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Abstract

Finite element methods can be used to discretize a given partial differential equation.
This usually results in the domain model being transformed into a mesh made of poly-
hedral cells. When simulating the equation on the mesh on a computer cluster, load
balancing helps to push the maximum out of the hardware. In order to do so, one can
transform the mesh into a graph which is then partitioned. As the so-called graph par-
titioning problem is computationally hard to solve exactly, many heuristics have been
developed for it, and some libraries with algorithms for this problem are publicly avail-
able. We examine the partitioning libraries ParMETIS, PT-SCOTCH and ParHIP for
using them to load balance the computations of the earthquake simulation program
SeisSol. For this, we present an overview over common partitioning libraries, and then
present an interface for the afore-mentioned libraries which is integrated into the mesh-
reading library PUML. Furthermore, we show how the transformation from mesh to
graph in our case can be accomplished without using an external library, essentially re-
ducing the number of dependencies of our software. To solve this problem, we developed
an abstraction to iterate over all faces in a given mesh, possibly distributed over multiple
compute nodes. We close with an evaluation of ParMETIS, PT-SCOTCH and ParHIP;
mostly for the case that we have vertex weights, but no edge weights; conforming with
the currently used graph weighting model in SeisSol.
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1 Introduction

Load balancing is essential for achieving maximum performance on a given computer
cluster. However, it is sometimes difficult to achieve. Say, we want to simulate a system
described by a partial differential equation (PDE) over some time – which is in the most
cases not analytically solvable. We could spatially discretize our domain model using
the finite element method, basically transforming the domain into a mesh out of simple
polyhedral cells, for example tetrahedra. It might still be computationally intensive to
simulate the PDE, so we parallelize the our software with MPI, so that it can run on
a cluster. This means that we usually split up our mesh onto the different nodes. We
need to communicate the local progress between the nodes, at least between neighboring
cells. Unfortunately, we introduce (at least) two problems by this: firstly, if we have to
communicate a lot of data, the speed of our application will be limited by the bandwidth
of the interconnect. Secondly, if the mesh is split unevenly onto our nodes, some nodes
may stall while others are still computing data, before we can advance in time. So, it
would be preferable to distribute the mesh as evenly as possible onto the nodes and to
minimize the communication volume. A possible solution to these problems is to model
the mesh as a graph. Here, we have the so-called (hyper)graph partitioning problem:
given some (hyper)graph, we want to find a partitioning of all vertices into a specified
maximum number of sets, so that each of the sets has roughly the same size, and that
the number of edges which connect two different partitions is minimized. We call the
latter the edge cut. Technically though, also other objectives are thinkable. Hence, if we
try to model our cells as vertices, and our dependencies between them as edges, we get
a graph or hypergraph, depending on the communication model. For cells with different
computational effort, we can also weigh our graph to represent that.

Alas, the graph partitioning problem is computationally hard, or rather NP-complete.
As a consequence, no exact polynomial-time partitioning algorithm may exist (unless
P = NP ). Yet, many effective heuristics have been developed to counteract this limi-
tation. Not only have many algorithms been published, also several libraries have been
written which can compute practically applicable partitions. Generally, these libraries
are not only developed for graphs obtained from meshes, but also to partition graphs
which have a more complex structure. So the question arises on how well the libraries
perform on mesh data – and which are best to be used to partition a mesh for actual
simulations or computations. Additionally, our graphs may be very large and we may
want to compute partitions during runtime. So our libraries must be able to work to
some degree in parallel to achieve results in a sufficiently short time. This means that in
addition to the partition quality, i.e. the resulting edge cut and imbalance, the time and
memory it takes to partition a mesh are important metrics. Popular libraries include
METIS [1] and its distributed memory variant ParMETIS [2], as well as SCOTCH and
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1 Introduction

PT-SCOTCH [3], not to mention all the hypergraph partitioners like PHG in ZOLTAN
[4] and PaToH [5] or discontinued partitioners like Chaco [6], Party [7], or Jostle [8].
Moreover, there emerge new libraries from time to time like KaHIP [9] which recently
got enhanced by a distributed memory variant, called ParHIP.

This Bachelor’s Thesis is going to examine different graph partitioning libraries and
their partitioning quality and performance impact on earthquake simulations done with
the software SeisSol. The program uses unstructured tetrahedral meshes [10] for rep-
resenting earthquakes, and is parallelized in a hybrid scheme using OpenMP and MPI.
This means that we are in the situation as described above, and SeisSol uses ParMETIS
as of now [11] to find a suitable distribution of the mesh onto a cluster. Furthermore,
SeisSol weights its vertices, but not its edges [11] (or rather: all edges are uniformly
weighted). The interface to the partitioning library is currently implemented in the li-
brary PUML [12], a library to read unstructured meshes, and it is tailored completely on
ParMETIS. This goes so far that ParMETIS even performs the transformation of a mesh
to a corresponding graph; aside from partitioning. In the following, we will determine,
if there is another, better-suited partitioning library and we will generalize the interface
in PUML to easily switch between different partitioners.

This thesis is structured as follows: after introducing some basic notation, we begin
with explaining where SeisSol needs and makes use of graph partitioning (chapter 2).
After that, we recapitulate the graph partitioning problem itself and present the currently
used approaches used to tackle the problem (chapter 3). Then, we provide a quick survey
of graph partitioning libraries, describe some candidates (chapter 4) and present how to
implement them in SeisSol (chapter 5). We conclude with benchmarks on tetrahedral
meshes (chapter 6) as well as remarks for future work in the area (chapter 7).
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2 Mesh Processing

To begin, we examine where we need graph partitioning in SeisSol in particular.

2.1 SeisSol

SeisSol is an open source earthquake simulation software developed at the Technical
University of Munich and the Ludwig-Maximilian University of Munich [13]. The source
code is available here [14]. It was used to create a large-scale simulation of the 1992 Lan-
ders earthquake [15] (Gordon Bell finalist paper 2014) and the 2004 Sumatra earthquake
[10] (winner of the Best Paper Award at SC’17). Internally, SeisSol models earthquake
areas as unstructured tetrahedral meshes. For temporal discretization, the program
uses the ADER-DG method (see for example [16]). The solution is approximated using
a polynomial of high order (e.g. 5 in [10]).

2.1.1 Computations

The required earthquake calculations consist mainly of two types.

First, we have the propagation of seismic waves (cf. [11]). This process consists of the
wave propagation inside a cell as well as the transfer of waves between adjacent cells.
The inner-cell propagation can be done fully independently from other cells, whereas the
surface transfer needs the data from all (i.e. 4 at maximum) neighboring cells.

Additionally, there is the computation of dynamic rupture effects. This concerns the
resulting seismic waves from the friction between two different bodies, i.e. the surface
between them matters. In SeisSol, it is implemented that cell faces can be marked as
dynamic rupture faces. Generally, only a small portion of faces is marked as such [10].

2.1.2 Time stepping

As described in [11], each of the cells has a different maximum possible time step, so
that the simulation still stays numerically stable. It is hard to optimize, if we set the
time step for each cell individually. But we also lose too much performance, if we use a
single global time step for that the simulation stays numerically stable everywhere.

A compromise (resulting in a local time stepping, or LTS, scheme), as presented in
[11], is to cluster the cells by the maximum allowed time step. Let r be an integer
parameter (in SeisSol, r is often set to 2). We then build clusters C1, ..., CN with cluster
Ci containing all cells whose maximum time step is in the range [ri−1∆tmin, r

i∆tmin)
(with ∆tmin being the smallest maximum time step over all cells). The cells in Ci are
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2 Mesh Processing

then updated with rate ri−1∆tmin. Dynamic ruptures can be incorporated into this
scheme as well [10].

2.1.3 Parallelization

Due to the sheer size of the earthquake meshes, they require a lot of computational
power. Therefore, distributing the calculation onto a cluster of processors is inevitable.
As stated in [10], the simulation for 500 seconds of a mesh with about 221 million cells
would take 13.9 hours on the SuperMUC, Phase 2 (86016 Haswell cores).

SeisSol uses a hybrid parallelization scheme, combining MPI with OpenMP. In practice
that means that we usually have one MPI process per node or CPU, and OpenMP threads
to fill the rest of the cores. Sometimes, it is also beneficial to avoid one or two cores
on a CPU to give the operating system a place to not interfere with the computation
(cf. [10]).

The LTS as described before can be parallelized as follows: in one MPI process, all
local element and dynamic rupture face integration is processed in parallel with OpenMP.
For multiple MPI processes, each rank keeps a copy layer of cells from other ranks which
are adjacent to rank-local cells. Likewise, each rank has a ghost layer which contains
its cells which are adjacent to at least one cell from other ranks. The exchange of copy
and ghost layer is done with non-blocking MPI functions, i.e. MPI_Isend, MPI_Irecv
and MPI_Wait. To deal with the different time steps and the necessary synchronization,
the cells are grouped into work items which then get scheduled [11]. For more detailed
information, we refer to [11]. The dynamic rupture faces are also classified into time
clusters, for more information here, see [10].

In total, this means that we always transfer whole cells to other MPI ranks.

2.1.4 PUML

As of today (2019), the meshes for SeisSol are stored in a subset of the XDMF format [17]
which can be read using the library PUML [12]. The mesh file only stores information
about the location of the vertices (coordinate in 3-dimensional space) and which vertices
belong to which cells. For SeisSol, additional information about boundary conditions
and element groups is saved. PUML reads in the vertex and cell information over all
MPI ranks, so that each rank gets a roughly equal share of vertices and cells each. Faces
and edges are generated by PUML. On command, PUML re-distributes it so that for
each cell, all its vertices are present locally (this means of course, that a vertex may be
present on multiple MPI ranks). Additionally, PUML generates faces and edges out of
the vertices and assigns each cell, face, edge and vertex a global ID (unique over all MPI
ranks). When given a partition assignment for the cells, PUML re-distributes the cells
and the generates faces, edges etc. After that process, PUML can infer for geometric
objects the associated higher- or lower-dimensional ones. For example, for a given face,
PUML can infer the incident cells or the associated mesh edges or mesh vertices. An
interface to ParMETIS which can be used for partitioning is also present in PUML, but
not tied to the rest of the library.
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2.2 Notation

Further extensions or optimizations for PUML are discussed in [18].

2.2 Notation

To work with graphs, we have to introduce a little bit of mathematical notation.

For a graph G = (V,E), V denotes the set of vertices and E the set of edges. Let
n := |V |,m := |E|. We only consider undirected graphs, i.e. we write the edges in
the form {u, v} ∈ E, with u, v ∈ V . Moreover, we may give each vertex a weight
c : V → R+

0 , and each edge as well: ω : E → R+
0 . We may also freely extend ω to

map from the set of all two-element subsets of V to R+
0 by setting ω({v, w}) = 0 for

{v, w} /∈ E. For V ′ ⊆ V , we may conveniently write c(V ′) :=
∑

v∈V ′ c(v), for E′ ⊆ E
analogously ω(E′) :=

∑
e∈E′ ω(e).

We call an edge e ∈ E incident to some vertex v ∈ V , if v ∈ e (i.e. one end of e ends
in v). Two vertices v, w ∈ V are adjacent, if {v, w} ∈ E (i.e. there exists an edge which
connects v with w).

A k-partition is then a disjoint partition of V into k sets V1, ..., Vk, i.e. Vi ∩ Vj = ∅ for
i 6= j (i.e. the sets are pairwise disjoint) but V1 ∪ ... ∪ Vk = V . We call ω(V1, ..., Vk) :=
ω({{u, v} ∈ E|u ∈ Vi, v ∈ Vj , i 6= j}) the edge cut of the partition, that is, the sum of
the weights of all edges which are incident to vertices from two different partitions.

We also define a hypergraph G = (V,E), with V as for a “simple” graph, and E being
a (general) subset of the power set of V , with |e| > 1 for e ∈ E. Every graph is also a
hypergraph.

2.3 Terminology

In the Bachelor’s Thesis, we are going to work with (unstructured) tetrahedral meshes.
We will refer to the tetrahedra of our mesh as cells, as it is done within PUML (cf. sub-
section 2.1.4). Each cell has four faces and each face is shared with at most one other
cell. Additionally, a cell has six edges, and four vertices. Of course, these edges and
vertices can be shared by a multiple (not limited) number of other cells. Each vertex
has a three-dimensional coordinate in space.

The so-called dual graph of the mesh is defined as follows: for each cell in our mesh,
we insert a vertex into the dual graph. We connect to vertices in our dual graph, if the
corresponding cells share a face. An example is shown in figure 2.1. Motivated by this
description, we may also extend the notion of incident and adjacent on cells and faces.

To prevent confusion when using the term “vertex” and “edge” for both the mesh,
the dual graph of the mesh and an arbitrary graph, we will from now on write “graph
vertex”, “graph edge” and “mesh vertex”, “mesh edge” respectively, if the usage of the
terms is not clear.

5



2 Mesh Processing

(a) (b)

Figure 2.1: A two-dimensional example of (a) a mesh and (b) its dual graph. Note that
in the two-dimensional case, mesh edges and mesh faces coincide; hence here
we insert a graph edge for every mesh edge.

2.4 Problem Setting

The question we want to answer in this Bachelor’s Thesis is now to map our n cells onto
K interconnected nodes. Of course, we want to optimize the distribution so that the
general runtime is reduced. We try to accomplish this by formulating two goals:

• Minimize the maximum computing time per node

• Minimize communication between the nodes

To solve this, the problem can be modeled (as it is done in SeisSol) with the dual graph
of the mesh. As SeisSol only communicates values of cells over MPI, we can interpret
this as sending data from one dual graph node to another dual graph node (a dual graph
node equals one cell), if they are adjacent (i.e. the two cells share a common face in
our mesh). The only thing that is left is to account for the different computational
weights of our cells, introduced by the LTS scheme and dynamic ruptures. Let v ∈ V
be a dual graph vertex, let Ci be the cell corresponding to v. First, we deal with wave
propagation: we observe that it only matters to look at the number of updates the cell
does until we reach the time rN∆tmin. This number is exactly rN−i. The reason this
is accurate enough is that at rN∆tmin, all clusters are synchronized again (and again
at integer multiples of that time). As each cell update is equally expensive, setting this
weight for wave propagation is accurate enough. For the edge weights of the graph,
we set them all uniformly to 1. This is actually how it is implemented in SeisSol as
of now [14]. Dynamic ruptures are handled as follows: for each dynamic rupture face,
we add αrN−i to the weight, where α is an integer parameter which approximates the
ratio of the computational code for dynamic rupture calculations divided by the wave
propagation. This may not be the most accurate model possible for these, but it works
good enough in practice [14].

6



2.4 Problem Setting

With this knowledge, we can then re-formulate our goals: our first goal then equals to
finding a K-partition, so that c(Vi) ≈ c(V )

K for homogeneous clusters. For heterogeneous

clusters, this generalizes to c(Vi) ≈ wic(V ) with
∑N

i=1wi = 1, wi ≥ 0. The second goal
means to minimize the accumulated weight of edges whose endpoints lie in different Vi,
i.e. minimize ω(V1, ..., VK) (the edge cut).

To summarize: our re-formulations transformed our load balancing issue into a graph
problem, namely the graph partitioning problem (with minimizing the edge cut as ob-
jective).

7





3 The Graph Partitioning Problem

We define the graph partitioning problem as follows: given a weighted Graph G = (V,E)
(both vertex- and edge-weighted), minimize a given function f(V1, ..., VK) subject to
c(Vi) ≤ wic(V )(1 + ε), by partitioning the graph in at most K different parts V1, ..., VK .
We call ε ≥ 0 the allowed imbalance. A small non-zero imbalance value helps (e.g. ε =
0.01) to possibly achieve a lower objective value while not significantly worsening the
possible imbalance. In the following, we will solely use the edge cut as objective function,
i.e. f(V1, ..., VK) = ω(V1, ..., VK).

3.1 Complexity

The graph partitioning problem, with minimizing the edge cut as objective, is NP-
complete. This follows, for example, from [19]. We look at an unweighted (i.e. ω(e) = 1
for e ∈ E, c(v) = 1 for v ∈ V ) graph. The authors prove that determining if there exists a
2-partition V1, V2 with |V1| = |V2| (or c(V1) = c(V2)) with an edge cut of at most W (with
W being a positive integer), i.e. ω(V1, V2) ≤W , is NP-complete. Any given algorithm to
solve the graph partitioning problem exactly as we defined it could therefore be used to
solve this problem, with K = 2, uniform vertex and edge weights, w1 = w2 = 1

2 as well
as ε = 0. Additionally, there cannot exist a polynomial-time approximation algorithm
with finite approximation ratio for K ≥ 3 to find a K-partition with |V1| = ... = |VK |,
except if P = NP was to hold [20]. So far, these results have only spoken about general
graphs. Yet, even for simpler-structured graphs which are composed of grids or trees,
there generally cannot exist such an algorithm [21]. Therefore, the case for the dual
graphs of meshes we view here, it most likely also hopeless.

3.2 Heuristics

Several heuristics have been developed which compute practicable partitions or improve
existing ones. As there is a vast amount of algorithms and approaches for the graph
partitioning problems, we will refer to e.g. [22] for a general overview.

3.2.1 Multi-level Partitioning

Because the graph which are to be partitioned can be very large, it is often helpful to
reduce the size of the graph, and partition then. The most common approach for this
is multi-level graph partitioning. This method is used by many popular partitioning
libraries today, e.g. [23, 24]. Because of this, we will describe it here in abstract form. It

9



3 The Graph Partitioning Problem

could be described as rather a meta-heuristic, as it makes use of (at least) another graph
partitioning algorithm as well as partition refinement algorithms (i.e. improving existing
partitions), and to some extent also use of graph clustering (i.e. grouping vertices of a
graph in some way). The basic idea goes as follows [25]:

• Coarsening : We take our original graph G and collapse some of the edges (process
is known as coarsening). For each edge e = {u, v} we want to collapse, we remove
e, u, v from the graph and insert a new vertex uv with c(uv) = c(u) + c(v). Every
edge which connected either to u or v is changed to connect to uv instead. We
set ω({x, uv}) = ω({u, x}) + ω({v, x}), if x ∈ V was connected to both u and v.
Which edges to collapse depends on the used heuristic. This process may now be
repeated several times until the resulting graph G′ is small enough.

• Initial Partitioning : Then, we partition the resulting coarsened graph with a more
expensive partitioning algorithm.

• Un-coarsening and Local Refinement : Next, we reverse our coarsening steps: each
vertex now belongs to a partition. If we now split some uv into u and v, both u
and v will belong to the same partition as uv did. Consequently, the edge cuts
and the sizes of the partition stay the same during this split-up. We also allow
for nodes to be moved to other partitions or to be exchanged with other nodes to
improve the edge cut. Again, we use heuristics for doing this. In the end, we will
receive a partition on G.

The multi-level method can also be used for partition refinement, e.g. if cut edges from
the partition are not contracted during coarsening. This way, the contracted graph still
retains the structure of the existing partition.

Moreover, to reduce the influence of randomness (as many heuristics rely on a ran-
dom influence), the multi-level approach can be applied multiple times, trying different
random seeds [26]. Most of the time, cut edges are not contracted any more, as with
partition refinement. Such re-running of the multilevel method is called “V-Cycles”.
In some variants, multiple seeds per coarsening layer are used [27] (the techniques are
called “W-Cycles” and “F-Cycles”).

3.2.2 Sample Algorithms for the Multi-Level Partitioning Scheme

Because the multi-level is used in many places, there also exists an abundance of algo-
rithms for each step. Therefore, we will name a few of them. We will outline some of
them here shortly. Of course, this list of far from being exhaustive.

Coarsening

For coarsening, any algorithm which is used for clustering data can be used here. For
example, the so-called “label propagation algorithm”, described in [28] which tries to
find dense subsets in a graph which can then be coarsened to a single node [27].

10



3.2 Heuristics

Another approach is to use a matching, i.e. a subset of edges M , so that for each
v ∈ V , there exists at most one e ∈ M with v ∈ e. The idea is then to coarsen every
edge in M . A common heuristic for example is the heavy edge heuristic, where edges
with a larger weight are matched first (greedily) [29].

Initial Partitioning

When the coarsest graph has been obtained, other heuristics are applied. In some cases,
another partitioning library is called in a program. In some other cases, another multi-
level scheme is employed [30]. Generally, all algorithms used for initial partitioning could
also be used for partitioning the original graph – but they may be very slow doing so.

Apart from that, there are also more expensive graph partitioning algorithms which
can be used. For example, there exist methods which work with eigenvectors of the
Laplacian matrix of a graph (called spectral methods) [29]. Furthermore, a strategy
called graph growing can be used which starts with random vertices (as “seeds”) and
then iteratively adds vertices around them to the partition. Again, here there exist
multiple strategies on how to choose the random vertices themselves and how to choose
the surrounding vertices to add. Furthermore, partitioning methods could also make
use of coordinates, if the vertices have some. In the case of our dual graph, we could
for example take the barycenter as the coordinate of each graph vertex in space. Then,
partitioning using hyperplanes or space-filling curves (see e.g. [31]) are thinkable.

Local Refinement

For local refinement, algorithms based on the idea of Kernighan and Lin are most com-
mon [32]. In this algorithm (here only shown for K = 2, and |V1| = |V2|), pairs of
vertices from the two partition parts are chosen, so that when they are swapped, they
improve the edge cut the most. This is done until no vertices are left, then the algorithm
can be applied several times to improve the edge cut. Unfortunately, each pass takes
O(n2 log n) operations. An improvement to linear time per pass, called the Fiduccia-
Mattheyses algorithm, is described in [33]. Here, single vertices are moves instead of
pairs and more sophisticated data structures are used. Even further extensions exist,
see for example [29] or [27].

Another way to improve the edge cut is to only look at the vertices at the border of the
partition parts (i.e. where there are edges whose incident vertices belong to two different
parts) [34]. Also a possibility is to use maximum-flow-minimum-cut based methods, as
described in [27].

The label propagation algorithm can also be used for local refinement [24].
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4 A Survey of Graph Partitioning Libraries

In the following, we will compare some popular graph partitioning libraries. We also
include hypergraph partitioners in our comparison, as regular graphs are simply a special
case of these. First, we formulate some criteria which the libraries have to fulfill at least:

• The library should be actively developed. Some libraries we discovered (and that
were referenced in several papers) are not available for public download any more
or only accessible through sites like the Web Archive. In case of a sudden dis-
appearance of a library, SeisSol risks to have an important component missing,
therefore we will avoid such which are clearly not enhanced or fixed any further.

• The license must be compatible to SeisSol, i.e. to the Revised BSD License (3-clause
BSD) (cf. [14], check e.g. src/SeisSol.cpp). Of course, the library should be open
source in the first place. This way, it can be ensured that no portability problems
arise when running SeisSol on more unknown or newer processor architectures.

• The library has to support MPI, or some other interface for distributed mem-
ory computation. As the graphs we view may be large and weighted, even local
threading may not be fast enough.

The comparison will therefore be split up into three parts: Firstly, we look at the
general state of development and maintenance activity done for the libraries. Secondly,
we will review the partitioners themselves, and their basic features, such as MPI support
or the existence of a C++ interface. Lastly, we examine the performance claims by the
authors of the library, both in terms of partitioning speed and output mesh quality.
Here, we do not eliminate any library any more, this is rather for a comparison between
them in advance to our own tests. We chose not to reproduce the performance results
in advance by ourselves as this process would be to time-consuming, and does not focus
on our actual work.

4.1 State of Development

Table 4.1 shows a list of graph partitioners with links to their respective websites. We
do not claim that the table covers every existing and used graph partitioning library, yet
it should cover most of the popular libraries. This means, we will examine, if they are
still actively developed and have a license which is compatible to SeisSol.

First, we have the METIS family, including METIS (single-threaded), mtMETIS
(OpenMP), ParMETIS (MPI), and hMETIS (hypergraph partitioning). It is devel-
oped at the University of Minnesota [1], [2], [40]. In the case of METIS, mtMETIS
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4.2 Feature Comparison

and ParMETIS, the last release happened in 2013. In the case of hMETIS, it is 2007.
hMETIS is a closed source product, hence we will not review it further. The bug tracker
included in the webpage (e.g. [2]) does not include many new items for years. We there-
fore cannot really state, if there is active development going on right now. Concerning
the license of the libraries, it allows the usage for “research purposes by non-profit or-
ganizations” [37] in the case of ParMETIS – which applies to SeisSol. The license of
METIS is Apache 2.0 which is compatible to SeisSol.

Next, we have the KaHIP package, developed at the Karlsruhe Institute of Technol-
ogy and the University of Vienna [9]. KaHIP, which includes a distributed memory
partitioner ParHIP in its latest version, was updated in 2019 (version 2.10, sometimes
also referenced as 2.1). In their referenced papers [24, 49], the authors speak of future
extensions (which they plan to implement), therefore, we also consider this library to be
in active development. The license of KaHIP has been changed from GPL to MIT with
version 2.10 which is of course compatible to SeisSol.

As the next partitioning library, we consider SCOTCH and PT-SCOTCH [3], de-
veloped at Laboratoire Bordelais de Recherche en Informatique at the University of
Bordeaux 1. Both are still actively maintained; the last release happened in 2018 [42].
The CeCILL-C license is compatible with the code of SeisSol having a different license,
hence we can use both SCOTCH and PT-SCOTCH.

ZOLTAN is a package with a considerable amount of interfaces to other partitioning
libraries [4] which has been created at the Sandia National Laboratories. The last
release happened in 2016, we still consider this to be current enough to speak of active
development, though it seems to stall. License-wise, ZOLTAN is shared under the 3-
clause BSD which matches nicely with the license of SeisSol.

KaHyPar is a serial hypergraph partitioner, currently actively developed [44], the first
release happened in 2019. Again, it is from the Karlsruhe Institute of Technology. It is
licensed under the GPL, version 3 which may cause problems, as SeisSol is not licensed
under this one.

Concerning the rest of the libraries in the table: Party, Jostle and Chaco are not
developed any further. The same holds for the hypergraph partitioners Parkway and
PaToH. For Chaco, the latest version is more than 20 years old. Jostle has been taken
down by its owner, only the manuals are still downloadable on the webpage [8]. Instead,
Jostle seems to have been succeeded in some areas by a proprietary program called
NetWorks which we will not review any further due to its closed source nature and
because it does not cover our purpose. In the case of Party, Parkway, and PaToH, the
webpage itself was only available through the internet archive. Therefore, we will not
review Party, Jostle, Chaco, Parkway and PaToH in the following sections.

4.2 Feature Comparison

From now on, we will compare the partitioners, not the libraries any more. In many
cases, only one partitioner is packed into a library, but this is not the case for ZOLTAN
and KaHIP. KaHIP contains five partitioners: KaFFPa, KaFFPaE, KaBaPE, ParHIP,
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4 A Survey of Graph Partitioning Libraries

and an edge partitioner (which partitions by edges instead of vertices) since version
2.10. We will not review the edge partitioner, since it is out of scope for us. ZOLTAN
includes some basic geometric methods, and also an own (hyper)graph partitioner called
PHG – all are parallelized with MPI. We do not count the interfaces to ParMETIS and
PT-SCOTCH here which ZOLTAN also contains, as both are autonomous partitioning
libraries themselves.

Table 4.2 shows an overview over the most basic functions of all partitioners. For
this, we solely compare their support for MPI or threading, as well as the existence of a
C/C++ interface.

Of the viewed partitioners, METIS, mtMETIS, KaFFPa, SCOTCH, PaToH and KaHy-
Par did not support MPI, therefore we are not going to review them further. Though
it should be noted that mtMETIS supports OpenMP. We also decided not to look fur-
ther into KaFFPaE and KaBaPE. While both support MPI, they use it to partition the
graph on each rank without contracting it first, leading to a run-time at least as long as
when using a non-MPI algorithm [49]. Interestingly enough, SCOTCH, PT-SCOTCH
did support both MPI and pthreads, making it the only partitioner to do so; yet the
pthread support is still very basic, but going to be improved in future versions [50]. This
ultimately leaves ParMETIS, ParHIP, PT-SCOTCH and the algorithms from ZOLTAN.
Further, we present a short overview over the advantages of the remaining partitioners:

• ParMETIS can weigh the different partition parts (the weights were referred to
as wi in chapter 3). Moreover, it supports multiple vertex weights which it tries
to balance at once. ParMETIS contains some methods for re-partitioning as well.
ParMETIS can also handle FORTRAN arrays which start at index 1 instead of 0.

• ParHIP has the least features up to now, given it is still in development. It still
lacks a proper C/C++ interface; instead it has only a command line program
supplied in the git repository [41].

• PT-SCOTCH also supports weights for different partition parts. Apart from this,
is offers fine-grained control over its partitioning algorithm at run-time, using so-
called strategy strings. Users also may extend parts of the implemented multi-level
scheme with own algorithms. PT-SCOTCH contains routines for ordering a given
graph besides for partitioning it. PT-SCOTCH can handle FORTRAN arrays as
well, like ParMETIS.

• ZOLTAN (speaking of the whole package) supports a variety of graph partitioning
algorithms, with the afore-mentioned PHG and the geometric methods. Apart
from that, it contains interfaces to ParMETIS, SCOTCH, PT-SCOTCH and Pa-
ToH. Furthermore, ZOLTAN offers methods for re-partitioning or re-distributing
a graph during run-time. ZOLTAN contains an interface in FORTRAN, C, as well
as a class-based interface for C++.

All the partitioners left support 64-bit wide integers for vertex weights and indices.
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4.3 Performance Claims

Name C/C++ Interface Threading MPI

METIS 3 7 7

mtMETIS 7 3 7

ParMETIS 3 7 3

KaFFPa 3 7 7

KaFFPaE 7 7 7a

KaBaPE 7 7 7a

ParHIP 7 7 3

SCOTCH 3 3b 3

PT-SCOTCH 3 3b 3

ZOLTAN-PHG 3 7 3

ZOLTAN-Geom.Alg.c 3 7 3

KaHyPar 3 7 7

a Technically yes; but practically, it runs several serial parti-
tioners on different nodes b Partially
c Geometric algorithms implemented in ZOLTAN

Table 4.2: Basic features of the viewed partitioners.

4.3 Performance Claims

We will now compare the performance claims made by the authors of the libraries. Our
focus mainly lies on recent papers (i.e. in the last few years), as older publications do
not resemble the state of the software anymore.

The authors of KaHIP/ParHIP compare ParHIP in [24] (2017) to ParMETIS and PT-
SCOTCH. Yet, they only present the results of ParMETIS compared to ParHIP, because
they claim that PT-SCOTCH yielded always worse results than the other two partition-
ers. In their tests, they run ParHIP in two configurations, namely “fast” (performance-
oriented) and “eco” (quality-oriented). They compare both mesh-like graphs (i.e. low
connectivity) and graphs with a more complex structure (e.g. web or social graphs).
The maximum allowed imbalance is set to 1.03. In the tests where they compare both
mesh and social graphs of a size up to about 100 million nodes (the biggest social graph
has around 3.3 billion edges), and want to divide into 32 parts, ParHIP-eco wins over
ParMETIS in terms of edge cut in many (but not all) cases. The machine used to test has
512 GiB of RAM and the tests run with 32 MPI processes. Especially with the graphs
labeled as meshes, ParHIP-fast does not yield much worse edge cuts than ParHIP-eco.
In terms of runtime, ParMETIS always outperforms both ParHIP variants when it comes
to mesh-like graphs. For social graphs, sometimes ParHIP is faster, and for the biggest
social graphs, ParMETIS fails to partition them, due to lack of memory. Apart from
this test, they also performed a scaling study using a family mesh-like graphs (called
rgg and del [51]) up to 1 billion nodes, scaling them over the number of MPI processes,
diving into 16 parts. Again, the authors compare ParHIP-fast with ParMETIS. Here,
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4 A Survey of Graph Partitioning Libraries

ParMETIS again was considerably faster, with the run-time decreasing about linearly
with the number of MPI processes, for rgg25, rgg27, rgg29, rgg31 and del25. For
del27 and rgg31, there are only two data points, but there the run-time of ParMETIS
increases about 10 times when going from 1024 to 2048 MPI processes. In contrast, the
runtime of ParHIP-fast began to rise at about 512 MPI processes for almost all mesh
sizes. Again, ParMETIS was unable to process the larger mesh-like graphs, failing to
process del29 and del31.

In [52] (2013), the authors of ParMETIS and mtMETIS compare against PT-SCOTCH.
They use three different test systems (based on Intel Xeon and AMD Opteron proces-
sors), and also test a dual graph of a mesh with roughly 1 million vertices. Yet, they
only present comparison results for the edge cut per number of cores, when taking the
average over several runs of all used meshes. Here, PT-SCOTCH performs worse than
ParMETIS and mtMETIS on a little amount of cores first, but yields the best edge cuts
comparably when using 32 cores (the maximum here); though there is no big differ-
ence here any more. Yet, the edge cut is still worse in comparison to a serial execution
of METIS. Concerning memory consumption, here both PT-SCOTCH and ParMETIS
scale similarly, with ParMETIS using slightly less memory than PT-SCOTCH. When it
comes to the partitioning time, ParMETIS outperforms PT-SCOTCH by being roughly
4 to 5 times faster on all three test machines, considering the dual graph spoken of
before.

4.4 Chosen Libraries

In the end, we decided to implement ParMETIS, ParHIP and PT-SCOTCH. Because
ParMETIS is currently used in SeisSol, it is obviously included and will be viewed as the
base for our comparison. We had to barely change any code to make it work. ParHIP was
finally included because it seemed to be a possible new contender for the task, especially
managing large graphs really well. The decision for PT-SCOTCH fell, because it had
the compatibility interface to ParMETIS.

This mainly leaves only ZOLTAN with PHG and the geometric partitioning methods
out. The reason we ultimately decided to ignore ZOLTAN for now is that we wanted
to try out ParHIP. If we only tested ParMETIS and PT-SCOTCH, we could have im-
plemented only ZOLTAN, and access the two libraries over the unified interface. But
as there are no ZOLTAN bindings to ParHIP, we either would have programmed this
ourselves, or add some special case in our interface for ParHIP. Combining that with the
fact that the interface for some libraries also lacks some features [4], we decided against
this way.

We would have included ZOLTAN independently from a ParMETIS and PT-SCOTCH
interface, if I had more time for this Bachelor’s Thesis.

4.5 Partitioning Libraries in Detail

We will now present the chosen libraries in more detail.
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4.5 Partitioning Libraries in Detail

4.5.1 ParMETIS

The METIS graph partitioning library and its distributed memory version ParMETIS
are developed by George Karypis et al. at the University of Minnesota. Version 1.0.0
of ParMETIS was released in 1997 [2]. The basic and original ParMETIS algorithm is
described in [23] (comments to these also exist in [34]), further extensions are provided
in [53].

Software Packages

METIS, ParMETIS, mtMETIS, and hMETIS are each distributed separately and all
have a C++ interface. All variants use the CMake build system, and have a single
header which contains all necessary function definitions for using the libraries.

We will now focus on ParMETIS specifically [37]. For using ParMETIS, we have to
include both the METIS-header metis.h and the ParMETIS header parmetis.h. The
METIS-header also contains compiler variables which define the size of the used integer
types for indices and weights.

All methods are prefixed with ParMETIS_V3_. ParMETIS_V3_PartKway partitions a
graph a multi-level approach, and it said to yield high partitioning quality.
ParMETIS_V3_PartGeom uses a geometry-based approach which is said to be quick,
but results in worse partitions. Moreover, it does not accept vertex nor edge weights.
ParMETIS_V3_PartGeomKway first computes a geometry-based partition which is then re-
fined using the multi-level approach. It is said to be quicker than ParMETIS_V3_PartKway,
still yielding comparable partition quality. Aside from that, ParMETIS contains methods
to refine a partitioned mesh with ParMETIS_V3_RefineKway and to re-partition a mesh,
while not changing the partition mapping too much, with ParMETIS_V3_AdaptiveRepart.
ParMETIS_V3_Mesh2Dual is a helper method which can be used in our case if we want
to generate the dual graph out of mesh vertices and mesh edges.
ParMETIS_V3_PartMeshKway exists to partition a given mesh. Effectively, it internally
calls first ParMETIS_V3_Mesh2Dual and then ParMETIS_V3_PartKway on the resulting
dual graph. ParMETIS_V3_PartMeshKway can handle vertex weights, but does not sup-
port edge weights.

Parameter format

The structure of ParMETIS arguments is also used by the interface to KaHIP [54], and
(PT)SCOTCH at least provides compatibility methods using them, so we will explain
them here in more detail.

In general, each vertex has a global ID (program-wide) and a local ID (rank-wide).
The vertices on each rank are numbered beginning with 0. For the global ID, we take
the local ID and add the number of vertices which reside on all ranks which are lower
than the rank we are currently on. Edges are stored in adjacency lists. Furthermore,
the (undirected) edges are stored as two directed edges, i.e. if v and w are adjacent, w
is in the adjacency list of v and vice-versa. A list of common arguments in ParMETIS
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4 A Survey of Graph Partitioning Libraries

follows. It should be noted that idx_t is an integer datatype which can be 32 or 64 bits
long, depending on the metis.h header.

• idx_t* vtxdist should point to an array of size N +1, if N is the size of our MPI
communicator. vtxdist[i] then specifies the minimum vertex ID which is present
on rank i. This way, vtxdist[i+1]-vtxdist[i] equals the number of vertices on
rank i. vtxdist should be the same array on all ranks.

• idx_t* adjncy stores the adjacency lists for each local vertex (in ascending order
w.r.t. the local ID of these). The adjacency list of a vertex consists of the global
IDs of its neighbors, with no order specified. The size of this array is therefore the
combined length of all local adjacency lists. In our case, it is less or equal than 4n,
with n being the number of vertices.

• idx_t* vidx specifies the position of its adjacency list in adjncy, in a similar
fashion as vtxdist does with the number of vertices per rank. The array is of size
n (with n as before).

• idx_t* vwgt stores the vertex weights. For a single vertex weight, vwgt[i] con-
tains the weight for the vertex with local ID i. It is also valid to supply nullptr,
if only uniform vertex weights are used. For multiple vertex weights, the position
M ·i+j in vwgt contains the weight of vertex i in the j-th vertex weighting system,
with M being the number of vertex weights. Hence, this array if of size nM .

• idx_t* adjwgt stores the edge weights. adjwgt[i] contains the weight of the
edge which is defined through adjncy. It is therefore of the same size as adjncy.
adjwgt can also be a nullptr, if only uniform edge weights are used.

• idx_t* part stores the resulting partition assignment. vwgt[i] contains the
(zero-based) partition for the vertex with local ID i. It has the same size as
vidx.

Partition weights are supplied as an array of double or float which sums up to 1. The
weights may differ for each different vertex weight. There is also a separate imbalance
array which allows to specify an individual imbalance for each planned partition and
vertex weight.

4.5.2 ParHIP

KaHIP (short for Karlsruhe High Quality Partitioning) is developed by Christian Schulz
and Peter Sanders at the Karlsruhe Institute of Technology (KIT) and the University of
Vienna [9]. Since version 2.0, the distributed memory partitioner ParHIP is part of the
package.
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4.5 Partitioning Libraries in Detail

Partitioners

We will provide a short overview over some papers for some partitioner algorithms
provided in KaHIP.

• KaFFPa: The Karlsruhe Fast Flow Partitioner. The basic algorithms are found
in [55], [49] and [30].

• KaFFPaE : KaFFPa Evolutionary. It uses KaFFPa at its base. The basic algo-
rithms for this are found in [27].

• KaBaPE : The Karlsruhe Balanced Partitioner Evolutionary. The basic algorithm
can be found in [49].

• ParHIP : Parallel High Quality Partitioner. A distributed memory partitioner
which makes use of KaFFPaE for initial partitioning. More information on the
algorithms can be found in [24].

Software Package

For all of the before-mentioned algorithms, there exist command-line tools within the
KaHIP package. ParHIP and KaFFPa have a command line program on their own,
KaBaPE shares a command line program with KaFFPaE. Apart from that, the KaHIP
package contains an edge partitioning algorithm (also as distributed memory variant), as
mentioned before, and some helper programs, e.g. to run the label propagation algorithm
[54]. Only KaFFPa has an exposed C++ interface as of version 2.10. As a build
system, KaHIP uses scons, and additionally some bash scripts for easier compiling. An
installation system is still missing.

4.5.3 PT-SCOTCH

SCOTCH and PT-SCOTCH are developed at Laboratoire Bordelais de Recherche en
Informatique (LaBRI) at the University of Bordeaux 1, prominently by François Pelle-
grini. The first papers date back to 1994, the first release of PT-SCOTCH was in 2007
[3]. Information on the algorithms present in SCOTCH and PT-SCOTCH can be found
in [56], [50], and [34].

Software Package

Both SCOTCH and PT-SCOTCH are distributed in one package. It uses makefiles
directly without any additional build system. It also supplies several makefiles which
defined parameters for different systems. Settings like threading or the integer length
can be set using compiler variables. The header for PT-SCOTCH (ptscotch.h) needs
the header for SCOTCH to properly work (scotch.h).

As mentioned, both packages contain METIS and ParMETIS compatibility meth-
ods which cover some of the ParMETIS methods with an identical signature. Yet,
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these methods ignore some of the input values, for example, the seed value does not
have an effect, and the edge cut is not computed (cf. source code at [42], referring to
ParMETIS_V3_PartKWay).

When the compatibility methods are not used, PT-SCOTCH provides an own interface
for C which mimics object orientation. There are several structures, like SCOTCH_dgraph
or SCOTCH_strat. Each of these can be initialized with some parameters and filled with
data (e.g. SCOTCH_dgraph contains pointers to the actual graph data for PT-SCOTCH),
and have to be cleaned up after partitioning. Furthermore, parts of the multi-level
algorithm in SCOTCH can be replaced with user-implementations [57]. In general, PT-
SCOTCH and SCOTCH have two main algorithms implemented: mapping of data onto a
target architecture (which equals what we treat here), and re-ordering of sparse matrices
[56]. Each of these have their own set of methods (with “map” or “order” in their
name). For supporting partition weights, PT-SCOTCH provides many “architectures”
on how topologically our partitions are connected, including the possibility to specify
the complete graph as topology. The actual weights are inserted as integers.

Aside from that, both PT-SCOTCH and SCOTCH both support the afore-mentioned
strategy strings for exact control of the partitioning process [50, 56]. For ease-of-use,
default strategies which focus on certain aspects (like quality, speed or balance) are also
available.
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5 Implementation in SeisSol and PUML

After we have determined three partitioning libraries to work with, we now implement
an interface for them into the library PUML. Every class in the PUML library is inside
the puml namespace. We will omit it in this section to ease readability.

5.1 Current State

As of March 2019, SeisSol uses the ParMETIS library for partitioning.

5.1.1 Reading PUML Meshes In SeisSol

We will now describe the mesh reading process for PUML meshes in SeisSol [14].
The reading process happens in the file Geometry/PUMLReader.cpp, class PUMLReader.
Firstly, PUML reads the mesh (as well as boundary and group data) from the file. Next,
SeisSol makes PUML generate faces and edges which are required for calculating the ver-
tex weights, using the method PUML::generateMesh(). These are determined after this
step in the file Initializer/time_stepping/LtsWeights.cpp, class LtsWeights. To
calculate the maximum wave speed (which in turn is used to determine the LTS cluster),
SeisSol depends on a material file, supplied in the YAML file format [58]. The material
file is parsed with the easi library [59]. After the vertex weights have been generated,
SeisSol issues the actual partitioner call. To determine the partition weights, SeisSol
runs a small benchmark (called Mini SeisSol in code) to determine the performance of
each MPI rank (this is actually done before the instance of PUMLReader is created).
Using the resulting partition, PUML then re-distributes the cells (PUML::partition())
and then again calls PUML::generateMesh() to re-generate faces and edges. Finally,
SeisSol generates mesh information and the actual simulation can begin.

5.1.2 Graph Partitioning

The call to ParMETIS itself is issued in the file PartitionMetis.h in the PUML library,
in the method partition of the class PartitionMetis. This PartitionMetis class itself
is completely separate from the rest of the PUML library. In Geometry/PUMLReader.cpp,
the program first creates a PartitionMetis class and then invokes the partition

method. The resulting data pointer is then passed to the local PUML object holding the
cell and vertex data. Concerning ParMETIS, the code calls ParMETIS_V3_PartMeshKway.
This method can effectively be split up/replaced by two other ParMETIS methods,
cf. subsection 4.5.1.
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5.2 Face Iteration Abstraction

When working with PUML, SeisSol iterates over all cells and each of their side faces [14].
For each cell and given face, the program then computes some data, also considering
the data from the cell on the other side of the face (it it exists). When considering the
dual graph and ignoring faces which have only one incident cell, this is equivalent to
interpreting the graph as directed (i.e. we use 2-sized tuples as edges, not sets of size 2),
and then iterating over each directed edge. It may sound trivial on with a single process
or a single node, but when working with meshes which are distributed over multiple
MPI ranks, communication is needed. In this case, it effectively means that for a single
calculation, we have to transfer a temporal ghost layer to other ranks to compute the
necessary information.

As an example, one might want to compute edge weights for the dual graph, by taking
the sum of the incident vertex weights. For this, we need to compute a sum for each
edge in our dual graph, or equivalently, each face in our mesh. The sum depends on the
incident graph vertices, or mesh cells. If both of the incident cells lie on the same rank,
this poses no problem. But, if the incident cells lie on two different ranks, we will need
to communicate the weight of the respective other graph vertex, before we can compute
the edge weight. In case we use a format similar to that of ParMETIS, we will need
the resulting edge weight value on both ranks. This can be realized by transferring the
vertex weights to the respective other rank, and then compute the edge weight locally
on each of the two ranks.

We here present a direct abstraction (with a few adjustments) for this concept of
iterating over all faces.

To establish the basics, each cell is present on exactly one rank. In contrast, cell faces,
cell edges and cell vertices might be present on multiple ranks, in a way that for each
cell we have the faces, edges and vertices of the cell also locally on the same rank. In
the case of a cell face, this means that it is shared between at most two different ranks.
For data transfer with MPI, it is beneficial to focus on the cell faces instead of cells
themselves. We may differentiate between three types of cell faces (cf. figure 5.1):

• Inner faces: a face which has two incident cells which are on the same rank

• Shared faces: a face which has two incident cells, but they are on different ranks

• Boundary faces: a face which has only one incident cell

Of these three, only shared faces are present on more than one rank. Subsequently, only
these need to be handled with MPI.

Speaking in a more abstract form about the face iteration: the goal is to execute a
given function h(f, c1, c2) with c1, c2 being adjacent cells (c2 may also be a placeholder
value none if no other incident cell to f than c1 exists) and f being the face incident
to both c1 and c2. We want to compute h for all possible such triples f, c1, c2. When
using MPI communication, we may not have c2 present on the same rank as c1 (except
if we introduced never-updated ghost layers and only needed the information of the cells
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which lie at an MPI boundary; which is not always the case, see SeisSol code for more
[14]), and we do not know how h processes its input values, including c2. Therefore, we
split up the call h(f, c1, c2) into two other functions, fh(f, c1, v2) and ch(f, c2). ch(f, c2)
will be executed remotely for shared faces and locally for inner faces, and the result
will be stored in v2. As v2 is a variable, we may transfer it with MPI and then execute
fh(f, c1, v2) locally. For that, f and c1 are present on our local rank, as before. In total,
ch(f, c1, ch(f, c2)) should behave like h(f, c1, c2). To handle boundary faces, we say that
v2 is none, if c2 is none.

We may also change the cell-centric iteration scheme, as used in SeisSol, to a face-
centric iteration scheme. Then, instead of iterating over all cells and then all side faces,
we simply iterate over all faces directly. It is a little easier to describe the algorithm this
way, as the MPI-related part is already face-centric. Let f be a face, c1 and c2 be the
incident cells (or c2 is none). Assume for now that c2 is not none. Then we need to
execute h(f, c1, c2) and h(f, c2, c1). In the cell-centric iteration scheme, we would handle
c1, and under this context f and the incident c2. Then later, we would do the same with
the roles of c1 and c2 swapped. Consequently, we also need to do this in the face-centric
iteration. Here, we handle f (instead of the cells) and directly execute h(f, c1, c2) and
h(f, c2, c1) after another. With MPI and distributed memory, this boils down to: if f is
an inner face, we execute fh(f, c1, v2) and fh(f, c2, v1) with v1 = ch(f, c1), v2 = ch(f, c2)
which we can simply compute locally. For shared faces, we execute fh(f, c1, v2) on the
rank which has c1 and fh(f, c2, v1) on the rank which has c2, i.e. v1 and v2 have to be
transferred. vi = ch(f, ci) is computed on the rank which has the respective cell ci (with
i being 1 or 2). Boundary faces (here, we assume c2 is none) can simply be handled
with a call fh(f, c1,none).

The differences and advantages/disadvantages of the change from cell to face-centric
are mostly cosmetic or non-effective, if we assume that the iteration order is irrelevant
(which it mostly is for our applications). To be more specific, the iteration of all faces
requires less calls to the PUML-internal hash maps than in the cell based method. There,
we get a face of a cell internally by first computing all face vertices and then looking up
the face in a hash table. The advantage of the face-centric iteration is that such hash
map calls are not needed, as a face in PUML stores its incident cells. In some cases
however, SeisSol needs to know from a face on which side of a cell it lies (numbered from
0 to 3) [14]. To get this information when knowing just cell and face requires some hash
map calls, and an iteration over all side faces of the cell; i.e. it is very cheap to find this
out. The cell-centric scheme gives us this information for one cell at least, and hence
allows a more beautiful formulation in these cases; the face-centric scheme gives us no
information about the cell sides. Empirically speaking, there should be no noticeable
performance difference between face and cell-centric schemes.

5.2.1 The Algorithm

We may now give an algorithm for the abstraction; from the perspective of a single rank
in an MPI application (cf. algorithm 5.1): we are given the functions fh and ch which
are the same for all ranks. Additionally, we keep a list on each rank for each target rank
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(a) (b)

Figure 5.1: An example distribution of a two-dimensional mesh (cf. figure 2.1a) on two
MPI ranks. Figure (a) shows the distribution. The color represents the rank
the cell resides on. Faces which are represented on both ranks are connected
using a gray dotted line. Figure (b) then shows how the faces (which are
also edges here) are classified. The gray faces are boundary faces, the blue
faces are inner faces, and the red-orange faces are shared faces.

(we call it T [r] with r being a rank). Firstly, we then iterate over all faces and process
boundary and inner faces immediately. If we encounter a shared face, we add it to T [r]
with r being the other rank the face is present on. We then sort each T [r] by the global
face id (which is unique over all faces over all ranks). The idea to do this is already
present in SeisSol [14]. Next, we compute an array D[r] which stores the values of ch
of the local cells of T [r]. This array D[r], we then transfer to the other rank r for each
r. Consequently, we receive an array R[r] from each other rank r as well, as every rank
transfers data to us. We do not need to transfer any information about how many faces
or which faces we transfer. If we have two ranks r1 and r2, both have the same set of
faces shared with each other: suppose f is a face, c1 and c2 are incident to it, and c1
lies on r1 and c2 on r2. Then r2 needs the information ch(f, c1) from r1 and vice-versa.
So, f will be inside T [r1] on r2 and T [r2] on r1 (remember: each rank has its own T , D
and R arrays). As a result, these two arrays are the same. The sorting of T [r] then also
voids the need to transfer the global IDs of the shared faces. After this is done, we may
simply handle all shared faces using D[r] which we just received. For those, all that is
left is to compute fh for them.

To avoid re-calculating T [r], we may also pre-compute it. In this case, we ignore shared
faces in the first iteration over all faces. In case that we have only one rank present, the
whole algorithm then does exactly the same as if it was run as a local loop, as there are
no shared faces then.
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Data: fh(f, c1, v2) and ch(f, c2) with f being a cell face, c1, c2 being cells and
v2 being the return type of ch

Let T [r] be a list for each rank r;
foreach Faces f do

if f is an inner face then
Let c1, c2 be the cells which are incident to f ;
Execute fh(f, c1, ch(f, c2));
Execute fh(f, c2, ch(f, c1));

else if f is a boundary face then
Let c1 be the incident cell to f ;
Execute fh(f, c1,none);

else if f is a shared face then
Let r denote the other rank where f is present;
T [r].add(f);

end
foreach Rank r do

Sort T [r] by global face ID;
end
Let D[r], R[r] be two lists for each rank r which have the same size as T [r];
foreach Rank r do

foreach Face f at index i in T [r] do
Let c1 be the cell incident to f which is present on the local rank;
D[r][i] = ch(f, c1);

end

end
Transfer D[r] and receive R[r] for each rank r;
foreach Rank r do

foreach Face f at index i in T [r] do
Let c1 be the local cell which is incident to f ;
Execute fh(f, c1, R[r][i]);

end

end
Algorithm 5.1: The face iteration abstraction. It performs some function fh on all
faces in the mesh, taking into account that the incident cells might be on different
MPI ranks. In this case, we pre-compute the cell-specific data we need for the call
of fh and transfer it to the other rank.
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5.2.2 Implementation

We implemented algorithm 5.1 in the file FaceIterator.h in the PUML package which
contains the class FaceIterator. When constructed, this class creates T [r] for each
rank r. For this, it simply requires a PUML object. To iterate over all faces, we provide
the method iterate which takes the following arguments in its base form:

• A function called external_cell_handler of type T(int,int) with T being a
type from a template parameter. The two arguments specify the local face and
cell id, respectively. This function corresponds to ch in algorithm 5.1.

• A function called face_handler of type void(int,int,const T&), T and the
two integer arguments as above. The last parameter is the result some call to
external_cell_handler. This function corresponds to fh in algorithm 5.1, in
the case of shared or inner faces.

• A function called boundary_face_handler of type void(int,int), similar to
face_handler, but missing the third argument. This equals fh of algorithm 5.1
in the case of boundary faces. With C++17, it will be possible to unify this argu-
ment with the one before by using std::optional. If boundary faces are irrelevant
(i.e. when looking at the dual graph of the mesh – then only shared and inner faces
will form dual graph edges)

• An MPI_Datatype which should correspond to T.

The execution then closely follows algorithm 5.1, with fh equal to face_handler and
ch being external_cell_handler. This means that we transfer array of type T over
MPI which is why the datatypes of the MPI transfer type and T have to match.

To ensure this, we introduced a template-based conversion from C++ type to MPI
datatype (class MPITypeInfer<T> in FaceIterator.h). For primitive types like int

or long, we will directly return the corresponding MPI type (in this case MPI_INT,
MPI_LONG). To also support more complex types, we implemented support for std::pair
or std::array, caching an MPI datatype which is created on first use. For both
std::pair, we issue a call to MPI_Type_create_struct and the offsetof macro [60].
For std::array, we use MPI_Type_contiguous.

To transport the data with MPI, cf. transfer of D[r], R[r] in algorithm 5.1, we flatten
the respective arrays in our code, so that we have a single array for data to transfer
and a single array for the data to receive. Concerning the MPI communication itself,
there are two possibilities: either we use a single MPI_Alltoallv call to communicate
all data or, if we only have few neighbors, we can use one MPI_ISend and MPI_IRecv

per corresponding rank. In SeisSol, the latter pattern is used more often. For a more
detailed discussion of the advantages and disadvantages of either strategy, we refer to
[18]. The user can decide which pattern to use; for this purpose we have added a flag to
the FaceIterator constructor.

On top the above-mentioned arguments for iterate, we provide further variants. For
example, we provide a method which applies a cell handler on every cell (not only the
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external ones) and then calls the face handler with the results. Building on top of that,
we can replace the cell handler by a std::vector or pointer which we supply to the
method instead (and is internally replaced by an access to the data structure). Then,
the cell i has its data at position i in the std::vector or pointer.

The whole FaceIterator itself is completely separate from the PUML core (PUML.h).
In fact, it could be distributed as a single header file with PUML as its only dependency.
It is important that PUML::generateMesh() is called before creating a FaceIterator,
the class itself does not check that. In all occurrences of the face iteration is SeisSol
right now, this is already the case before the iteration starts.

5.2.3 Considerations

For the future, the first and the last loop in algorithm 5.1 may be parallelized. Though
this only can be considered, if fh has no loop-carried dependencies and the order in
which the faces are traversed is irrelevant. To simplify the iteration routines, a removal
of the boundary_face_handler parameter might be possible, as the functionality of it
may be also accomplished when simply iterating over all edges locally.

Moreover, currently the internal data structures used for storing information about
T [r] use int, because MPI_Alltoallv does so with its size and displacement parameters.
This could lead to an integer overflow when considering much larger meshes (than e.g. 221
million cells), so there is no concern right now.

5.3 Creating an Interface for Partitioning Libraries

We mainly focused on enhancing and modifying the PUML library.

In general, all partitioning class in the following depend on the topology of the cells,
i.e. if we have tetrahedra or hexahedra. This means that each of the following classes
has a template parameter Topo which can be either TETRAHEDRON or HEXAHEDRON. From
now on, we will omit this template parameter for better readability.

To support multiple partitioning libraries, we first of all introduced a new base class
called PartitionBase and made PartitionMetis inherit from it. Then, we renamed
PartitionMetis to PartitionParmetis.

Additionally, we introduced a new header Partition.h which automatically allows
the selection of a partitioning library. It consists of a class Partition which contains
a static method get_partitioner(std::string name), accepting the name (as string)
of a partitioning library or configuration. It returns an std::unique_ptr to a subclass
of PartitionBase. In the end, the user should just include Partition.h and run the
get_partitioner method to get a partitioner – or a nullptr, if the name was incorrect.

Table 6.3 presents a list of possible partitioner names. As of now, each new partitioner
has to be added by hand into Partition::get_partitioner.
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5.3.1 Dual Graph Creation

Next, we examine the conversion from mesh to dual graph a little closer, as well as
the partitioning method used. For that, we split ParMETIS_V3_PartMeshKway up into
ParMETIS_V3_Mesh2Dual and ParMETIS_V3_PartKway in PartitionMetis. This way,
we could now also support edge weights, if ever needed. Next, we pulled the logic of
ParMETIS_V3_Mesh2Dual completely out of PartitionMetis. For the graph represen-
tation, we instead created a new class PartitionGraph (file PartitionGraph.h). The
reason for this was that other partitioners did not have a comparable graph generation
method, and to keep the partitioner-related files free from other partitioner dependen-
cies. To completely eliminate the dependency on ParMETIS for all partitioners, we
decided to re-implement the functionality of ParMETIS_V3_Dual for our specific struc-
ture. For this, we use the face iteration abstraction as described in section 5.2. Hence,
PUML::generateMesh() has to be run before the graph creation, but this is guaranteed
if local time stepping is used, as the face iteration is already used there.

The PartitionGraph stores the data in an adjacency list format similar to that of
METIS/ParMETIS (cf. parameters vtxdist, vidx, and adjncy from section 4.5.1; called
vertex_distribution, adj, and adj_disp in PartitionGraph), all as std::vector.
Additionally, PartitionGraph holds a vector with data like vtxdist, but for edges in-
stead of vertices (called edge_distribution). Besides that, the class provides useful
information such as the local and global vertex as well as edge count. As of now,
PartitionGraph also stores vertex and edge weights. This might be sub-optimal,
as it is simply a copy of data which already has been put together into an array;
but this way, all data is in one data structure. To define potential edge weights,
PartitionGraph builds on the face iteration abstraction. By iterating over the faces
again in the order (here, the order matters) in which we created the adjacency lists, it
is possible to define for each entry in the adjacency list a weight with the data from
the two adjacent vertices. For this, PartitionGraph provides several methods called
forall_local_edges which accomplish exactly that. Internally, it is a simple wrap-
per around a FaceIterator. To support geometry-based algorithms, PartitionGraph
provides a method called geometric_coordinates which fills a given vector with the
barycenters of the local cells.

5.3.2 Adoption of Partitioning Libraries

Each of the graph partitioners was adopted in a single header which contains a class that
inherits PartitionBase. As a downside, every time we include such a header, we also
include the headers of the underlying partitioning library. But as PUML is constructed
as a header-only library, there is no other choice to that (except violating that principle).

To subclass PartitionBase, the method partition has to be overridden; it is de-
clared virtual in PartitionBase. During the course of development, the signature to
the method changed to void partition(int* partition, const PartitionGraph&

graph, double* nodeWeights, int nparts, double imbalance, int seed). The
first parameter is the output partition, as before. The graph parameter supplies the
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graph to partition – including vertex and edge weights. nodeWeights specifies the par-
tition weights, as present in ParMETIS. The last three parameters are the number of
parts to partition in, the maximum allowed imbalance in ParMETIS format, and the
seed to use. Additionally, we added an overload for this method which replaces the point-
ers with partition and nodeWeights with std::vector. Another overload returns a
vector with the partition result data, instead of requiring an existing one as input.

Every header for a partitioning library is included in Partition.h (and registered in
Partition::get_partitioner), if a compile-time variable is defined. For example, the
header PartitionParmetis.h is included, if the preprocessor variable USE_PARMETIS

exists.

For the libraries that we implemented, it was common for us to firstly convert the
data from the supplied PartitionGraph object into the partitioning library-specific data
types. After that, the partitioning library could be called.

We also included a dummy header which does nothing, called PartitionDummy.

ParMETIS

After our refinement, we implemented the partitioning with ParMETIS_V3_PartKway

and ParMETIS_V3_PartGeomKway. We decided against testing ParMETIS_V3_PartGeom

which simply applies a geometric algorithm, because it could not take any parameters
concerning vertex or edge weights. To switch between the different implementations, we
simply introduce a flag which is set in the constructor – if the user wants it.

We left an implementation which stays as close as possible to the original code be-
fore the transformation, in the header PartitionParmetisLegacy.h. As a result, this
implementation does not support edge weights.

PT-SCOTCH

For implementing PT-SCOTCH, we could have used the ParMETIS compatibility meth-
ods. Yet, the compatibility methods completely ignore seed and imbalance values. They
do not give access to the strategy parameters either which can be used to configure
PT-SCOTCH more in-depth, like enforcing as much balance as possible or preferring
speed over quality (or vice-versa). We therefore used the SCOTCH library methods
directly, as these give us more control over the graph partitioning process. In general,
the method calls are still similar as in the source code of the ParMETIS compatibility
methods. That is, we first create a SCOTCH_dgraph structure and fill it with data. Next,
we initialize our strategy (SCOTCH_strat) with one of the default strategies which we
let the user choose (cf. SCOTCH_stratDgraphMapBuild). Then, we add the partition
weights (SCOTCH_arch, architecture definition; using method SCOTCH_archCmpltw), and
then we can partition with a call to SCOTCH_dgraphMap. After this is done, we then
simply clean up.
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ParHIP

To implement ParHIP, we had to write the interface to the library ourselves: as of March
2019, there was no interface available in the public repository [41]. We oriented our code
at the existing code for the command line program called parhip, cf. the file parhip.cpp.
Furthermore, we tried to mimic the code used for the interface to KaFFPa as closely as
possible. The method signature orients at the corresponding KaHIP methods:
void parhip(int* vtxdist, int* xadj, int* adjncy, int* vwgt, int* adjwgt,

int npart, int seed, int mode, double imbalance, int* edgecut, int* part,

MPI_Comm comm). The first five parameters are the same as in calls to ParMETIS. npart,
and seed set the number of parts to partition in and the random initial seed, respec-
tively. mode specifies a partition configuration which is a combination of either ultrafast,
fast, and eco and one of mesh and social. The modes are the same as in the parhip

application, i.e. eco provides the best quality, but is slower, and ultrafast is the fastest
configuration, but yields the worst results. imbalance (maximum allowed imbalance)
is stored as in ParMETIS, i.e. as 1 + ε (e.g. if we want a maximum allowed imbalance
of ε = 1%, we supply 1.01 here). edgecut, part, and comm are then similar to the
ParMETIS call again. The calling process roughly goes as follows:

• We generate the internal configuration (class PPartitionConfig) according to the
presets (ultrafast, fast, eco, strong; though the latter is not implemented as of
today) and also set the random number generators. Note that srand is set for this
purpose here.

• Next, we generate the actual graph out of the given input data. It is saved in
an instance of the class ParallelGraphAccess. The generation goes analogously
to the graph reading process in the file parallel_graph_io.cpp for METIS-like
input files.

• Then, we start the actual partitioning, using the distributed_partitioner class.

• After that, we finish by writing out the partition and the edgecut.

We considered it possible to extend the library to support node weighting (as done in
ParMETIS), yet we did not pursue this idea due to the given time constraints, and the
possible long testing and verification phase.

5.3.3 Build System

As SeisSol uses scons with a small helper framework, we adopted both ParHIP and PT-
SCOTCH to these. ParMETIS was already present, as it is already used within SeisSol.
The way it is implemented right now, the system currently looks for the headers and
the static libraries in the default paths, i.e. the C_PATH and LIBRARY_PATH environment
variables.
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We now present the results we obtained from the tests of our interface. For this, we
make the partitioning libraries partition several dual graphs of meshes which could be
used by SeisSol for an earthquake simulation. We will examine the resulting partitions,
change parameters, and observe the effects. In the end, we will shortly compare the
statements made in the papers of section 4.3 to our findings.

6.1 Test Setup

Firstly, we describe our testing procedure and environment.

6.1.1 Test Program

Our test program first reads a PUML file and generates the mesh data for it. If we
want to, we can also supply a material file which can be used to derive vertex and edge
weights. After that, we call the partitioning library we want to use and wait for the
process to finish and the result data to be written. The result data (stored in a JSON
file) contains raw information about the size and cut of each partition to each other
partition as well as some deduced properties like the total edge cut etc. We also made it
possible to switch each partitioner with command-line parameters, without re-building
the program.

The test program receives its input configuration (e.g. partitioner to use, mesh to use
etc.) as JSON files. It is also possible to supply multiple JSON files as arguments. We
traverse the input configurations from left to right, and always maintain the current
configuration (as JSON object). When we read a new JSON file (containing a JSON
object), we combine it with the existing configuration object using the JSON merge patch
format [61]. This effectively means that the new file can override or add properties to
our current configuration JSON object. To shorten test time (especially for seed tests
and large meshes), we also allow to process an array of configurations in one program
run. The obvious disadvantage is that potential memory leaks or other unseen effects
might harm the later partitioning runs. If we input a JSON array file as parameters, we
build to Cartesian product with all existing configurations, built from the already read
parameters. JSON files which only consist of a JSON object are interpreted as array of
size 1. We start with a single empty JSON file, before we read the first parameter.

To support the vertex weights described in section 2.4, we had to adopt some of
the code from SeisSol. We copied Initializer/time_stepping/LtsWeights.cpp and
Geometry/PUMLReader.cpp, as well as their header files to our test software. Because of
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Node processor type Intel Xeon Phi 7210-F
Processors per node 1

Cores per node 64
DDR4 memory per node 96 GB
HBM memory per node 16 GB

Interconnect type Intel OmniPath
Interconnect bandwidth 25 GB/s (2 links)

Table 6.1: Specifications of the CoolMUC3 cluster; for more, see [62]

this, we needed to import easi [59] which we did as GIT submodule. easi then required
some other GIT submodules we needed to add to our project as well. Now we could
load the SeisSol material files which are stored in the YAML file format [58].

For measuring time, we issue a call to MPI_Wtime right before and right after we
call PartitionBase::partition (of a subclass of PartitionBase). The peak memory
consumption is measured by calling getrusage before and after the partitioning (but
before/after the call to MPI_Wtime). Then, we use the ru_maxrss attribute of the filled
struct rusage. This of course conflicts with the array processing described above which
is why we do not use it when measuring memory.

The output file of a run contains information about partitioning run-time, edge cut,
and resulting imbalance. It also stores the configuration it was called with. Additionally,
we store for each pair of parts the accumulated weight of edges which connect them and
for each rank how much peak memory before and after the partitioning routine call
happened.

In the end, we adapted the scons file from the existing test software which was used to
test PUML itself, and added the new partitioning libraries as well as easi to the script.

6.1.2 Test Environment

For running our tests, we used the Linux Cluster of the Leibniz Computing Center
(LRZ).

Hardware and Software Environment

We ran the datasets on the CoolMUC3 system of the Linux Cluster. Table 6.1 shows
the exact specifications of the used test machines [62]. The CoolMUC3 cluster consists
of nodes with a 64-core Intel Xeon Phi CPU of the Knights Landing series. Each node is
equipped with 96 GB of DDR4 RAM and 16 GB HBM memory. We will only make use
of the DDR4 RAM for our tests. Intel OmniPath serves as interconnect for the cluster.

Software-wise, slurm served as workload scheduler. As Linux distribution, SUSE Linux
Enterprise Server 12 SP3 was used.
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Building

We use the Intel compiler (icc) version 17.0.6 20171215. As environment variables, we set
the following (i.e. we do not include specific optimizations like AVX512 for the Knights
Landing processors):

export FC=mpiifort

export CC=mpiicc

export CXX=mpiicpc

export MPIFC=mpiifort

export MPICC=mpiicc

export MPICXX=mpiicpc

export FFLAGS="-O3"

export CFLAGS="-O3"

export CXXFLAGS="-O3"

All partition libraries are installed into a local directory. Version-wise, we used the
most recent versions for all partitioners, i.e. ParMETIS 4.0.3 (with METIS 5.1.0), KaHIP
2.10, and PT-SCOTCH 6.0.6.

ParMETIS We installed ParMETIS aside from METIS. The build process went without
any special occurrences. To configure ParMETIS (and METIS) for 64 bit indices and
weights, we had to modify metis.h and change the values of the preprocessor variables
IDXTYPEWIDTH and REALTYPEWIDTH to 64 (only the former is necessary to support larger
graphs and vertex weights).

ParHIP We added our own ParHIP interface to the scons files already present in the
KaHIP package. To compile, we then ran parallel/build.sh. Still, the header and
the compiled library had to be copied manually into the installation directories (under
bin/ and lib/, respectively). The latter was located under parallel/parallel_src/

optimized_nooutput after compiling.

PT-SCOTCH From the provided makefile supplements in /src/Make.inc, we used
Makefile.inc.x86-64_pc_linux2.icc.impi, configured for ICC and Intel MPI. We
additionally specified -DINTSIZE64 and -DIDXSIZE64 to configure for 64-bit integers.
We compiled PT-SCOTCH without multi-threading for the algorithms (the number of
threads is currently only defined at compile time; we did not specify it), so performance
might increase that way.

Test Software For compiling our test software, we simply ran scons, with our local in-
stallation directory in C_PATH, LIBRARY_PATH, and LD_LIBRARY_PATH. The build process
worked flawlessly, after we installed ParMETIS, ParHIP and PT-SCOTCH. (by now, it
is required for the test program that all three of them are installed)
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Identifier Name Verticesa Edgesb

tpv28 SCEC/USGS Spontaneous Rupture
Code Verification Project

366 276 1 456 718
tpv33 1 118 216 4 454 918

loh1-small
LOH.1 benchmark

386 518 1 524 392
loh1-large 7 252 482 28 752 118

sumatra-221m 2004 Sumatra Earthquake 220 993 734 881 935 700

landers-7m

1992 Landers Earthquake
7 509 016 29 937 384

landers-98m 98 138 869 389 672 068
landers-191m 191 098 540 761 146 364

a Dual graph vertices
b Dual graph edges

Table 6.2: Earthquake meshes used for testing

6.1.3 Test Datasets

Table 6.2 shows a list of the used test datasets. The first few meshes (tpv28, tpv33,
loh1-small, loh1-large) come from benchmark and verification sets for earthquake
simulation software. The second kind of meshes (1992 Landers Earthquake with 7, 98,
and 191 million cells; and the 2004 Sumatra Earthquake with 221 million cells) model
real earthquakes in different resolutions.

6.1.4 Partitioner Configurations

Table 6.3 shows a list of partitioner configurations we used.

From ParMETIS, we try out the standard ParMETIS_V3_PartKWay() method, as well
as ParMETIS_V3_PartGeomKWay(). For comparison, we also include a method which
uses the old partitioning code (modified as little as possible). This legacy method is
not able to take edge weights into account, as it uses ParMETIS_V3_PartMeshKWay()

internally.

As PT-SCOTCH comes with a variety of configuration options, we try out some of
the default strategies. For all the possible optimization directions speed, balance and
quality, we chose to test all of them and also to combine speed with balance and quality
with balance. (combining speed with quality would not make sense here) By looking
into the source code [42], we could also see that the quality focus has no effect (it simply
does not change the strategy), hence we do not have to test it.

For ParHIP, we chose to try out the three different given settings for meshes: eco, fast
and ultrafast.
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Identifier Partitioner Remarks

legacy ParMETIS Old SeisSol partitioner code, for comparison
parmetis ParMETIS Uses ParMETIS_V3_PartKWay()

parmetis-geo ParMETIS Uses ParMETIS_V3_PartGeomKWay()

ptscotch PT-SCOTCH Default strategy
ptscotch-b PT-SCOTCH Strategy with focus on balance
ptscotch-s PT-SCOTCH Strategy with focus on speed
ptscotch-sb PT-SCOTCH Strategy with focus on speed and balance
parhip-eco ParHIP ParHIP eco mesh mode
parhip-fast ParHIP ParHIP-fast mesh mode
parhip-ultrafast ParHIP ParHIP ultrafast mesh mode

Table 6.3: Partitioner configurations

6.1.5 Test Settings

We will now describe the default test settings which we use in the following sections. All
tests are done on the CoolMUC3 machine. For default settings, we use:

• The mesh loh1-large

• 256 partition parts

• Seed value: 1

• Maximum allowed imbalance: 1%

• LTS rate r = 2, as always in SeisSol (this is only relevant for the LTS weights)

• MPI processes: 64, distributed on 16 nodes (i.e. 4 MPI processes per node)

• Vertex weights set as described in section 2.4; likewise edge weights are set uni-
formly to 1

These default settings are set to be a bit harder than in a realistic case, because the
cells per partition ratio is rather low with about 28300 cells per partition part in the
perfectly balanced case. The reason we did not use 64 MPI processes per node is that
it caused out of memory problems very quickly. This way, we can also simulate the
performance when the MPI processes of the partitioners communicate mainly over the
interconnect and not inner-node, making the scenario more realistic. We also do not
use one MPI process per node, as this would be impractical on the cluster we used (due
to high waiting times for resources). In comparison, in [10], they use one MPI process
per node and the cells per partition ratio is about 72000 for 3072 nodes and 221 million
cells, or about 100000 for 512 nodes and 51 million cells. We only present a single run
for each test, because of time constraints.
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We evaluate the partitioners by three criteria, namely edge cut, resulting imbalance
and partitioning time. Edge cut and resulting imbalance can be directly calculated
from the partitioning output. We do not use any library to perform these calculations.
The time measurement does not include the mesh to dual graph conversion (strictly
speaking, excluding legacy), cf. subsection 6.1.1. Additionally, we will look at the
additional amount of memory the libraries use. In the following, we are going to use
the terms “mesh” and “dual graph of the mesh” interchangeably, as it is clear that we
always mean the latter when partitioning. Likewise, vertices mean dual graph vertices
in the following sections, and they are equivalent to cells here. The same holds for edges
and faces.

6.2 General Evaluation

First of all, we examine how the partitioners work, when using the settings from 6.1.5
(with slight modifications in some cases).

6.2.1 Vertex and Edge Weights

First, we test the effect of vertex and edge weights on the dual graph. In this special
case, we are going to use the mesh tpv33 instead of loh1-large. For random vertex
and random edge weights, we chose integer values between 1 and 1000, inclusive. We
also tried to test larger meshes (like loh1-large) with random values. This required
us to compile the partitioners with 64 bit support, otherwise they encountered inte-
ger overflows. The same holds, if we chose larger (than 1000) random values for the
mesh tpv33. Figure 6.1 shows an overview over the results for different vertex weight-
ing configurations, run on the mesh tpv33, with 256 parts maximum. We show three
different vertex weightings: uniform (all set to 1), random (for stress testing), and real
(i.e. the weights from section 2.4). As one can see, the edge cut does not differ very
much for all different vertex weighting systems. parhip-ultrafast is seen to yield
the worst edge cut in all cases, while both PT-SCOTCH and ParMETIS (and to some
extent also parhip-eco) almost tie for the best results, with PT-SCOTCH slightly out-
performing ParMETIS. All variants of PT-SCOTCH show approximately equally good
results. Concerning the imbalance, all but ParMETIS obey it strictly, while ParMETIS
slightly violates it. Furthermore, ptscotch-b almost completely balances the graph.
In contrast to ParMETIS, ptscotch-b seems to have most trouble with uniform ver-
tex weights, while ParMETIS struggles with random most. When it comes to the time
spent for partitioning, ParMETIS is the quickest, with PT-SCOTCH not far behind.
ptscotch-s and ptscotch-sb in this case as double as fast as their respective counter-
parts. In the case of larger meshes like loh1-large, this relation is not that strong any
more. Only ParHIP needs much more time, with parhip-ultrafast and parhip-fast

still staying under 100 seconds, parhip-eco needs a bit more than 7 minutes for random
vertex weights. Moreover, parhip-eco needs for this particular weighting about twice
as long as for both uniform vertex weighting and the variant that is currently used in
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6.2 General Evaluation

SeisSol.

In the tests with random vertex and random edge weights on tpv33 (we have no
graph available for that), PT-SCOTCH became extremely slow. We aborted the run
with ptscotch after approximately 15 hours, with no result. Though again, it should
be noted that we did use the single-threaded variant of PT-SCOTCH. With additional
multi-threading, this time might be reduced.

6.2.2 Memory consumption

Next, we look at the memory consumption of the partitioners of one run with default
settings per rank. This time, we use the default settings from subsection 6.1.5 (i.e. the
mesh loh1-large). Table 6.4 shows the results. Note that the table covers the mem-
ory used for the whole interface, including a potential conversion of data to the right
bitlength. If we estimate by that we have around 113320 cells per rank (which equals
a possibly balanced distribution of all 7 million vertices of the loh1-large mesh) and
that each cell is connected with each other cell, then we will use approximately 5.4 MiB
of additional memory (113320 · 8 to get the length of an array storing a uint64_t for
each cell; then we need this times 4 for the adjacency list plus 1 for the adjacency index
list, plus another 1 for the vertex weights) which is negligible, compared to the other
consumed memory. As one can observe, ParMETIS requires the least memory, espe-
cially when using the geometric initial partitioning. PT-SCOTCH (independently from
its strategy) requires a bit more memory, and shows that there is barely any difference
between the different varieties. ParHIP on the other hand requires a lot more memory
per rank, yet it has the lowest variance of memory consumption over all ranks. The
high memory requirements might be explained with the additional data structures that
KaHIP uses to store information about vertices and edges, or they might be due to an
error in our interface.

In total, all nodes together have a memory of 1536 GB, and 24 GB per node (remember:
one node has 96 96 GB RAM; we have 16 nodes and 4 processes per node).

6.2.3 Connectivity

As we also tracked which partition part is adjacent to which other parts, we can present
in a plot on how many adjacent parts a partition part has. For each partitioner, we
did one run with default settings and visualized the results in figure 6.2. For all runs,
we used the default settings from subsection 6.1.5. Surprisingly, it does barely matter
which partitioner nor which configuration we choose, we end up with at maximum about
46 neighbors which is about 18% of all possible neighbors. The median seems to center
around 8 or 10 which is approximately 3.1% or 3.9%, respectively.

Tests with larger meshes (for whose we do not present graphs here) have shown that
generally, the number of adjacent parts decreases, but the median roughly stays the
same.
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Figure 6.1: An overview over edge cut, imbalance and partitioning time for different
vertex weights. The tests have been run on the mesh tpv33, partitioning into
256 parts; we did exactly one run for each partitioner and vertex weighting
model. Dataset (a) means uniform weights of 1 for all vertices. For dataset
(b), all vertices have random values, equally distributed between 1 and 1000,
both inclusive. Dataset (c) uses the vertex weights from section 2.4, as it is
currently done in SeisSol. The edge weights in all cases are uniformly set to
1.
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Figure 6.2: The number neighbors for each partition part, for one partitioning run on
the loh1-large mesh into 256 parts.
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Peak [kB] Average [kB] Std. dev. [kB]

legacy 67 308 58 595 6064
parmetis 62 216 53 031 6033
parmetis-geo 56 888 42 936 10 406
ptscotch 115 656 99 023 11 980
ptscotch-b 114 960 99 515 11 545
ptscotch-s 112 032 97 606 11 495
ptscotch-sb 113 052 97 926 11 712
parhip-ultrafast 3 549 292 3 538 462 5939
parhip-fast 3 598 904 3 586 470 5500
parhip-eco 3 583 580 3 571 252 5494

Table 6.4: The memory consumption of the partitioners per rank, using one run on the
mesh loh1-large, and partitioning into 256 parts. The first column shows
the peak rank consumption, the second one the average over all ranks and
the third one the standard deviation of these values. Note that all memory
for our interface to access the library (i.e. type conversion of arrays etc.) is
included in the difference.

6.3 Input and Parameter Variation

Next, we vary the parameters specified in subsection 6.1.5 (excluding vertex weighting,
as we have already done that in subsection 6.2.1) as well as the input meshes. From
now on, we will not test ptscotch-s and ptscotch-sb any more. They have shown
to be slightly faster than ptscotch, and ptscotch-b, but in our case (with uniform
edge weights), it makes barely a difference. Apart from that, legacy is not going to be
reviewed any further. It performs almost identically to parmetis, and it is a bit slower,
as it starts with the original mesh instead of the dual graph.

6.3.1 Maximum Allowed Imbalance

First of all, we vary the maximum allowed imbalance. For this, we will test the values
1%, 3%, and 5%. We also tried to set the maximum allowed imbalance to 0.1% or below.
In this case, as it can be seen in table 6.5, the partitioners begin to behave strangely. In
the end, only PT-SCOTCH stays below the 0.1% value, while ParMETIS and ParHIP
exceed it. For ParHIP, this might be attributed to the implementation of our interface,
as there, imbalance values of < 1% are rounded down to 0%. It is also done like this in
the implementation of the ParHIP command line program, and the interface to KaFFPa
only accepts integer values for the imbalance. In fact, internally, the imbalance is stored
in two ways – one of the is to store the percentage value as an unsigned integer [41].

A plot which shows imbalance values greater or equal to 1% is presented with figure
6.3. As one can see, the only partitioner which is really affected by an increasing allowed
imbalance is PT-SCOTCH when told to balance the graph at much as possible. We
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Imbalance [%] Exceeds 0.1%

legacy 0.567 Yes
parmetis 1.070 Yes
parmetis-geo 0.418 Yes
ptscotch 0.098 No
ptscotch-b 0.002 No
parhip-ultrafast 3.557 Yes
parhip-fast 3.433 Yes
parhip-eco 1.980 Yes

Table 6.5: The effects of using maximum allowed imbalance values which are lower than
1%, using the standard configuration, i.e. one run on the mesh loh1-large,
256 parts. For this test, we used a maximum allowed imbalance of 0.1%.

guess that this is because the balancing might be applied afterwards, meaning that with
a higher allowed imbalance, the library has to correct the partition more than with lower
imbalances. All partitioners obeyed the maximum imbalance for all values ≥ 1%, and
time-wise the runtimes slightly increased with a higher allowed imbalance for ParHIP
and slightly decreased for the other partitioners. But both do not show interesting
enough information for it being worth a plot.

6.3.2 Partition Parts

Next, we vary the partition parts. For this, we test power of 16, i.e. 161 = 16, 162 = 256,
163 = 4096, and 164 = 65536. The latter ones may not be very realistic (except if
parallelizing solely for MPI, compare table). Table 6.6 shows the ratio of cells per
partition part. Yet, this experiment gives a picture on how well the partitioners react to
these settings. The effects on the partitioning duration and resulting imbalance can be
seen in 6.4. As it can be seen, in the extreme case of 65536 parts, PT-SCOTCH actually
becomes the fastest partitioner. ParMETIS on the other hand, seems to grow super-
exponentially in time with the number of partition parts. ParHIP consumes more and
more time with more partition parts. parhip-ultrafast and parhip-fast get closer
together (in the logarithmic scale) with 65536 parts, and end up with needing over 1000
seconds to complete. parhip-eco leaps over this ledge already with 256 parts, and
surpasses 10000 seconds for the 65536-mark. Concerning the imbalance, it can be seen
in 6.4 that ParHIP in eco mode proves to adhere to the imbalance constraint best, as the
only partitioner to do so. All other partitioners violate the constraint. The earliest to do
so is ParMETIS, next are ParHIP in fast and ultrafast mode. PT-SCOTCH stays under
the maximum imbalance until we try to partition into 65536 parts, but then also fails
slightly. As it can be seen, the PT-SCOTCH variant that has to balance the partitions
as far as possible gets less efficient as the desired number of partitions grows, until 65536,
where it is completely futile and has no effect any more.
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Figure 6.3: A comparison of the maximum allowed imbalance values on the resulting
edge cut. Results of one run on the mesh loh1-large, 256 parts.

Number of parts Cells per part

16 453000
256 28300

4096 1770
65536 111

Table 6.6: Comparing the cells per part rate between the different number of partition
parts, rounded to 3 numbers. We assume that no imbalance is allowed (i.e. ε =
0) and use the mesh loh1-large with 7252482 cells.

44



6.3 Input and Parameter Variation

161 162 163 164

Partition parts

100

101

102

103

104

T
im

e
[s

]

(a)

161 162 163 164

Partition parts

0.0001%

0.001%

0.01%

0.1%

1.0%

10.0%

Im
b

al
an

ce

(b)

parmetis

parmetis-geo

ptscotch

ptscotch-b

parhip-ultrafast

parhip-fast

parhip-eco

Figure 6.4: A comparison of both time and imbalance to the number of parts we partition
into. Plot (a) shows for 16, 256, 4096, and 65536 parts the resulting time the
partitioners need. Plot (b) shows the resulting imbalance of the partitions.
The bold black line here signifies the maximum allowed imbalance of 1%,
as we defined it. We partition the mesh loh1-large with roughly 7 million
parts, all data points correspond to exactly one run of a partitioner. Note
the log-log scaling for both graphs.
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6.3.3 Seed Variance

In the next test, we ran all partitioners with different seed values, while settings every-
thing else to default values. In total, we have results for 38 different seeds in the case
of parmetis, parmetis-geo and ptscotch, 37 different seeds tested for ptscotch-b,
parhip-ultrafast, parhip-fast, and 36 different seeds tested for parhip-eco. The
difference in the number of tested seeds resulted from job timeouts as well as one out of
memory error. In figure 6.5, we present a boxplot of both imbalance (right) and edge
cut (left) variation.

In general, we can say that concerning edge cut, ParHIP roughly yields the same value
for all seeds. This matches nicely with the algorithms used in KaFFPaE and KaFFPa
which should accomplish exactly that. PT-SCOTCH allows a bit more variation in the
edge cut, though the balance constraint seems to slightly increase the range of possible
values. In contrast to these two libraries, the edge cut when using parmetis-geo can
improve by a value of up to 30000 using another seed (in our test scenario; and this is
an extreme case) which is about 7% less. For parmetis, similar results can be seen.

Concerning the allowed imbalance, both PT-SCOTCH (if not focusing on balance)
and ParHIP keep almost exactly at the maximum allowed imbalance of 1%. The
balance-focused PT-SCOTCH strategies instead stay always close to 0% imbalance. Only
ParMETIS stays between 0% and 1%, again with a greater variance.

6.3.4 MPI Processes

The last test changes the number of MPI processes used for testing. We use 64 MPI
processes for testing, with 4 processes per node, at maximum. The default behavior of
slurm in case of having more than one MPI process (or task) per node is to fill a node
first with MPI processes, and then continue with the next one [63]. Hence, we only
use one node, until we use more than 4 MPI processes (i.e. no interconnect influence
here). In fact, the number of nodes we use is the number of MPI processes divided by
4 in this case (more than 4 MPI processes). Figure 6.6 presents the number of MPI
processes plotted against the time for the partitioning process. Concerning ParHIP, the
time parhip-eco needs approximately halves from 1 MPI process, compared to 8. After
that, nothing more happens here in our case. parhip-fast and parhip-ultrafast also
improve a bit, but do so less than parhip-eco, and also stop with improving at about
8 MPI processes. The number 8 could be related to the fact that this is the smallest
number of processes where we use more than one node for partitioning. PT-SCOTCH
almost scales exponentially, but the effect of doubling the MPI processes decreases, the
more there are already. ParMETIS seems to scale a bit super-exponentially, at least in
the beginning. Later, it resorts to exponential scaling.

6.3.5 Different Meshes

Last but not least, we run our partitioners on different meshes, keeping every other
setting the same. Figure 6.7 shows the effect on smaller meshes than loh1-large. As
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Figure 6.5: A boxplot which shows the influence of the random seed value on the par-
titioning quality. On the left, we have a plot which shows the variation of
the edge cut, applied to the dual graph of the loh1-large mesh. On the
right, we have the imbalance (allowed: ≤ 1%), tested on the same graph.
We always partition into 256 parts. The data base is 38 tested seeds for
parmetis, parmetis-geo, and ptscotch; 37 tested seeds for ptscotch-b,
parhip-ultrafast, parhip-fast, and 36 tested seeds for parhip-eco.
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Figure 6.6: The effects of the number of MPI processes on the partitioning time. Tested
with four MPI processes per CPU. The data results from one run partitioning
the mesh loh1-large into 256 parts. The CPU model was Intel Xeon Phi
7210-F. Note the log-log scale. The black reference line shows the slope of
a function which would half its time needed for each doubling of the MPI
processes. Note that for up to 4 MPI processes, we use only one node. After
that, the number of nodes we use doubles with the number of MPI processes.
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6.4 Comparison with Claimed Results

it can be seen, the edge cut (relative to the best) is not very different for different
partitioners, only parhip-ultrafast is slightly slower. When it comes to the maximum
allowed imbalance, ParMETIS actually violates this constraint. This is again the case
because the cell-to-part ratio is rather low here. As usual, parhip-eco needs the most
time to compute a partition (always more than a minute), while parhip-fast and
parhip-ultrafast stay mostly below one minute of partitioning time. For PT-SCOTCH
and ParHIP, the needed time is negligible.

Next, we look at some larger meshes in figure 6.8. Here, every partitioner obeys
imbalance constraint. Furthermore, PT-SCOTCH yields the best edge cut in all cases,
except with sumatra-221m, where it failed because of a lack of memory (as a remainder:
we have 1536 GB in total which makes 24 GB per rank). However, this might not pose
a problem, as sumatra-221m is usually simulated in SeisSol with a much larger number
of nodes anyway [10]. In general, the edge cut is again relatively seen not very different
for all the larger meshes. ParHIP unfortunately failed to compute partitions for the
landers-98m, landers-191m, and sumatra-221m mesh, due to memory problems, hence
we can only present the results of landers-7m which is roughly the same size as the
afore-used loh1-large. Again, parhip-eco takes by far the longest to partition the
mesh with more than 25 minutes, and parhip-fast and parhip-ultrafast come next
(with roughly 100s difference in execution time).

For all meshes (except sumatra-221m), ParMETIS is several times faster than PT-
SCOTCH for the Landers meshes. Likewise, PT-SCOTCH was always several times
faster than parhip-ultrafast alone.

6.4 Comparison with Claimed Results

After running all these tests, we will now come back and compare to the statements by
the papers in section 4.3.

As claimed in [24], PT-SCOTCH was the slowest partitioner which also did not yield
competitive edge cuts. We can confirm this for the case that the edges are not uniformly
weighted. But in all other cases, PT-SCOTCH outperformed ParHIP and ParMETIS
in terms of edge cut, and is still faster than ParHIP. The probably most unexplainable
problem we encountered is the huge memory consumption of ParHIP which prevents
it from partitioning meshes with 98 million vertices or more, though 1536 GB of mem-
ory are in total available. Compared to the test machine in [24], every MPI process
has approximately 8 GB more RAM, if equally distributed (24 GB in our configuration,
comparing it with the 512 GB-RAM test machine from the paper and 32 MPI processes
yields 16 GB per rank). And against the claim that ParMETIS had problems with larger
meshes, it is the only partitioning library which manages to partition the 221 million
2004 Sumatra Earthquake mesh. This way, it is the opposite situation compared to the
paper [24], where ParHIP managed to partition bigger graphs than ParMETIS. The rest
of the claims from [24], we could not reproduce. ParHIP returned in many cases worse
edge cuts than ParMETIS did. We could only confirm that parhip-eco is the slower
than ParMETIS. This may be attributed to a number of factors: first of all, it is not
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Figure 6.7: Partitioning results of one run on different small meshes (maximum approxi-
mately 1 million cells), always partitioning into 256 parts. For all meshes and
partitioners, the resulting imbalance, time needed, and the edge cut (divided
by the best edge cut for the respective mesh) are displayed.
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6.4 Comparison with Claimed Results
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Figure 6.8: Partitioning results of one run on different resolutions of the landers mesh,
partitioning into 256 parts. For all meshes and partitioners, the result-
ing imbalance, time needed, and the edge cut (divided by the best edge
cut for the respective mesh) are displayed. Note that for landers-98m,
landers-191m, and sumatra-221m ParHIP did not manage to partition these
due to memory problems. PT-SCOTCH ran out of memory when partition-
ing sumatra-221m. ParMETIS had no problems in this regard.
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6 Evaluation

excluded that our interface does not set some variables correctly. We tried to adhere to
the code provided in the package as good as possible, but even then, small errors are
possible. Secondly, we tested different graphs, and use an entirely different cluster and
test setup.

Concerning [52], we can confirm that PT-SCOTCH returns a better edge cut than
ParMETIS, when using a considerable amount of MPI processes (which means 64 in
our case). Also, ParMETIS is seen to be always much faster than PT-SCOTCH during
partitioning, conforming with the paper. Though it should be noted that PT-SCOTCH
might perform faster, if multithreading with pthreads was enabled.
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7 Summary and Outlook

All in all, it can be said that there is no partitioner which outperforms the other par-
titioners in all categories. ParMETIS is well-suited when it comes to a low run-time,
and when obedience to the maximum allowed imbalance is not too important. In com-
parison, ParHIP still needs development for our cases. First of all, we needed to create
a C++ interface by ourselves. In our tests, ParHIP had a high run-time and memory
consumption, and its partition quality is improvable. Yet, it could again become a vi-
able option, in case edge weights ever come into play. PT-SCOTCH worked extremely
well for our meshes. Albeit a bit slower than ParMETIS, its configurability (e.g. for
balance) and its partitioning quality surpassed both ParMETIS and ParHIP. As long as
uniform edge weights are used, it performs best among all the partitioners we tested.
Yet, if non-uniform edge weights come into play, PT-SCOTCH stays by far behind its
competitors in run-time alone.

We also created an interface for different partitioners in PUML, and implemented
the three partitioning libraries ParMETIS, PT-SCOTCH and ParHIP for it. While
implementing the interface, we also replicated the mesh-to-dual-graph conversion which
was present only in ParMETIS. For doing so, we abstracted an algorithm already used
in SeisSol and implemented it as well for the PUML library. This abstraction can be
used to simplify the existing code in SeisSol when working with PUML.

For improving the partitioning in the future, an idea would be to try to “chain” differ-
ent partitioning algorithms; if that might yield some improvement, i.e. using partition
refinement methods (as present in e.g. ParMETIS) on some partition computed by some
other partitioner. Furthermore, an implementation of ZOLTAN might be thinkable to
bring in some more partitioning algorithms to try out. Apart from that, it might be
beneficial to look at other weighting models for vertices and maybe also edges for SeisSol.
This could help to further improve the load balancing.
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