodes to infinity

for all edges: if the distance to the destination can be shortened by taking the edge, the
distance is updated to the new lower value

if , then 

repeat last step  times

if in the last iteration, distances are still being updated, then finally update these distances
to , indicating that there is a negative weight cycle




time complexity: 

Shortest Paths (APSP)

Floyd-Warshall’s Algorithm

, please don’t use this

let dist be a |V| × |V| array of minimum distances initialized to ∞ 

(infinity)

for each edge (u, v) do


    dist[u][v] ← w(u, v)


for each vertex v do


∣V ∣ − 1
∣V ∣

dist[v] > dist[u] + weight((u, v)) dist[v] = dist[u] + weight((u, v))

∣V ∣ − 1

−∞

O(∣E∣ ⋅ ∣V ∣)

O(n )3

https://algorithms.discrete.ma.tum.de/graph-algorithms/spp-floyd-warshall/index_de.html


    dist[v][v] ← 0


for k from 1 to |V|


    for i from 1 to |V|


        for j from 1 to |V|


            if dist[i][j] > dist[i][k] + dist[k][j] 


                dist[i][j] ← dist[i][k] + dist[k][j]


            end if

Johnson’s Algorithm

insert new temporary node  with edge  to all  and 

calculate  using Bellman-Ford’s Algorithm and set  for all 

calculate modified edge costs 

calculate  for all  without  using Dijkstra’s Algorithm using the modified costs

calculate proper distances 

example: first 3 stages



Minimum Spanning Trees

s (s, v) v c(s, v) = 0

d[s, v] ϕ[v] = d[s, v] v

(e) =c ϕ(v) + c(e) − ϕ(w)

[v,w]d v s

d[v,w] = [v,w] +d ϕ[w] − ϕ[v]

https://en.wikipedia.org/wiki/Johnson%27s_algorithm
https://en.wikipedia.org/wiki/Minimum_spanning_tree


Kruskal’s Algorithm ( ):

repeatedly choose a minimum-cost edge connecting two connected components until only one

connected component remains[9]

Prim’s Algorithm:

look at growing tree , initially consisting of any single node 

add to  an edge with minimal weight from a tree node to a node outside the tree (if there
are multiple possibilities, it doesn’t matter which)

repeat selection until all  nodes in tree[10]



1. source: “https://commons.wikimedia.org/wiki/File:Heapsort-example.gif”, Swfung8 on Wikimedia,
19.04.2011, licensed under CC BY-SA 3.0, no changes made ↩︎

2. source: “https://en.wikipedia.org/wiki/File:Binomial_Trees.svg”, Lemontea (?) on Wikipedia,
19.03.2006, licensed under CC BY-SA 3.0, no changes made ↩︎

O(m logm)
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n
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https://creativecommons.org/licenses/by-sa/3.0/deed.en
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